首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Viral vectors for gene-directed enzyme prodrug therapy   总被引:2,自引:0,他引:2  
Conventional cancer treatments are often hampered by a lack of tumour selectivity, resulting in toxicity to healthy tissue. Gene-directed enzyme prodrug therapy (GDEPT) is a suicide gene therapy approach that aims to improve the selectivity of chemotherapy by enabling cancer cells to convert non-cytotoxic prodrugs to cytotoxic drugs. Many enzyme/prodrug systems have been described, some of which have already been tested in clinical trials. A key component of GDEPT is a foreign enzyme that is expressed selectively at the tumour site where it converts the prodrug into the cytotoxic agent. The gene encoding the prodrug-activating enzyme needs to be expressed selectively and efficiently in tumour cells in order to spare normal tissue from damage. Substantial efforts have been made to develop gene therapy vectors that are capable of targeting cancer cells. A large number of gene delivery systems have been described for GDEPT: Viral vectors are the most advanced. They include replication-deficient and replication-selective (oncolytic) viruses. Recent advances in engineering viruses for GDEPT are reviewed in this article and data from both preclinical studies and clinical trials are discussed.  相似文献   

2.
Development and evaluation of new anticancer drugs are expedited when minimally invasive biomarkers of pharmacokinetic and pharmacodynamic behaviour are available. Gene‐directed enzyme prodrug therapy (GDEPT) is a suicide gene therapy in which the anticancer drug is activated in the tumor by an exogenous enzyme previously targeted by a vector carrying the gene. GDEPT has been evaluated in various clinical trials using several enzyme/prodrug combinations. The key processes to be monitored in GDEPT are gene delivery and expression, as well as prodrug delivery and activation. {4‐[bis(2‐chloroethyl)amino]‐3,5‐difluorobenzoyl}‐L‐glutamic acid, a prodrug for the GDEPT enzyme carboxypeptidase‐G2 (CPG2; Km = 1.71 µM; kcat = 732 s?1), was measured with 19F magnetic resonance spectroscopy (MRS). The 1 ppm chemical shift separation found between the signals of prodrug and activated drug (4‐[bis(2‐chloroethyl)amino]‐3,5‐difluorobenzoic acid) is sufficient for the detection of prodrug activation in vivo. However, these compounds hydrolyze rapidly, and protein binding broadens the MR signals. A new CPG2 substrate was designed with hydroxyethyl instead of chloroethyl groups (Km = 3.5 µM, kcat = 747 s?1). This substrate is nontoxic and stable in solution, has a narrow MRS resonance in the presence of bovine and foetal bovine albumin, and exhibits a 1.1 ppm change in chemical shift upon cleavage by CPG2. In cells transfected to express CPG2 in the cytoplasm (MDA MB 361 breast carcinoma cells and WiDr colon cancer cells), well‐resolved 19F MRS signals were observed from clinically relevant concentrations of the new substrate and its nontoxic product. The MRS conversion half‐life (470 min) agreed with that measured by HPLC (500 min). This substrate is, therefore, suitable for evaluating gene delivery and expression prior to administration of the therapeutic agent. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Despite the development of new therapeutic strategies, cancer remains incurable in most patients with advanced disease. A recent potential improvement in therapeutic strategies is the concept of suicide gene therapy. After transfection with a suicide gene, cells can convert a harmless prodrug into its toxic metabolite, resulting in selective elimination of these cells. One of the most frequently studied therapeutic strategies is based on transfection with the herpes simplex virus thymidine kinase gene (HSV-tk), followed by ganciclovir administration. Despite promising results in vitro and in vivo, the antitumor effect in clinical trials remains poor, due to very low transfection efficiency. However, high percentages of transfected cells are not mandatory for complete eradication of a tumor in vivo. Transfected tumor cells appear to be capable of inducing the death of neighboring untransfected cells. This cell kill is called the "bystander effect". Various attempts have been made to increase this effect. A substantial bystander effect could overcome the limitations of low transfection efficiency and result in an enhanced and possibly clinically worthwhile antitumor effect in patients. This review is focused on the HSV-tk/GCV system and gives an overview of current knowledge on the bystander effect in vitro and in vivo. In addition, theories concerning its mechanisms and possible approaches to augment this effect are discussed. Finally, we give an overview of clinical trials using suicide gene therapy.  相似文献   

