首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic nature of synaptic connections has presented morphologists with considerable problems which, from a structural perspective, have frustrated the development of ideas on synaptic plasticity. Gradually, however, progress has been made on concepts such as the structural remodelling and turnover of synapses. This has been considerably helped by the recent elaboration of unbiased stereological procedures. The major emphasis of this review is on naturally occurring synaptic plasticity, which is regarded as an ongoing process in the postdevelopmental CNS. The focus of attention are PSs, with their characteristically discontinuous synaptic active zone, since there is mounting evidence that this synaptic type is indicative of synaptic remodelling and turnover in the mature CNS. Since the majority of CNS synapses can only be considered in terms of their relationship to dendritic spines, the contribution of these spines to synaptic plasticity is discussed initially. Changes in the configuration of these spines appears to be crucial for the plasticity, and these can be viewed in terms of the significance of the cytoskeleton, of various dendritic organelles, and also of the biophysical properties of spines. Of the synaptic characteristics that may play a role in synaptic plasticity, the PSD, synaptic curvature, the spinule, coated vesicles, polyribosomes, and the spine apparatus have all been implicated. Each of these is assessed. Especial emphasis is placed on PSs because of their ever-increasing significance in discussions of synaptic plasticity. The possibility of their being artefacts is dismissed on a number of grounds, including consideration of the results of serial section studies. Various roles, other than one in synaptic plasticity have been put forward in discussing PSs. Although relevant to synaptic plasticity, these include a role in increasing synaptic efficacy, as a more permanent type of synaptic connection, or as a route for the intercellular exchange of metabolites or membrane components. The consideration of many estimates of synaptic density, and of PS frequency, have proved misleading, since studies have reported diverse and sometimes low figures. A recent reassessment of PS frequency, using unbiased stereological procedures, has provided evidence that in some brain regions PSs may account for up to 40% of all synapses. All ideas that have been put forward to date regarding the role of PSs are examined, with particular attention being devoted to the major models of Nieto-Sampedro and co-workers, Carlin and Siekevitz, and Dyson and Jones. New ideas based on recent analysis of quantitative data and of 3-dimensional reconstructions of PSs are discussed. According to these, PSs constitute a separate, and more enduring, component of the synaptic population than NPSs, and have a major role in the maintenance of synaptic efficacy in the mature CNS.  相似文献   

2.
Dendritic spines are morphing structures believed to provide a cellular substrate for synaptic plasticity. It has been suggested that the actin cytoskeleton is the target of molecular mechanisms regulating spine morphology. Here we hypothesized that acidic calponin, an actin-binding protein, is one of the key regulators of actin filaments during spine plasticity. Our data showed that the overexpression of acidic calponin-GFP (green fluorescent protein) in primary cultures of rat hippocampal neurons causes an elongation of spines and an increase of their density as compared with those of GFP-expressing neurons. These effects required the actin-binding domains of acidic calponin. The close apposition of the presynatic marker synaptophysin to these long spines and the presence of specific postsynaptic markers actin, PSD-95, NR1, and GluR1 suggested the existence of functional excitatory synaptic contacts. Indeed, electrophysiological data showed that the postsynaptic overexpression of acidic calponin enhanced the frequency of miniature excitatory postsynaptic currents as compared with that of GFP-expressing neurons, but did not affect their properties such as amplitude, rise time, and half width. Studies in heterologous cells revealed that acidic calponin reorganized the actin filaments and stabilized them. Taken together, these findings show that acidic calponin regulates dendritic spine morphology and density, likely via regulation of the actin cytoskeleton reorganization and dynamic. Furthermore, the acidic calponin-induced spines are able to establish functional glutamatergic synapses. Such data suggest that acidic calponin is a key factor in the regulation of spine plasticity and synaptic activity.  相似文献   

