首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence indicates that the N-methyl-D-aspartate (NMDA) receptor-channel complex contains a glycine subunit whose activation may be necessary for channel operation. It has been previously shown that stimulation of the NMDA receptor leads to an increase in intracellular ionic Ca2+ [( Ca2+]i); therefore, we examined the role of the NMDA receptor-associated glycine site in modulating [Ca2+]i using the fluorescent dye Fura II in hippocampal neuron cultures. A 3-s pulse of 200 microM NMDA resulted in a mean [Ca2+]i increase of 363 nM above the average resting concentration of 122 nM. Perfusion of the glycine site antagonist 7-chlorokynurenate (Cl-Kyn) essentially eliminated the NMDA-induced alteration in [Ca2+]i. Either 40 microM glycine or 50 microM D-serine completely reversed the effect of Cl-Kyn, indicating that the drug was acting at the glycine site. The NMDA receptor antagonists 2-amino-5-phosphonovalerate (AP5) and ketamine, which bind to the glutamate recognition site and the ion channel, respectively, also blocked the NMDA-mediated [Ca2+]i response; however, glycine or D-serine did not reverse this effect. These data show that the glycine binding site coupled to the NMDA receptor modulates the NMDA-mediated increase in [Ca2+]i. Antagonists of the glycine site provide a new tool to investigate and possibly control neuroplasticity and neurotoxicity related to the NMDA receptor complex.  相似文献   

2.
The effect of platelet-activating factor on the intracellular cytosolic level of free calcium ([Ca2+]i) was studied in neurohybrid NCB-20 cells. In fura-2-loaded NCB-20 cells, platelet-activating factor induced an immediate and concentration-dependent increase in [Ca2+]i with a maximum increase of 334 +/- 27 nM above a basal value of 147 +/- 6 nM (n = 40). Platelet-activating factor-induced [Ca2+]i mobilization was inhibited by the platelet-activating factor antagonists BN 50739, WEB 2086, SRI 63-441 and BN 52021 in a dose-dependent manner with IC50 values of 12, 38, 897 and 45000 nM, respectively. The calcium-channel blockers nifedipine (10 microM) and diltiazem (10 microM) had no effect on the platelet-activating factor-induced increase in [Ca2+]i; however, extracellular Ca(2+)-depletion caused a 63.6 +/- 4.7% reduction of platelet-activating factor-induced increase in [Ca2+]i (n = 5, P less than 0.001). The remaining 36% contributed from intracellular sources was completely inhibited by 10 microM of 8-(N,N-diethylamine)octyl 3,4,5-trimethoxytenzoate hydrochloride (TMB-8). NCB-20 cells exhibited homologous desensitization to sequential addition of platelet-activating factor, but no heterologous desensitization between platelet-activating factor and bradykinin or ATP was observed. These data suggest that activation of the neuronal platelet-activating factor receptor results in an increase in [Ca2+]i primarily via a receptor-operated rather than a voltage-dependent calcium-channel and to a lesser extent from intracellular Ca2+ release. Our findings may contribute to an understanding of the mechanism of platelet-activating factor actions on neuronal cells.  相似文献   

3.
N-methyl-D-aspartate (NMDA)receptors (NMDARs) located on peripheral terminals of primary afferents are involved in the transduction of noxious mechanical stimuli. Exploiting the fact that both NMDARs and stretch-activated channels are retained in short-term culture and expressed on the soma of dorsal root ganglia (DRG) neurons, we examined the effect of NMDA on mechanically mediated changes in intracellular calcium concentration ([Ca2+]i). Our aims were to determine whether NMDARs modulate the mechanosensitivity of DRG neurons. Primary cultures of adult rat lumbosacral DRG cells were cultured for 1-3 days. [Ca2+]i responses were determined by Fura-2 ratio fluorescence. Somas were mechanically stimulated with fire-polished glass pipettes that depressed the cell membrane for 0.5 s. Voltage-activated inward Ca2+ currents were measured by the whole cell patch clamp. Stimulation of neurons with 100 microM NMDA in the presence, but not the absence, of co-agonist (10 microM D-serine) caused transient [Ca2+]i responses (101+/-9 nM) and potentiated [Ca2+]i peak responses to subsequent mechanical stimulation more than two-fold (P < 0.001). NMDA-mediated potentiation of mechanically induced [Ca2+]i responses was inhibited by the selective protein kinase C (PKC) inhibitor GF109203X (GFX; 10 microM), which had no independent effects on NMDA- or mechanically induced responses. Short-term treatment with the PKC activator phorbol dibutyrate (1 microM PDBu for 1-2 min) also potentiated mechanically induced [Ca2+]i responses nearly two-fold (P < 0.001), while longer exposure (>10 min) inhibited the [Ca2+]i transients by 44% (P < 0.001). Both effects of PDBu were prevented by prior treatment with GFX. Inhibition of voltage-dependent Ca2+ channels with 25 microM La3+ had no effect on mechanically induced [Ca2+]i transients prior to NMDA, but prevented enhancement of the transients by NMDA and PDBu. NMDA pretreatment transiently enhanced nifedipine-sensitive, voltage-activated Ca2+ currents by a process that was sensitive to GFX. In conclusion, activation of NMDARs on cultured DRG neurons sensitize voltage-dependent L-type Ca2+ channels which contribute to mechanically induced [Ca2+]i transients through a PKC-mediated process.  相似文献   