4.
5.
In situ gene therapy for prostate cancer   总被引:9,自引:0,他引:9  
The incidence of prostate cancer has dramatically increased worldwide in the past decade, with mortality rates also increasing in many countries. Once prostate cancer is diagnosed, it is important to rapidly begin a treatment regimen that is either potentially curative or impedes disease progression. When the disease is confined to the prostate, it can be cured by radical prostatectomy or irradiation therapy. However, there are no curative therapies for locally advanced, recurrent, or metastatic diseases. Clearly, new therapies are needed for these patients. Gene therapy may provide additional therapeutic options with the potential to affect both localized and metastatic disease. Virus-mediated transduction of the herpes simplex virus thymidine kinase (HSV-tk) gene transfer, followed by a course of the prodrug ganciclovir (GCV), so-called suicide gene therapy, has been demonstrated by several investigators. The present in situ gene therapy clinical trial for human prostate cancer demonstrated safety, clinical efficacy, and biological effects of antitumor activity. HSV-tk clinical trials for prostate cancer are also ongoing in Japan, the Netherlands, and Mexico. Currently, numerous preclinical studies have reported immunomodulatory cytokine gene therapy, such as interleukin-2, interleukin-12, B7-1 (CD80), B7-2 (CD86) and granulocyte-macrophage colony-stimulating factor. Several clinical studies have been approved that potentially will show that these immunomodulatory gene therapies may generate an effective local and systemic antitumor activity and that should provide options for patients with prostate cancer. We review the multiple issues involved in current in situ gene therapy (gene/immunotherapy), its outcome, and future directions for patients with prostate cancer.  相似文献   

6.
Lu Y 《Current gene therapy》2001,1(2):183-200
In the last few years, significant advances in gene therapy have been made as a result of advances in many areas of molecular and cell biology, including the improvement of both viral and nonviral gene delivery systems, discovery of new therapeutic genes, better understanding of mechanism of disease progression, exploration of tissue specific promoter, receptor- and antibody-mediated targeting delivery, and development of better prodrug enzyme/prodrug systems. In this article, viral based gene therapy for prostate cancer will be reviewed and discussed. The areas of emphasis in this review are: choice of viral vectors, comparison of delivery routes, development of prostate-targeted viruses, choice of therapeutic genes and strategies including corrective gene therapy (tumor suppressor gene and anti-oncogene gene approaches), suicide gene therapy, programmed cell death therapy, immunomodulation therapy, and conditional oncolytic virus approach. Among them, several examples will be discussed in detail for the scientific basis and therapeutic applications. In addition, prostate cancer gene therapy clinical trials, unresolved problems and future directions in this field will also be described.  相似文献   

7.
Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects.  相似文献   

8.
背景:自杀基因系统无选择性,不仅能杀伤癌细胞,对正常细胞也有同样作用,所以构建靶向性基因治疗载体成为迫切需要解决的问题。 目的:评价载脂蛋白E修饰脂质体(apoE-lipoplexes)介导TK/丙氧鸟苷自杀基因质粒转染对Li-7肝癌细胞的杀伤效果。 方法:apoE-lipoplexes包裹pAFP-TK-IRES2-EGFP真核表达质粒转染Li-7细胞,筛选HSVtk稳定表达细胞克隆(Li-7-tk),荧光显微镜观察增强型绿色荧光蛋白表达,Western blotting检测HSVtk基因表达,MTT法评价HSVtk/丙氧鸟苷系统对Li-7肝癌细胞的杀伤作用。 结果与结论:自杀基因质粒转染Li-7细胞经筛选得到稳定克隆(Li-7-tk),HSVtk/丙氧鸟苷系统作用于Li-7细胞后,细胞凋亡明显增加(P < 0.01)。在甲胎蛋白阳性的Li-7肝癌细胞中,自杀基因载体稳定表达并有效杀灭癌细胞。 中国组织工程研究杂志出版内容重点:肾移植;肝移植;移植;心脏移植;组织移植;皮肤移植;皮瓣移植;血管移植;器官移植;组织工程全文链接:  相似文献   