3.
The posterodorsal medial amygdala (MePD) is responsive to androgens and participates in the integration of olfactory/vomeronasal stimuli for the display of sexual behavior in rats. Adult gonadectomy (GDX) affects the MePD structural integrity at the same time that impairs male mating behavior. At the cellular level, dendritic spines modulate excitatory synaptic transmission, strength, and plasticity. Here, we describe the effect of GDX on the number and shape of dendritic spines in the right and left MePD using confocal microscopy and 3D image reconstruction. Age‐matched adult rats were intact (n = 6), submitted to a sham procedure (n = 4) or castrated and studied 90 days after GDX (n = 5). The MePD neurons have a density of 1.1 spines/dendritic μm composed of thin, mushroom‐like, stubby/wide, and few ramified or atypical spines. Irrespective of brain hemisphere, GDX decreased the dendritic spine density in the MePD, but induced different effects on each spine type. That is, compared to control groups, GDX reduced (i) the number (up to 50%) of thin, mushroom‐like, and ramified spines, and (ii) the size and the neck length of thin spines as well as the head diameter of ramified spines. Besides, GDX increased the number of stubby/wide and atypical spines (up to 140% and 400%, respectively). These data show that GDX promotes a cellular and synaptic reorganization in a spine‐specific manner in the MePD. By altering the number and shape of these connectional elements, GDX can affect the neural transmission and hinder the function of integrated brain circuitries in the male brain.  相似文献   

4.
Dendritic spines are tiny postsynaptic protrusions from a dendrite that receive most of the excitatory synaptic input in the brain. Functional and structural changes in dendritic spines are critical for synaptic plasticity, a cellular model of learning and memory. Conversely, altered spine morphology and plasticity are common hallmarks of human neurodevelopmental disorders, such as intellectual disability and autism. The advances in molecular and optical techniques have allowed for exploration of dynamic changes in structure and signal transduction at single‐spine resolution, providing significant insights into the molecular regulation underlying spine structural plasticity. Here, I review recent findings on: how synaptic stimulation leads to diverse forms of spine structural plasticity; how the associated biochemical signals are initiated and transmitted into neuronal compartments; and how disruption of single genes associated with neurodevelopmental disorders can lead to abnormal spine structure in human and mouse brains. In particular, I discuss the functions of the Ras superfamily of small GTPases in spatiotemporal regulation of the actin cytoskeleton and protein synthesis in dendritic spines. Multiple lines of evidence implicate disrupted Ras signaling pathways in the spine structural abnormalities observed in neurodevelopmental disorders. Both deficient and excessive Ras activities lead to disrupted spine structure and deficits in learning and memory. Dysregulation of spine Ras signaling, therefore, may play a key role in the pathogenesis of multiple neurodevelopmental disorders with distinct etiologies.  相似文献   

5.
Dendritic spines: role of active membrane in modulating synaptic efficacy   总被引:2,自引:0,他引:2  
Dendritic spines have been increasingly implicated as sites for neuronal plasticity. Earlier-theoretical studies of dendritic-spine function have assumed passive membrane, and have consequently predicted that postsynaptic potentials in the dendrite are attenuated when the synapse is located on the spine head rather than on the dendritic shaft. Our studies show that active membrane in the spine head (e.g. voltage-dependent Na+ or Ca2+ channels) can produce amplification rather than attenuation of the postsynaptic potential. The presence and amount of amplification depend on the density of active channels and on the spine-neck resistance. For a given type of spine head, there is an optimal spine-neck resistance; a given change in neck resistance can therefore either increase or decrease the amplitude of postsynaptic potentials. These results support the idea that spines mediate synaptic plasticity and suggest a variety of modulatory mechanisms.  相似文献   