4.
1. The possibility of use-dependent, long-lasting modifications of pharmacologically isolated N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmission was examined by intracellular recordings from granule cells of the hippocampal dentate gyrus in vitro. In the presence of the non-NMDA receptor antagonist 6-cyano-7-nitroquinaxaline-2,3-dione (CNQX, 10 microM) robust, long-term potentiation (LTP) of NMDA receptor-mediated synaptic potentials was induced by brief, high (50 Hz) and lower (10 Hz) frequency tetanic stimuli of glutamatergic afferents (60 +/- 6%, n = 8, P less than 0.001 and 43 +/- 12%, n = 3, P less than 0.05, respectively). 2. Hyperpolarization of granule cell membrane potential to -100 mV during 50-Hz tetanic stimuli reversibly blocked the induction of LTP (-6 +/- 2%, n = 6, P greater than 0.05) indicating that simultaneous activation of pre- and postsynaptic elements is a prerequisite for potentiation of NMDA receptor-mediated synaptic transmission. In contrast, hyperpolarization of the granule cell membrane potential to -100 mV during 10-Hz tetanic stimuli resulted in long-term depression (LTD) of NMDA receptor-mediated synaptic potentials (-34 +/- 8%, n = 8, P less than 0.01). 3. We also studied the role of [Ca2+]i in the induction of LTP and LTD of NMDA receptor-mediated synaptic responses. Before tetanization, [Ca2+]i was buffered by iontophoretic injections of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). BAPTA completely blocked the induction of LTP (3 +/- 5%, n = 13) and partially blocked LTD (-14.8 +/- 6%, n = 10).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The nucleus of the tractus solitarius (NTS) plays an important role in the control of several autonomic reflex functions and has glutamate and GABA as main neurotransmitters. In this work, we used patch-clamp recordings in transverse slice preparations from rats to study whether the glycine binding site of the N-methyl-D-aspartate (NMDA) receptor is saturated or not in neurons of the subpostremal NTS. Except at hyperpolarized voltages and close to the reversal potential, glycine potentiated the NMDA responses in a concentration-dependent manner. The total charge transferred by glutamatergic currents was enhanced by glycine (500 microM; from 28 +/- 13 to 42 +/- 18 pC at +50 mV, n = 7, P < 0.05). Glycine increased the conductance of the postsynaptic membrane, without altering its reversal potential, both in the presence (from 2.4 +/- 0.06 to 3.4 +/- 0.09 nS; n = 7) and absence (from 3.1 +/- 0.06 to 4.4 +/- 0.10 nS; n = 8) of Mg2+ in the bathing solution. d-serine, in the presence of strychnine, also increased the amplitude of the NMDA component (by 68 +/- 19%, P < 0.05, n = 5). The membrane potential was hyperpolarized (16 +/- 6 mV, n = 8) by glycine, suggesting the presence of inhibitory glycinergic receptors. Our results indicate that the glycine site of the NMDA receptor in neurons of the subpostremal NTS is not saturated and that glycine may act as a modulator of the NMDA transmission in this nucleus.  相似文献   

