首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a 21-year-old male with symptomatic optic glioma who does not fulfill the diagnosis of neurofibromatosis 1 (NF1) according to standard NIH criteria. Analysis of the NF1 gene revealed a recurrent mutation in exon 37 (C6792A or Y2264X). This nonsense mutation causes skipping of exon 37 during the splicing process and is predicted to result in a protein shortened by 34 amino acid residues. The mutation was detected in all tissues examined (blood lymphocytes, oral mucosa, and dermal fibroblasts). The same mutation was previously found in 3 patients with clinically confirmed NF1. To our knowledge, this is the first report of an adult patient carrying a putative (non-mosaic) NF1 gene mutation in multiple tissues but not fulfilling the NIH criteria for the clinical diagnosis of NF1. Am. J. Med. Genet. 86:328–330, 1999.  相似文献   

2.
Neurofibromatosis type 1 (NF1) is mainly characterized by the occurrence of benign peripheral nerve sheath tumors or neurofibromas. Thorough investigation of the somatic mutation spectrum has thus far been hampered by the large size of the NF1 gene and the considerable proportion of NF1 heterozygous cells within the tumors. We developed an improved somatic mutation detection strategy on cultured Schwann cells derived from neurofibromas and investigated 38 tumors from nine NF1 patients. Twenty-nine somatic NF1 lesions were detected which represents the highest NF1 somatic mutation detection rate described so far (76%). Furthermore, our data strongly suggest that the acquired second hit underlies reduced NF1 expression in Schwann cell cultures. Together, these data clearly illustrate that two inactivating NF1 mutations, in a subpopulation of the Schwann cells, are required for neurofibroma formation in NF1 tumorigenesis. The observed somatic mutation spectrum shows that intragenic NF1 mutations (26/29) are most prevalent, particularly frameshift mutations (12/29, 41%). We hypothesize that this mutation signature might reflect slightly reduced DNA repair efficiency as a trigger for NF1 somatic inactivation preceding tumorigenesis. Joint analysis of the current and previously published NF1 mutation data revealed a significant difference in the somatic mutation spectrum in patients with a NF1 microdeletion vs. non-microdeletion patients with respect to the prevalence of loss of heterozygosity events (0/15 vs. 41/81). Differences in somatic inactivation mechanism might therefore exist between NF1 microdeletion patients and the general NF1 population.  相似文献   

3.
4.
In the present study the entire NF1 coding region was analyzed for mutations in 132 unrelated Italian NF1 patients. Using PTT, SSCP, and DNA sequencing, we found 8 novel mutations. Clinical diagnosis of NF1 was established according to the NIH consensus criteria. We detected 59 truncated fragments, and 46 of them were characterized by SSCP and direct sequencing. Eight mutations represent novel changes that contribute to the germline mutational spectrum of the NF1 gene. In two patients, premature termination was due to substitutions at nucleotide c.3982C>T (Q1298X) and c.7411C>T (Q2471X), respectively. Two other mutations were caused by the deletions (1756delA, 4699delA), and two by the insertions (c.5266_5267insT, c.7464_7465insTCCA) of a small number of nucleotides. Lastly, we found 2 splice-site mutations (c.2252-2A>C, c.2251+1G>A).  相似文献   

5.
A total of 500 unselected unrelated neurofibromatosis 1 (NF1) patients were screened for deletions of the NF1 gene. After excluding 67 patients with known intragenic NF1 mutations, the remaining 433 were genotyped using six intragenic and one distal microsatellite marker for the NF1 gene. A total of 28 patients were hemi- or homozygous for all seven markers and were thus considered as candidates for NF1 deletion with a calculated probability of 99.99%. Metaphase or interphase cells were available from 23 of these 28 individuals for molecular cytogenetics. Fluorescence in situ hybridization (FISH) confirmed an NF1 deletion in 22 (96%) of the 23 patients. Thus, a constitutional deletion of the NF1 gene is responsible for the disease phenotype in at least 4.4% of the 500 unselected NF1 patients. Genotyping using multiple microsatellite markers may provide a simple, inexpensive, and efficient strategy for screening deletions of the NF1 gene, and can as well be applied for other large genes.  相似文献   

6.
Neurofibromatosis type 1 (NF1), an autosomal dominantly-inherited disorder, is mainly characterized by the occurrence of multiple dermal neurofibromas and is caused by mutations in the NF1 gene, a tumor suppressor gene. The variable expressivity of the disease and the lack of a genotype/phenotype correlation prevents any prediction of patient outcome and points to the action of genetic factors in addition to stochastic factors modifying the severity of the disease. The analysis of somatic NF1 gene mutations in neurofibromas from NF1 patients revealed that each neurofibroma results from an individual second hit mutation, indicating that factors that influence somatic mutation rates may be regarded as potential modifiers of NF1. A mutational screen of numerous neurofibromas from two NF1 patients presented here revealed a predominance of point mutations, small deletions, and insertions as second hit mutations in both patients. Seven novel mutations are reported. Together with the results of studies that showed LOH as the predominant second hit in neurofibromas of other patients, our results suggest that in different patients different factors may influence the somatic mutation rate and thereby the severity of the disease.  相似文献   