6.
The posterodorsal medial amygdala (MePD) is a sex‐steroid‐sensitive area that modulates reproductive behavior in rats. The volume of the neuronal cell body, density of dendritic spines, and glial fibrillary acidic protein immunoreactivity are sexually dimorphic or affected by gonadal hormones in the MePD. Here we add new data to this panorama and describe the ultrastructure of the glial and axonal coverage of the perikaryal membrane and the somatic spines in the MePD of males and cycling females (in diestrus, early proestrus, late proestrus, and estrus). Transmission electron microscopy data (mean values from seven to 11 neurons per rat, five or six animals per group) showed that the rat MePD has most of the perikaryal membrane covered by glial processes and a relatively large amount (up to 40%) of axonal processes contacting the neuronal cell body. No statistically significant difference was found between groups for these somatic coverages (P > 0.5). However, the density of somatic spines along the length of the perikaryal membrane was higher in the late proestrus than in estrus (P < 0.05), and somatic spines in early and late proestrus showed variable shapes with stubby/wide, thin, mushroom‐like, ramified, transitional or atypical aspects. These findings add to the rapid adjustable synaptic changes in the MePD and in the integrated neural circuits that control neuroendocrine secretion and the hormonally modulated timely display of social behaviors in rats. J. Comp. Neurol. 523:2127–2137, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The posterodorsal medial amygdala (MePD) is a sexually dimorphic area and plays a central role in the social behavior network of rats. Dendritic spines modulate synaptic processing and plasticity. Here, we compared the number and structure of dendritic spines in the MePD of prepubertal males and females and postpubertal males with and without sexual experience. Spines were classified and measured after three‐dimensional image reconstruction using DiI fluorescent labeling and confocal microscopy. Significantly differences are as follows: (a) Prepubertal males have more proximal spines, stubby/wide spines with long length and large head diameter and thin and mushroom spines with wide neck and head diameters than prepubertal females, whereas (b) prepubertal females have more mushroom spines with long neck length than age‐matched males. (c) In males, the number of thin spines reduces after puberty and, compared to sexually experienced counterparts, (d) naive males have short stubby/wide spines as well as mushroom spines with reduced neck diameter. In addition, (e) sexually experienced males have an increase in the number of mushroom spines, the length of stubby/wide spines, the head diameter of thin and stubby/wide spines and the neck diameter of thin and mushroom spines. These data indicate that a sexual dimorphism in the MePD dendritic spines is evident before adulthood and a spine‐specific remodeling of number and shape can be brought about by both puberty and sexual experience. These fine‐tuned ontogenetic, hormonally and experience‐dependent changes in the MePD are relevant for plastic synaptic processing and the reproductive behavior of adult rats.  相似文献   

8.
Juvenile social interactions have been shown to influence the dendritic complexity of neurons in the prefrontal cortex (PFC). In particular, social play induces pruning of the cells in the medial prefrontal cortex (mPFC), whereas interacting with multiple partners, whether those interactions involve play or not, increases the complexity of cells in the orbital frontal cortex (OFC). Previous studies suggest that these changes differ in their stability during adulthood. In the present study, rats were reared in groups of either four (quads) or two (pairs) and the brains of the rats from each rearing condition were then harvested at 60 days (i.e., shortly after sexual maturity) and 100 days (i.e., fully adult). The rats housed with multiple partners had more complex neurons of the OFC at 60 days and this complexity declined to a comparable level to that of pair housed rats by 100 days. In contrast, the play‐induced changes of the mPFC remained similar at both ages. These findings suggest that the changes in the PFC induced by different social experiences in the juvenile period differ in how long they are maintained in adulthood. Differences in the functions regulated by the OFC and the mPFC are considered with regard to these differences in the stability of juvenile‐induced neural changes.  相似文献   

9.
Dendritic spines differ considerably in their size, shape, and internal organization between brain regions. We examined the actin cytoskeleton in dendritic spines in hippocampus (areas CA1, CA3, and dentate gyrus), neostriatum, and cerebellum at both light and electron microscopic levels by using a novel high-resolution photoconversion method based in the high affinity of phalloidin for filamentous (F)-actin. In all brain regions, labeling was strongest in the heads of dendritic spines, diminishing in the spine neck. The number of labeled spines varied by region. Compared with the cerebellar molecular layer and area CA3, where nearly every dendritic spine was labeled, less than half the spines were labeled in CA1, dentate gyrus, and neostriatum. Serial section reconstructions of spines in these areas indicated that phalloidin labeling was restricted to the largest and most morphologically diverse dendritic spines. The resolution of the photoconversion technique allowed us to examine the localization and organization of actin filaments in the spine. The most intense staining for actin was found in the postsynaptic density and associated with the spines internal membrane system. In mushroom-shaped spines, F-actin staining was particularly strong between the lamellae of the spine apparatus. Three-dimensional reconstruction of labeled spines by using electron tomography showed that the labeled dense material was in continuity with the postsynaptic density. These results highlight differences in the actin cytoskeleton between different spine populations and provide novel information on the organization of the actin cytoskeleton in vivo.  相似文献   