6.
Mg2+ efflux from heart cells on a Na+/Mg2+ antiport has been postulated, but the Na+ flux component of the antiport has not been demonstrated. The study aimed to establish if the Na+ flux component could be measured by following changes in [Na+]i with SBFI during conditions known to reverse the antiport (5 mmol/L Mg2+(o), Na+(o)- & Ca2+(o)-free): and after minimising the activity of other Na+ transport pathways. Resting [Na+]i was 8 +/- 0.7 mmol/L (mean +/- S.E., n = 39 cells) in normal Tyrode's solution. [Na+]i decreased below the normal level in all cells (a decline of 4-5 mmol/L, n = 21) during perfusion with 5 mmol/L Mg2+(o) (Na+(o)- & Ca2+(o)-free). Controls using 1 mmol/L Mg2+(o) showed similar declines in [Na+]i, but the fall was greatest when Na+(o) was replaced by K+(o) (decline of 6 mmol/L) rather than the tetramethylammonium ion (TMA+). The rate of decrease in [Na+]i during perfusion with 5 mmol/L Mg2+(o) (Na+(o)- & Ca2+(o)-free) was slowed by 20 microM ouabain (n = 5) or by elevation of pHo to pH 9 (n = 7) so that [Na+]i remained close to the initial value. The decrease of [Na+]i was not affected by 10 microM imipramine (n = 15). These data suggest that the Na+ efflux component of the Na+/Mg2+ antiport is masked in Na+(o)- and Ca2+(o)-free conditions by other Na+(i) efflux pathways.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) dementia is the commonest form of dementia in North American people less than 60 years of age. HIV-1 envelope glycoprotein gp120 has been implicated in the neurotoxicity observed in, and the pathogenesis of, HIV-1 dementia. Recombinant gp120 (gp120) was pressure-applied on to cultured human fetal neurons and astrocytes and, by using single-cell calcium imaging, we determined the mechanisms responsible for gp120-induced increases in the levels of intracellular calcium ([Ca2+]i). Significant dose-related increases in [Ca2+]i were observed in neurons and astrocytes. In neurons, 5 pM gp120 increased [Ca2+]i by 290+/-13 nM and increases of 2210+/-211 nM were found at 209 nM, the highest concentration of gp120 tested. The apparent EC50 value for gp120 of 223+/-40 pM in neurons was not significantly different from that in astrocytes. Immunoelution of gp120 with polyclonal anti-gp120 and Ca2+-free conditions blocked increases in [Ca2+]i by gp120. Increases in [Ca2+]i were significantly (P < 0.005) attenuated by the Na+/H+ exchange blocker 5-(N-methyl-N-isobutyl)-amiloride in neurons and astrocytes. The L-type calcium channel blockers nimodipine, diltiazem and CdCl2 + NiCl2 significantly (P < 0.005) reduced increases in [Ca2+]i in neurons, but not astrocytes. Increases in [Ca2+]i by gp120 were not significantly affected by blockers of N-, P- and Q-type calcium channels. The N-methyl-D-aspartate receptor antagonists (+/-)-2-amino-5-phosphonopentanoic acid (AP5), memantine and dizocilpine significantly (P < 0.01) lowered gp120-induced increases in [Ca2+]i in neurons. AP5 and memantine, but not dizocilpine, significantly (P < 0.01) reduced increases in [Ca2+]i by gp120 in astrocytes. Gp120 appears to activate astrocyte Na+/H+ exchangers to release glutamate and potassium and, subsequent to this, increases in [Ca2+]i in neurons and astrocytes result from activation of excitatory amino acid receptors on astrocytes and neurons, and voltage-operated calcium channels on neurons. Drugs that block gp120-induced changes in [Ca2+]i in neurons and astrocytes may help in the treatment of HIV-1 dementia.  相似文献   

8.
Intracellular calcium signalling was studied in the dorsal horn from neurons of rats with streptozotocin-induced diabetes versus control animals. The cytoplasmic Ca2+ concentration ([Ca2+]i) was measured in Fura-2 acetoxymethyl ester-loaded dorsal horn neurons from acutely isolated spinal cord slices using a fluorescence technique. The recovery of depolarization-induced [Ca2+]i increase was delayed in diabetic neurons compared with normal animals. In normal neurons, [Ca2+]i after the end of KCl depolarization recovered to the basal level monoexponentially with a time constant of 8.0+/-0.5 s (n = 23), while diabetic neurons showed two exponentials in the [Ca2+]i recovery. The time constants of these exponentials were 7.2+/-0.5 and 23.0+/-0.6 s (n = 19), respectively. The amplitude of calcium release from caffeine-sensitive endoplasmic reticulum calcium stores became significantly smaller in diabetic neurons. The amplitudes of [Ca2+]i transients evoked by 30 mM caffeine were 268+/-29 nM (n = 13) and 31+/-9 nM (n = 17) in control and diabetic neurons, respectively. We conclude that streptozotocin-induced diabetes is associated with prominent changes in the mechanisms responsible for [Ca2+]i regulation, which presumably include a slowdown of Ca2+ elimination from the cytoplasm by the endoplasmic reticulum.  相似文献   