7.
Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder characterized predominantly by neurofibromas, café-au-lait spots, and Lisch nodules. The disease is caused by disruptive mutations of the large NF1 gene, with half of cases caused by new mutation. Less than 100 constitutional mutations have thus far been published, ranging from very large deletions to point mutations. We have pursued NF1 mutation analysis by heteroduplex analysis (HDA) and single-strand conformational polymorphism analysis (SSCP) of individual exons. We streamlined these techniques to eliminate the use of radioactivity, to apply both methods to the same PCR product, and to multiplex samples in gels. Applied simultaneously to a set of 67 unrelated NF1 patients, HDA and SSCP have thus far identified 26 mutations and/or variants in 45 of the 59 exons tested. Disease-causing mutations were found in 19% (13/67) of cases studied. Both techniques detected a variety of mutations including splice mutations, insertions, deletions, and point changes, with some overlap in the ability of each method to detect variants. Hum Mutat 9:548–554, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
We genotyped 19 NF1 families from the French Canadians of the Québec population with six intragenic polymorphic markers including 2 RFLPs (EcoRI and RsaI) and 4 microsatellites (IVS26‐2.3, IVS27AC28.4, IVS27AC33.1, and IVS38GT53.0). Genotype analysis indicated families 7610 and 7473 bear deletions. In Family 7610 the deletion removed the entire NF1 gene except exons 1 to 4b. The breakpoint of the deletion is located between exons 4a and 4b. The deletion 7473 was derived from the maternal chromosome and exons 1 to 5 were deleted. The breakpoint of the deletion is located between exons 7 and 13. Their phenotypes are reported. The allele frequencies of microsatellites IVS27AC28.4 and IVS38GT53.0 are compared to previously reported data from Caucasians, including Spanish and Italians. The difference is statistically significant (P < 0.0036) for marker IVS27AC28.4 between the Québec French Canadian and the Italian population. © 2001 Wiley‐Liss, Inc.  相似文献   

9.
Mosaicism is an important feature of type-1 neurofibromatosis (NF1) on account of its impact upon both clinical manifestations and transmission risk. Using FISH and MLPA to screen 3500 NF1 patients, we identified 146 individuals harboring gross NF1 deletions, 14 of whom (9.6%) displayed somatic mosaicism. The high rate of mosaicism in patients with NF1 deletions supports the postulated idea of a direct relationship between the high new mutation rate in this cancer predisposition syndrome and the frequency of mosaicism. Seven of the 14 mosaic NF1 deletions were type-2, whereas four were putatively type-1, and three were atypical. Two of the four probable type-1 deletions were confirmed as such by breakpoint-spanning PCR or SNP analysis. Both deletions were associated with a generalized manifestation of NF1. Independently, we identified a third patient with a mosaic type-1 NF1 deletion who exhibited segmental NF1. Together, these three cases constitute the first proven mosaic type-1 deletions so far reported. In two of these three mosaic type-1 deletions, the breakpoints were located within PRS1 and PRS2, previously identified as hotspots for nonallelic homologous recombination (NAHR) during meiosis. Hence, NAHR within PRS1 and PRS2 is not confined to meiosis but may also occur during postzygotic mitotic cell cycles.  相似文献   

10.
The aim of this study was to characterize cardiac features of patients with neurofibromatosis 1 (NF1) and large deletions of the NF1 gene region. The study participants were 16 patients with large NF1 deletions and 16 age‐ and sex‐matched NF1 patients without such deletions. All the patients were comprehensively characterized clinically and by echocardiography. Six of 16 NF1 deletion patients but none of 16 non‐deletion NF1 patients have major cardiac abnormalities (p = 0.041). Congenital heart defects (CHDs) include mitral insufficiency in two patients and ventricular septal defect, aortic stenosis, and aortic insufficiency in one patient each. Three deletion patients have hypertrophic cardiomyopathy. Two patients have intracardiac tumors. NF1 patients without large deletions have increased left ventricular (LV) diastolic posterior wall thickness (p < 0.001) and increased intraventricular diastolic septal thickness (p = 0.001) compared with a healthy reference population without NF1, suggestive of eccentric LV hypertrophy. CHDs and other cardiovascular anomalies are more frequent among patients with large NF1 deletion and may cause serious clinical complications. Eccentric LV hypertrophy may occur in NF1 patients without whole gene deletions, but the clinical significance of this finding is uncertain. All patients with clinical suspicion for NF1 should be referred to a cardiologist for evaluation and surveillance.  相似文献   