9.
The potential therapeutic benefit of introducing IFN-gamma and GM-CSF genes in combination with the HSVtk suicide gene into subcutaneously implanted CT26 tumor cells was compared with that from each treatment alone. Cells, unmodified or retrovirally transduced with HSVtk or IFN-gamma/GM-CSF genes, were inoculated subcutaneously into syngeneic BALB/c mice in various combinations. HSVtk gene, with intraperitoneal ganciclovir treatment, reduced tumor volume by 81% at locally inoculated tumor sites (p < 0.01) and by 25% at distantly inoculated tumor sites (p = 0.052). IFN-gamma/GM-CSF genes showed a 56% tumor volume reduction at local tumor sites (p < 0.01) and 15% volume reduction at remote tumor sites, although this was not statistically significant. The combination of HSVtk (with GCV) and IFN-gamma/GM-CSF genes showed an 81% volume reduction at local tumor sites (p < 0.01) and a 43% volume reduction at remote tumor sites (p < 0.01). Thus, the combination of HSVtk and IFN-gamma/GM-CSF gene therapy produced greater therapeutic efficacy than either treatment alone.  相似文献   

10.
Single chain Fv antibodies (sFvs) have been produced from filamentous bacteriophage libraries obtained from immunised mice. MFE-23, the most characterised of these sFvs, is reactive with carcinoembryonic antigen (CEA), a glycoprotein that is highly expressed in colorectal adenocarcinomas. MFE-23 has been expressed in bacteria and purified in our laboratory for two clinical trials; a gamma camera imaging trial using 123I-MFE-23 and a radioimmunoguided surgery trial using 125I-MFE-23, where tumour deposits are detected by a hand-held probe during surgery. Both these trials show MFE-23 is safe and effective in localising tumour deposits in patients with cancer. We are now developing fusion proteins which use MFE-23 to deliver a therapeutic moiety; MFE-23::CPG2 targets the enzyme carboxypeptidase G2 (CPG2) for use in the ADEPT (antibody directed enzyme prodrug therapy) system and MFE::TNF alpha aims to reduce sequestration and increase tumor concentrations of systemically administered TNF alpha.  相似文献   

11.
Won YW  Kim KM  An SS  Lee M  Ha Y  Kim YH 《Biomaterials》2011,32(36):9766-9775
Suicide gene therapy based on a combination of herpes simplex virus-thymidine kinase (HSV-tk) and ganciclovir (GCV) has obstacles to achieving a success in clinical use for the treatment of cancer due to inadequate thymidine kinase (TK) expression. The primary concern for improving anticancer efficacy of the suicide gene therapy is to develop an appropriate carrier that highly expresses TK in vivo. Despite great advances in the development of non-viral vectors, none has been used in cancer suicide gene therapy, not even in experimental challenge. Reducible poly (oligo-D-arginine) (rPOA), one of the effective non-viral carriers working in vivo, was chosen to deliver HSV-tk to spinal cord tumors which are appropriate targets for suicide gene therapy. Since the system exerts toxicity only in dividing cells, cells in the central nervous system, which are non-proliferative, are not sensitive to the toxic metabolites. In the present study, we demonstrated that the locomotor function of the model rat was maintained through the tumor suppression resulting from the tumor-selective suicide activity by co-administration of rPOA/HSV-tk and GCV. Thus, rPOA plays a crucial role in suicide gene therapy for cancer, and an rPOA/HSV-tk and GCV system could help promote in vivo trials of suicide gene therapy.  相似文献   

12.
Cytomegalovirus UL97 mutations in the era of ganciclovir and maribavir   总被引:1,自引:0,他引:1  
Mutations in the human CMV UL97 kinase gene are a major mechanism of viral resistance to two anti-CMV drugs, ganciclovir (GCV) and maribavir (MBV). GCV, the most widely used and established therapy for CMV, is a substrate for the UL97 kinase. Well-characterised GCV-resistance mutations at UL97 codons 460, 520 and 590-607 impair the phosphorylation of GCV that is necessary for its antiviral activity, presumably by altering substrate recognition. In contrast, MBV is an inhibitor of the UL97 kinase and is the first new CMV therapy to reach later stage clinical trials in many years. No MBV-resistant CMV isolates have yet been detected in clinical trials, but after culture propagation under drug, UL97 mutations that confer moderate to high-level MBV resistance have been identified at codons 353, 397, 409 and 411. These mutations are located upstream of the GCV-resistance mutations and are close to the ATP-binding and catalytic domains common to all kinases, consistent with MBV acting as a small molecule ATP-competitive kinase inhibitor. So far, no UL97 mutations are known to confer resistance to both GCV and MBV.  相似文献   