10.
EFA6A is a member of the guanine nucleotide exchange factors that can specifically activate ADP ribosylation factor 6 (ARF6). In this study, we identified alpha-actinin-1 as a possible interacting protein with EFA6A by the yeast two-hybrid screening with its C-terminal region as bait. The central region of alpha-actinin-1 containing a part of spectrin repeat 1 and spectrin repeats 2-3 is responsible for this interaction. In the hippocampal formation, EFA6A immunoreactivity occurred at a high level as numerous fine puncta in the strata oriens, radiatum, lacunosum-moleculare of the hippocampal CA1-3 subfields and the dentate molecular layer, whereas the immunoreactivity was faint in the neuronal cell layers and the stratum lucidum, the mossy fiber-recipient layer of the CA3 subfield. Double-immunofluorescent analyses revealed a partial overlapping of EFA6A and alpha-actinin at the dendritic spines of in vivo and cultured hippocampal neurons. Our present findings suggest that EFA6A may form a protein complex with alpha-actinin and activate ARF6 in close proximity of the actin cytoskeleton and membrane proteins in the dendritic spines.  相似文献   

11.
CNS synapses are complex sites of cell-cell communication. Identification and characterization of the protein components of synapses will lead to a better understanding of the mechanisms of neurotransmission and plasticity. We applied multidimensional protein identification technology (MudPIT) to purified, guanidine-solubilized postsynaptic fractions to identify novel synaptically localized molecules. We identified several actin-associated proteins known to regulate actin polymerization and control cell motility in nonneural cells that have not previously been associated with CNS synaptic function. One of these is lasp-1, an actin-associated LIM and SH3 domain-containing protein. We show that lasp-1 is strongly expressed by CNS neurons and is concentrated at synaptic sites. Overall, the preponderance of actin-associated proteins in postsynaptic density fractions, and specifically those involved in actin reorganization, suggests that there are many modes by which the state of synaptic F-actin polymerization and, hence, synaptic physiology are affected.  相似文献   

12.
This paper is the third in a series to quantify differences in the composition of subcellular organelles and three-dimensional structure of dendritic spines that could contribute to their specific biological properties. Proximal apical dendritic spines of the CA3 pyramidal cells receiving synaptic input from mossy fiber (MF) boutons in the adult rat hippocampus were evaluated in three sets of serial electron micrographs. These CA3 spines are unusual in that they have from 1 to 16 branches emerging from a single dendritic origin. The branched spines usually contain subcellular organelles that are rarely found in adult spines of other brain regions including ribosomes, multivesicular bodies (MVB), mitochondria, and microtubules. MVBs occur most often in the spine heads that also contain smooth endoplasmic reticulum, and ribosomes occur most often in spines that have spinules, which are small nonsynaptic protuberances emerging from the spine head. Most of the branched spines are surrounded by a single MF bouton, which establishes synapses with multiple spine heads. The postsynaptic densities (PSDs) occupy about 10-15% of the spine head membrane, a value that is consistent with spines from other brain regions, with spines of different geometries, and with immature spines. Individual MF boutons usually synapse with several different branched spines, all of which originate from the same parent dendrite. Larger branched spines and MF boutons are more likely to synapse with multiple MF boutons and spines, respectively, than smaller spines and boutons. Complete three-dimensional reconstructions of representative spines with 1, 6, or 12 heads were measured to obtain the volumes, total surface areas, and PSD surface areas. Overall, these dimensions were larger for the complete branched spines than for unbranched or branched spines in other brain regions. However, individual branches were of comparable size to the large mushroom spines in hippocampal area CA1 and in the visual cortex, though the CA3 branches were more irregular in shape. The diameters of each spine branch were measured along the cytoplasmic path from the PSD to the origin with the dendrite, and the lengths of branch segments over which the diameters remained approximately uniform were computed for subsequent use in biophysical models. No constrictions in the segments of the branched spines were thin enough to reduce charge transfer along their lengths.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Signal transduction in the nervous system depends on kinases and phosphatases, whose localization is regulated by a large group of scaffolding proteins. In particular, protein phosphatase-1 mediates dopamine's actions on a variety of substrates, including glutamate receptors, and this, in turn, depends on the binding of protein phosphatase-1 to its binding protein spinophilin. To better understand spinophilin's role in targeting protein phosphatase-1 within neurons, we used a combination of preembedding immunoperoxidase and postembedding immunogold labeling and electron microscopy to determine the localization of this scaffolding protein in macaque prefrontal cortex. Consistent with previous reports, spinophilin was found predominantly in dendritic spines, but a significant number of labeled dendritic shafts and, less frequently, glia and preterminal axons were also identified. By using the postembedding immunogold method, we further examined the distribution of spinophilin within dendritic spines. Spinophilin immunoreactivity was present throughout the spine, but the density of label was heterogeneous and defined two domains. The highest density of label was associated with the postsynaptic density and the 100 nm immediately subjacent to it. The deeper region of the spine, further than 100 nm from the postsynaptic density, had a lower density of spinophilin label. The distribution of spinophilin reported in this study supports its role in modulating glutamatergic neurotransmission but also suggests the possibility that spinophilin may target protein phosphatase-1 to other sites within the spine or to other neuronal or glial compartments.  相似文献   