9.
10.
The mechanisms underlying neurotoxicity mediated by cytotoxic T lymphocytes (CTL) and their secretory granule proteins perforin and granzymes remain unclear. We evaluated the possible role of the neurotransmitter glutamate in cell death observed in differentiated neurons exposed to CTL-derived granules. Excitotoxicity induced by excessive concentrations of extracellular glutamate is associated with a rise in intracellular calcium and can lead to generation of NO through the activation of glutamatergic N-methyl-D-aspartate (NMDA) receptors. Consistent with an involvement of glutamate, we found that cell death in mature cerebral granule cells was inhibited by 65-80% by two NMDA receptor blockers (MK-801 and D-2-amino-5-phosphonovaleric acid) or a NO synthase blocker (N(G)-nitro-L-arginine methylester). Furthermore, neurons treated with secretory granules responded with a biphasic rise in the intracellular calcium concentration ([Ca2+]i). Whereas MK-801 did not interfere with the immediate rise of [Ca2+]i, the second wave of calcium accumulation starting at 40 min was delayed by 20 min and reduced in amplitude in the presence of MK-801. In immature, NMDA receptor-negative neurons, MK-801 prevented neither the cytotoxicity nor the calcium influx observed 5 min after addition of cytotoxic granules. The demonstration that NMDA receptors and NO are involved in granule-mediated killing of mature neurons opens new avenues in the treatment of neuronal cell death in CTL-mediated diseases such as viral encephalitis.  相似文献   

11.
The intracellular free calcium concentration ([Ca2+]i) is a central regulator of renin secretion and the contractility of vascular smooth muscle cells. As [Ca2+]i results from calcium influx and calcium extrusion, we were interested in the role of the Na+/Ca2+-exchanger as an important calcium-extrusion pathway in the regulation of renin secretion. Therefore, we investigated the effects of inhibiting the Na+/Ca2+-exchanger, either by reducing the extracellular sodium concentration ([Na+]e) or using pharmacological tools, on renin secretion and vascular resistance in the isolated perfused rat kidney model. Stepwise reductions of [Na+]e led to progressive (up to sevenfold) increases in renal vascular resistance ([Na+]e 7 mM) whilst renin secretion rates were not altered significantly. Similarly, pharmacological blockade of the Na+/Ca2+-exchanger by benzamil (100 microM) or KB-R7943 (30 microM) resulted in significant vasoconstrictions without altering basal renin secretion rates. Also renin secretion that was pre-stimulated by isoproterenol (10 nM), blockade of macula densa salt transport by bumetanide (100 microM) or lowering the perfusion pressure to 40 mmHg was not attenuated by Na+/Ca2+-exchanger inhibition, although the vascular resistance increased significantly. In contrast, angiotensin II (100 pM) reduced pre-stimulated renin secretion values by 50%. The subsequent lowering of the [Na+]e however did not augment the inhibition of renin secretion, although the renal vascular resistance increased markedly. We conclude that the Na+/Ca2+-exchanger has no functional role in the regulation of [Ca2+]i in juxtaglomerular cells controlling renin secretion, whereas it markedly affects the preglomerular vascular smooth muscle cells of the renal vasculature.  相似文献   

12.
The ability of the neuroactive steroid pregnenolone sulfate to alter N-methyl-D-aspartate (NMDA) receptor-mediated elevations in intracellular Ca2+ ([Ca2+]i) was studied in cultured fetal rat hippocampal neurons using microspectrofluorimetry and the Ca2+ sensitive indicator fura-2. Pregnenolone sulfate (5-250 microM) caused a concentration-dependent and reversible potentiation of the rise (up to approximately 800%) in [Ca2+]i induced by NMDA. In contrast, the steroid failed to alter basal (unstimulated) [Ca2+]i or to modify the rise in [Ca2+]i that occurs when hippocampal neurons are depolarized by high K+ in the presence of the NMDA receptor antagonist CPP. These data suggest that the previously reported excitatory properties of pregnenolone sulfate may be due, in part, to an augmentation of the action of glutamic acid at the NMDA receptor.  相似文献   