13.
Gene therapy has opened new doors for treatment of neoplastic diseases. This new approach seems very attractive, especially for glioblastomas, since treatment of these brain tumors has failed using conventional therapy regimens. Many different modes of gene therapy for brain tumors have been tested in culture and in vivo. Many of these approaches are based on previously established anti-neoplastic principles, like prodrug activating enzymes, inhibition of tumor neovascularization, and enhancement of the normally weak anti-tumor immune response. Delivery of genes to tumor cells has been mediated by a number of viral and synthetic vectors. The most widely used paradigm is based on the activation of ganciclovir to a cytotoxic compound by a viral enzyme, thymidine kinase, which is expressed by tumor cells, after the gene has been introduced by a retroviral vector. This paradigm has proven to be a potent therapy with minimal side effects in several rodent brain tumor models, and has proceeded to phase 1 clinical trials. In this review, current gene therapy strategies and vector systems for treatment of brain tumors will be described and discussed in light of further developments needed to make this new treatment modality clinically efficacious.  相似文献   

14.
Adeno-associated virus(AAV) is a small,non-enveloped virus that contains a single-stranded DNA genome. It was the first gene therapy drug approved in the Western world in November 2012 to treat patients with lipoprotein lipase deficiency. AAV made history and put human gene therapy in the forefront again. More than four decades of research on AAV vector biology and human gene therapy has generated a huge amount of valuable information. Over 100 AAV serotypes and variants have been isolated and at least partially characterized. A number of them have been used for preclinical studies in a variety of animal models. Several AAV vector production platforms,especially the baculovirus-based system have been established for commercial-scale AAV vector production. AAV purification technologies such as density gradient centrifugation,column chromatography,or a combination,have been well developed. More than 117 clinical trials have been conducted with AAV vectors. Although there are still challenges down the road,such as crossspecies variation in vector tissue tropism and gene transfer efficiency,pre-existing humoral immunity to AAV capsids and vector dose-dependent toxicity in patients,the gene therapy community is forging ahead with cautious optimism. In this review I will focus on the properties and applications of commonly used AAV serotypes and variants,and the technologies for AAV vector production and purification. I will also discuss the advancement of several promising gene therapy clinical trials.  相似文献   

15.
The pseudomonad protein, carboxypeptidase G2 (CPG2), is a prodrug-activating enzyme utilized in the targeted chemotherapy strategies of antibody- and gene-directed enzyme prodrug therapy (ADEPT and GDEPT). We have developed a noninvasive imaging approach to monitor CPG2 activity in vivo that will facilitate the preclinical and clinical development of CPG2-based ADEPT and GDEPT strategies. Cleavage of the novel reporter probe, 3,5-difluorobenzoyl-L-glutamic acid (3,5-DFBGlu), by CPG2, in human colon adenocarcinoma WiDr xenografts engineered to stably express CPG2, was monitored using (19)F MRSI. The high signal-to-noise ratio afforded by the two MR-equivalent (19)F nuclei of 3,5-DFBGlu, and the 1.4 ppm (19)F chemical shift difference on CPG2-mediated cleavage, enabled the dynamics and quantification of the apparent pharmacokinetics of 3,5-DFBGlu and its CPG2-mediated cleavage in the tumor to be evaluated. In addition, the apparent rate of increase of 3,5-difluorobenzoic acid concentration could also provide a biomarker of CPG2 activity levels in tumors of patients undergoing CPG2-based therapies, as well as a biomarker of treatment response. The addition of in vivo reporter probes, such as 3,5-DFBGlu, to the armamentarium of prodrugs cleaved by CPG2 affords new applications for CPG2 as a gene reporter of transgene expression.  相似文献   

16.
Novel therapeutics for inherited retinal dystrophies (IRDs) have rapidly evolved since groundbreaking clinical trials for LCA due to RPE65 mutations led to the first FDA‐approved in vivo gene therapy. Since then, advancements in viral vectors have led to more efficient AAV transduction and developed other viral vectors for gene augmentation therapy of large gene targets. Furthermore, significant developments in gene editing and RNA modulation technologies have introduced novel capabilities for treatment of autosomal dominant diseases, intronic mutations, and/or large genes otherwise unable to be treated with current viral vectors. We highlight strategies currently being evaluated in gene therapy clinical trials and promising preclinical developments for IRDs.  相似文献   

17.