14.
Thirty mentally retarded patients treated with neuroleptics for aberrant behavior were compared with 30 neuroleptic-treated schizophrenics for the presence, topography and risk factors associated with tardive dyskinesia (TD). In the total sample (n = 60), female sex, schizophrenic diagnosis and increasing age were associated with TD. The length of neuroleptic treatment and current neuroleptic dose were not significantly associated with TD. The only topographical difference in TD presentation was that the mentally retarded group had significantly more tongue involvement.  相似文献   

15.
Objectives. Schizophrenia (SCZ), autism spectrum disorder (ASD) and mental retardation (MR) are psychiatric disorders with high heritability. They differ in their clinical presentation and in their time course of major symptoms, which predominantly occurs for MR and ASD during childhood and for SCZ during young adult age. Recent findings with focus on the developmental neurobiology of these disorders emphasize shared mechanisms of common origin. These findings propose a continuum of genetic risk factors impacting on synaptic plasticity with MR causing impairments in global cognitive abilities, ASD in social cognition and SCZ in both global and social cognition. Methods. We assess here the historical developments that led to the current disease concepts of the three disorders. We then analyse, based on the functions of genes mutated in two or three of the disorders, selected mechanisms shared in neurodevelopmental pathways and synaptic plasticity. Results. The analysis of the psychopathological constructs supports the existence of three distinct clinical entities but also elaborates important associations. Similarly, there are common mechanisms especially in global and social cognition. Conclusions. We discuss implications from this integrated view on MR, ASD and SCZ for child & adolescent and adult psychiatry in pathophysiology and research perspectives.  相似文献   

16.
Previous studies have led to the hypothesis that some protein constituents of postsynaptic membrane specializations are locally synthesized near postsynaptic sites. The present study focuses on one prediction of this hypothesis, specifically, that if some proteins of the postsynaptic membrane specialization are locally synthesized, then the delay between synthesis and assembly into synaptic junctional membrane could be short. We evaluate the time course of appearance of recently synthesized protein in synaptic junctions by pulse-labeling hippocampal slices maintained in vitro with radiolabeled protein precursors, and then isolating subcellular fractions enriched in synaptic plasma membranes (SPM) and synaptic junctional complexes (SJC). We report that there is no evidence of a delay in the appearance of recently synthesized proteins in SPM and SJC fractions. Labeled proteins could be detected as early as 15 min after the initiation of the pulse-labeling period, and the extent of labeling increased monotonically thereafter. The labeling could not be accounted for by contamination of synaptic membrane fractions with other membranes, because the relative specific activity of the SPM and SJC fractions was the same or higher than that of the less pure fractions from which these synaptic fractions were derived. One-dimensional PAGE-fluorography was used to provide an initial characterization of which proteins were labeled in SJC fractions. We found that the most prominent labeled bands were at apparent molecular weights of approximately 43-44, 55-56, and 60 kd, with more lightly labeled bands at about 38 and 116 kd. In some preparations, there was a labeled doublet at about 36-38 kd. There were also other lightly labeled bands at other molecular weights. These bands were much less heavily labeled than the bands at 43-44, 55-56, and 60 kd, however. There was little labeling in the molecular weight range of the "major psd protein" (the alpha subunit of CAM-kinase), although there was diffuse labeling throughout the 45-52 kd region. These results are consistent with the hypothesis that some of the protein constituents of the postsynaptic junctional complex are synthesized by polyribosomes which are selectively localized beneath synaptic junctions.  相似文献   