13.
We describe here the isolation and primary culture of endothelial cells from mouse aorta ("primary explant technique"). These cells provide an excellent model for functional studies in transgenic mice. The primary explant method delivers cells that grow out from small pieces of mouse aorta placed on Matrigel enriched with endothelial growth factors. Cells can be studied on the Matrigel after removing the pieces of aorta or after passages by using dispase and reseeding the cells on gelatine-coated cover-slips. Cells on Matrigel or from the first and second passages were characterised using the combined patch-clamp and fura-2 fluorescence methods. Cells had a mean membrane resting potential of -19+/-3 mV (n=21), a membrane capacitance of 49+/-5 pF (n=37) and a resting cytosolic free [Ca2+] ([Ca2+]i) of 103+/-8 nM (n=30). Adenosine 5'-triphosphate (ATP), acetylcholine and bradykinin, but not histamine, induced fast release of intracellular Ca2+ followed by a sustained rise in [Ca2+]i. Oscillations in [Ca2+]i were observed at lower agonist concentrations. In nearly all cells (93%, n=30), these agonists activated charybdotoxin-sensitive, Ca2+-activated K+ channels and induced hyperpolarisation. In 84% of the cells (n=32), an increase in [Ca2+]i also activated strongly outwards-rectifying Cl- channels. These activated slowly at positive potentials and inactivated rapidly at negative potentials. Increasing [Ca2+]i to 1 microM activated a non-selective cation channel in 86% of the cells (n=28). Each tested cell responded to a challenge with hypotonic solution by activating a Cl- current that was modestly outwards rectifying and inactivated at positive potentials. This current is similar to the well-described swelling-activated current through volume-regulated anion channels (VRAC) in endothelial cells. However, its activation is slower, its inactivation faster and the current density lower than in cultured endothelial cells. It is concluded that the primary explant technique provides a reliable cell model for studying mouse vascular endothelial cell function.  相似文献   

14.
Synaptic transmission at the photoreceptor synapse is characterized by continuous release of glutamate in darkness. Release is regulated by the intracellular calcium concentration ([Ca2+]i). We here examined the physiological properties of exocytosis in tiger salamander (Ambystoma tigrinum) retinal rods and cones. Patch-clamp capacitance measurements were used to monitor exocytosis elicited by a rapid and uniform increase in [Ca2+]i by photolysis of the caged Ca2+ compound NP-EGTA. The amplitude of flash-induced increases in membrane capacitance (Cm) varied monotonically with [Ca2+]i beyond approximately 15 microM. The following two types of kinetic responses in Cm were recorded in both rods and cones: 1) a single exponential rise (39% of cells) or 2) a double-exponential rise (61%). Average rate constants of rapid and slow exocytotic responses were 420 +/- 168 and 7.85 +/- 5.02 s-1, respectively. The rate constant for the single exponential exocytotic response was 17.5 +/- 12.4 s-1, not significantly different from that of the slow exocytotic response. Beyond the threshold [Ca2+]i of approximately 15 microM, the average amplitude of rapid, slow, and single Cm response were 0.84 +/- 0.35, 0.82 +/- 0.20, and 0.70 +/- 0.23 pF, respectively. Antibodies against synaptotagmin I, a vesicle protein associated with fast exocytosis, strongly stained the synaptic terminal of isolated photoreceptors, suggesting the presence of fusion-competent vesicles. Our results confirm that photoreceptors possess a large rapidly releasable pool activated by a low-affinity Ca2+ sensor whose kinetic and calcium-dependent properties are similar to those reported in retinal bipolar cells and cochlear hair cells.  相似文献   