Purpose

We have used a genetically attenuated adenoviral vector which expresses HSVtk to assess the possible additive role of suicidal gene therapy for enhanced oncolytic effect of the virus. Expression of TK was measured using a radiotracer-based molecular counting and imaging system.

Materials and Methods

Replication-competent recombinant adenoviral vector (Ad-ΔE1B19/55) was used in this study, whereas replication-incompetent adenovirus (Ad-ΔE1A) was generated as a control. Both Ad-ΔE1B19/55-TK and Ad-ΔE1A-TK comprise the HSVtk gene inserted into the E3 region of the viruses. YCC-2 cells were infected with the viruses and incubated with 2''-deoxy-2''-fluoro-β-D-arabinofuranosyl-5-iodouracil (I-131 FIAU) to measure amount of radioactivity. The cytotoxicity of the viruses was determined, and gamma ray imaging of HSVtk gene was performed. MTT assay was also performed after GCV treatment.

Results

On gamma counter-analyses, counts/minute (cpm)/µg of protein showed MOIs dependency with ΔE1B19/55-TK infection. On MTT assay, Ad-ΔE1B19/55-TK led to more efficient cell killing than Ad-ΔE1A-TK. On plate imaging by gamma camera, both Ad-ΔE1B19/55-TK and Ad-ΔE1A-TK infected cells showed increased I-131 FIAU uptake in a MOI dependent pattern, and with GCV treatment, cell viability of ΔE1B19/55-TK infection was remarkably reduced compared to that of Ad-ΔE1A-TK infection.

Conclusion

Replicating Ad-ΔE1B19/55-TK showed more efficient TK expression even in the presence of higher-cancer cell killing effects compared to non-replicating Ad-ΔE1A-TK. Therefore, GCV treatment still possessed an additive role to oncolytic effect of Ad-ΔE1B19/55-TK. The expression of TK by oncolytic viruses could rapidly be screened using a radiotracer-based counting and imaging technique.  相似文献   

18.
Colorectal cancer is a leading cause of cancer mortality in Western countries. Gene therapy has been proposed as a potential novel treatment modality for colorectal cancer, but it is still in an early stage of development. The preclinical data have been promising and numerous clinical trials are underway. This brief review aims to summarise the current status of clinical trials of different gene therapy strategies, including immune stimulation, mutant gene correction, prodrug activation and oncolytic virus therapy, for patients with colorectal cancer. Data from phase I trials have proven the safety of the reagents but have not yet demonstrated significant therapeutic benefit. In order to achieve this and extend the scope of the treatment, continuing efforts should be made to improve the antitumour potency, efficiency of gene delivery and accuracy of gene targeting.  相似文献   

19.
Several primary immunodeficiencies are under consideration for gene therapy approaches because of limitations of current standard treatment. Many primary immunodeficiencies are caused by defects in single genes expressed in blood cells; thus addition of a correct copy of the gene to hematopoietic stem cells (HSCs) can generate immune cells with restored function. HSCs can be removed from a patient, treated outside the body, and reinfused. In the last decade, significant improvements have been made in transferring genes by means of retroviruses to HSCs in vitro, and gene therapy trials for patients with X-linked severe combined immunodeficiency (XSCID) and adenosine deaminase-deficient severe combined immunodeficiency have restored immune competence. Gene therapy is actively being pursued in other immunodeficiency disorders, including chronic granulomatous disease and Wiskott-Aldrich syndrome. However, enthusiasm for the correction of XSCID by means of gene therapy has been tempered by the occurrence of 2 cases of leukemia in gene therapy recipients caused by insertion of the retroviral vector in or near the oncogene LMO2. The likelihood of retroviral insertional mutagenesis was estimated to be very low in the past on the basis of theoretic calculations and the absence of observed malignancies in animal studies and early clinical trials. Emerging new findings on retroviral integration both in the patients with XSCID and experimental animals now indicate that the insertion of retroviral sequences into the genome carries significant risk. Understanding the magnitude of risk is now a priority so that safety can be improved for future gene therapy clinical trials.  相似文献   

20.
Radioiodide uptake (RAIU) in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer or prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of 131I after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic agent when combined with radioiodide injection. Better NIS-mediated tumor treatment by radioiodide requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号