17.
18.
The morphology of axospinous synapses and their parent spines varies widely. Additionally, many of these synapses are contacted by multiple synapse boutons (MSBs) and show substantial variability in receptor expression. The two major axospinous synaptic subtypes are perforated and nonperforated, but there are several subcategories within these two classes. The present study used serial section electron microscopy to determine whether perforated and nonperforated synaptic subtypes differed with regard to their distribution, size, receptor expression, and connectivity to MSBs in three apical dendritic regions of rat hippocampal area CA1: the proximal and distal thirds of stratum radiatum, and the stratum lacunosum‐moleculare. All synaptic subtypes were present throughout the apical dendritic regions, but there were several subclass‐specific differences. First, segmented, completely partitioned synapses changed in number, proportion, and α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionate (AMPA) receptor expression with distance from the soma beyond that found within other perforated synaptic subtypes. Second, atypically large, nonperforated synapses showed N‐methyl‐D ‐aspartate (NMDA) receptor immunoreactivity identical to that of perforated synapses, levels of AMPA receptor expression intermediate to that of nonperforated and perforated synapses, and perforated synapse‐like changes in structure with distance from the soma. Finally, MSB connectivity was highest in the proximal stratum radiatum, but only for those MSBs composed of nonperforated synapses. The immunogold data suggest that most MSBs would not generate simultaneous depolarizations in multiple neurons or spines, however, because the vast majority of MSBs are comprised of two synapses with abnormally low levels of receptor expression, or involve one synapse with a high level of receptor expression and another with only a low level. J. Comp. Neurol. 512:399–418, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
The process of axonal and dendritic development establishes the synaptic circuitry of the central nervous system (CNS) and is the result of interactions between intrinsic molecular factors and the external environment. One growth factor that has a compelling function in neuronal development is the neurotrophin brain-derived neurotrophic factor (BDNF). BDNF participates in axonal and dendritic differentiation during embryonic stages of neuronal development, as well as in the formation and maturation of dendritic spines during postnatal development. Recent studies have also implicated vesicular trafficking of BDNF via secretory vesicles, and both secretory and endosomal trafficking of vesicles containing synaptic proteins, such as neurotransmitter and neurotrophin receptors, in the regulation of axonal and dendritic differentiation, and in dendritic spine morphogenesis. Several genes that are either mutated or deregulated in neurodevelopmental disorders associated with mental retardation have now been identified, and several mouse models of these disorders have been generated and characterized. Interestingly, abnormalities in dendritic and synaptic structure are consistently observed in human neurodevelopmental disorders associated with mental retardation, and in mouse models of these disorders as well. Abnormalities in dendritic and synaptic differentiation are thought to underlie altered synaptic function and network connectivity, thus contributing to the clinical outcome. Here, we review the roles of BDNF and vesicular trafficking in axonal and dendritic differentiation in the context of dendritic and axonal morphological impairments commonly observed in neurodevelopmental disorders associated with mental retardation.  相似文献   

20.
Quantitative histological analysis of serial sections of the adult male rat brain gives mean total estimates of the numbers of cells in the magnocellular and parvicellular divisions of the paraventricular hypothalamic nuclei (PVN) of 6600 and 11,500, respectively. The numbers and densities (number/mm3) of presynaptic bouton profiles have beeb measured and calculated on electron micrographs of the magnocellular paraventricular nucleus (mPVN). There are approximately8 × 106 presynaptic boutons in the magnocellular subdivision: 76% of the synaptic boutons are axodendritic, 17% axosomatic and 7% are unidentified but include a few axo-axonic contacts. One third of the boutons contain dense-core vesicles although their postsynaptic contacts do not differ from other boutons. The estimated ratio of the number of boutons per neuron in the magnocellular paraventricular nucleus is 2820:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号