15.
Cytoplasmic free calcium [( Ca2+]i) is a key intracellular messenger in many cell types. We have used fluo-3, a recently developed calcium probe, to study [Ca2+]i in resting and stimulated human peripheral blood T lymphocytes. The spectral properties of fluo-3 permit analysis of [Ca2+]i in flow cytometers with a 488 nm argon laser excitation source and fluorescein filter settings. The data obtained with fluo-3 are both qualitatively and quantitatively in good agreement with the data in the literature. After stimulation of T lymphocytes with the mitogens phytohaemagglutinin, concanavalin A and with OKT3, and anti-CD3 monoclonal antibody, a biphasic [Ca2+]i response was observed, with an early EGTA-insensitive [Ca2+]i rise, followed by an EGTA-sensitive sustained [Ca2+]i plateau. Non-mitogenic monoclonal antibodies directed against the CD5, CD28 and CD7 T cell surface antigens elicited [Ca2+]i rises only when crosslinked on the cell surface with goat anti-mouse IgG. Conversion of fluorescence data into absolute [Ca2+]i values by means of a non-disruptive calibration procedure, yielded a [Ca2+]i of 107 +/- 18 nM (mean +/- SD, n = 13) in resting T lymphocytes. Time-dependent loss of cellular dye content limits the precision of the calibration procedure in experiments of longer duration. We conclude that fluo-3 promisingly extends the potential application field of flow cytometers with 488 nm argon lasers to [Ca2+]i studies in T lymphocytes.  相似文献   

16.
K Suto  H Gotoh 《Neuroscience》1999,92(3):1131-1135
Thermosensitive cold cells were identified in cultured dorsal root ganglion neurons from newborn rats. The neurons were loaded with a calcium indicator, Fura-PE3, and the change in intracellular Ca2+ concentration ([Ca2+]i) of the neurons was measured with microfluorimetry. Thirteen per cent of the cells responded to the cold stimulation. The diameter of the responder cells was 16.3+/-3.2 microm (mean+/-S.D., n = 25). The lowering of the temperature from 35 degrees C to 20 degrees C increased [Ca2+]i from 59.6+/-10.6 nM to 203.4+/-14.8 nM (n = 25). The [Ca2+]i response was dependent on the intensity of the cold stimulation. The depletion of extracellular Ca2+ diminished the Ca2+ elevation. However, a Na(+)-free condition did not influence the response. We concluded that the cold stimulation opens Ca2(+)-permeable channels in putative cold cells from dorsal root ganglion neurons.  相似文献   

17.
We found that stimulation of P2Y2 receptor (P2Y2R), which is endogenously expressed in CHO-K1 cells, induced intracellular calcium ([Ca2+]i) oscillation with a low frequency of 11.4 +/- 2.7 mHz. When CHO-K1 cells expressing GFP-tagged kinase-negative gammaPKC (gammaPKC-KN-GFP), which is a neuron-specific subtype of PKC, were stimulated with UDP, gammaPKC-KN-GFP, but not wild-type gammaPKC (gammaPKC-GFP) showed an oscillatory translocation. The oscillatory translocation of gammaPKC-KN-GFP corresponded with [Ca2+]i oscillation, which was not observed in the cells expressing gammaPKC-GFP. We examined the mechanism ofP2Y2R-induced [Ca2+]i oscillation pharmacologically. gammaPKC-KN-GFP oscillation was stopped by an extracellular Ca2+ chelator, EGTA, an antagonist of P2Y2R, Suramin, and store-operated calcium channel (SOC) inhibitors, SKF96365 and 2-ABP. Taken together, P2Y2R-induced [Ca2+]i oscillation in CHO-K1 cells is related with Ca2+ influx through SOC, whose function may be negatively regulated by gammaPKC. This [Ca2]i oscillation was distinct from that induced by metabotropic glutamate receptor 5 (mGluR5) stimulation in the frequency (72.3 +/- 5.3 mHz) and in the regulatory mechanism.  相似文献   

18.
Cheng C  Reynolds IJ 《Neuroscience》2000,95(4):973-979
Glutamate can stimulate increases in intracellular magnesium concentration ([Mg2+]i) and induce neurotoxicity, both independent of Ca2+ changes. Although Mg2+ is essential within the cell, very little is known about how it is regulated, especially in neurons. Therefore we used the fluorescent indicator, magindo-1 and confocal microscopy to examine possible intracellular pools of Mg2+ in cultured neurons that can be dynamically regulated by glutamate. The magindo-1 fluorescence signal was present throughout the cell body and extends into the neuronal processes. The magindo-1 405 nm/490 nm ratio signal was similar in the cytoplasm and nucleus, suggesting that resting [Mg2+]i is uniform across the neuron. The addition of 100 microM glutamate/10 microM glycine in an extracellular Ca2+- and Na+-free buffer stimulated an increase in [Mg2+]i in both the nuclear and cytoplasmic regions of similar magnitude and duration. This glutamate exposure also stimulated a [Mg2+]i increase in neuronal processes which was inhibited by the N-methyl-D-aspartate receptor antagonist, MK-801 (10 microM). The glutamate-stimulated [Mg2+]i increase in both the cell body and neuronal processes was dependent on the extracellular Mg2+ concentration. These findings suggest glutamate-stimulated [Mg2+]i changes may not only impact cytoplasmic processes, but also directly trigger nuclear events involved, for example, in neuronal injury.  相似文献   

19.
Simultaneous intracellular microelectrode recording and Fura-2 imaging was used to investigate the relationship between intracellular calcium ion concentration ([Ca2+]i) and excitability of tonic S neurons in intact myenteric plexus of the guinea-pig ileum. S neurons were impaled in myenteric ganglia, at locations near connections with internodal strands. The calcium indicator Fura-2 was loaded via the recording microelectrode. The estimated [Ca2+]i of these neurons was approximately 95 nM (n = 25). Intracellular current injection (200 ms pulses, 0.2 nA, delivered at 0.05 Hz) resulted in action potential firing throughout the stimulus pulse, accompanied by transient increases in [Ca2+]i (to approximately 240 nM, n = 12). Increasing the number of evoked action potentials by increasing stimulus duration (100-500 ms) or intensity (0.05-0.3 nA) produced correspondingly larger [Ca2+]i transients. Single action potentials rarely produced resolvable [Ca2+]i events, while short bursts of action potentials (three to five events) invariably produced resolvable [Ca2+]i increases. Some neurons demonstrated spontaneous action potential firing, which was accompanied by sustained [Ca2+]i increases. Action potential firing and [Ca2+]i increases were also observed by activation of slow synaptic input to these neurons, in cases where the slow depolarization initiated action potential firing. Action potentials (evoked or spontaneous) and associated [Ca2+]i transients were abolished by tetrodotoxin (1 microM). Omega-conotoxin GVIA (100 nM) reduced [Ca2+]i transients by approximately 67%, suggesting that calcium influx through N-type calcium channels contributes to evoked [Ca2+]i increases. The S neurons in this study showed prominent afterhyperpolarizations following bursts of action potential firing. The time-course of afterhyperpolarizations was correlated with the time-course of evoked [Ca2+]i transients. Afterhyperpolarizations were blocked by tetrodotoxin and reduced by omega-conotoxin GVIA, suggesting that calcium influx through N-type channels contributes to these events. The electrical properties of Fura-2-loaded neurons were not significantly different from properties of neurons recorded without Fura-2 injection, suggesting that Fura-2 injection alone does not significantly influence the electrical properties of these cells. These data indicate that myenteric S neurons in situ show prominent, activity-dependent increases in [Ca2+]i. These events can be generated spontaneously, or be evoked by intracellular current injection or synaptic activation. [Ca2+]i transients in these neurons appear to involve action potential-dependent opening of N-type calcium channels, and the elevation in [Ca2+]i increase may underlie afterhyperpolarizations and regulate excitability of these enteric neurons.  相似文献   

20.
Monensin, a Na(+)-selective ionophore, enhances transmitter release when applied to crustacean and frog neuromuscular junctions. Monensin is believed to raise intracellular sodium ([Na+]i) which in turn elevates intracellular calcium ([Ca2+]i). Using the fluorescent indicator fura-2, we measured [Ca2+]i in crayfish Procambarus clarkii presynaptic terminals during monensin application in normal Ringer, zero-calcium Ringer and zero-sodium Ringer to determine if [Ca2+]i increases with monensin application and if so by what mechanism. In normal Ringer, monensin, 10 microM and 100 microM, elevated [Ca2+]i by 440 nM and 7 microM respectively. This rise in [Ca2+]i was dependent on external calcium, as [Ca2+]i did not increase in zero-calcium Ringer. However, in a zero-sodium Ringer, monensin (10 microM) elevated [Ca2+]i by 370 nM. It is important to recognize that monensin, thought to be a sodium-selective ionophore, can transport calcium across the cytoplasmic membrane in a sodium-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号