11.
Rett Syndrome (RTT) is an X‐linked dominant neurodevelopmental disorder, which almost exclusively affects girls, with an estimated prevalence of one in 10,000–15,000 female births. Mutations in the methyl CpG binding protein 2 gene (MECP2) have been identified in roughly 75% of classical Rett girls. The vast majority of Rett cases (99%) are sporadic in origin, and are due to de novo mutations. We collected DNA samples from 50 Italian classical Rett girls, and screened the MECP2 coding region for mutations by denaturing high‐performance liquid chromatography (DHPLC) and subsequent direct sequencing. DHPLC is a recently developed method for mutation screening which identifies heteroduplexes formed in DNA samples containing mismatches between wild type and mutant DNA strands, combining high sensitivity, reduced cost per run, and high throughput. In our series, 19 different de novo MECP2 mutations, eight of which were previously unreported, were found in 35 out of 50 Rett girls (70%). Seven recurrent mutations were characterized in a total of 22 unrelated cases. Initial DHPLC screening allowed the identification of 17 out of 19 different mutations (90%); after optimal conditions were established, this figure increased to 100%, with all recurrent MECP2 mutations generating a characteristic chromatographic profile. Detailed clinical data were available for 27 out of 35 mutation carrying Rett girls. Milder disease was detectable in patients carrying nonsense mutation as compared to patients carrying missense mutations, although this difference was not statistically significant (P = 0.077). Hum Mutat 18:132–140, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

12.
Approximately 5% of all patients with neurofibromatosis type‐1 (NF1) exhibit large deletions of the NF1 gene region. To date, only nine unrelated cases of large NF1 duplications have been reported, with none of the affected patients exhibiting multiple café au lait spots (CALS), Lisch nodules, freckling, or neurofibromas, the hallmark signs of NF1. Here, we have characterized two novel NF1 duplications, one sporadic and one familial. Both index patients with NF1 duplications exhibited learning disabilities and atypical CALS. Additionally, patient R609021 had Lisch nodules, whereas patient R653070 exhibited two inguinal freckles. The mother and sister of patient R609021 also harbored the NF1 duplication and exhibited cognitive dysfunction but no CALS. The breakpoints of the nine NF1 duplications reported previously have not been identified and hence their underlying generative mechanisms have remained unclear. In this study, we performed high‐resolution breakpoint analysis that indicated that the two duplications studied were mediated by nonallelic homologous recombination (NAHR) and that the duplication breakpoints were located within the NAHR hotspot paralogous recombination site 2 (PRS2), which also harbors the type‐1 NF1 deletion breakpoints. Hence, our study indicates for the first time that NF1 duplications are reciprocal to type‐1 NF1 deletions and originate from the same NAHR events.  相似文献   

13.
Neurofibromatosis type 1 (NF1) affects about one in 3,500 people in all ethnic groups. Most NF1 patients have private loss‐of‐function mutations scattered along the NF1 gene. Here, we present an original NF1 investigation strategy and report a comprehensive mutation analysis of 565 unrelated patients from the NF‐France Network. A NF1 mutation was identified in 546 of the 565 patients, giving a mutation detection rate of 97%. The combined cDNA/DNA approach showed that a significant proportion of NF1 missense mutations (30%) were deleterious by affecting pre‐mRNA splicing. Multiplex ligation‐dependent probe amplification allowed the identification of restricted rearrangements that would have been missed if only sequencing or microsatellite analysis had been performed. In four unrelated families, we identified two distinct NF1 mutations within the same family. This fortuitous association points out the need to perform an exhaustive NF1 screening in the case of molecular discordant‐related patients. A genotype–phenotype study was performed in patients harboring a truncating (N = 368), in‐frame splicing (N = 36), or missense (N = 35) mutation. The association analysis of these mutation types with 12 common NF1 clinical features confirmed a weak contribution of the allelic heterogeneity of the NF1 mutation to the NF1 variable expressivity.  相似文献   

14.
About 10% of neurofibromatosis type 1 (NF1) patients develop malignant peripheral nerve sheath tumors (MPNSTs) and represent considerable patient morbidity and mortality. Elucidation of the genetic mechanisms by which inherited and acquired NF1 disease gene variants lead to MPNST development is important. A study was undertaken to identify the constitutional and somatic NF1 mutations in 34 MPNSTs from 27 NF1 patients. The NF1 germline mutations identified in 22 lymphocytes DNA from these patients included seven novel mutations and a large 1.4-Mb deletion. The NF1 germline mutation spectrum was similar to that previously identified in adult NF1 patients without MPNST. Somatic NF1 mutations were identified in tumor DNA from 31 out of 34 MPNSTs, of which 28 were large genomic deletions. The high prevalence (>90%) of such deletions in MPNST contrast with the =or<20% found in benign neurofibromas and is indicative of the involvement of different mutational mechanisms in these tumors. Coinactivation of the TP53 gene by deletion, or by point mutation along with NF1 gene inactivation, is known to exacerbate disease symptoms in NF1, therefore TP53 gene inactivation was screened. DNA from 20 tumors showed evidence for loss of heterozygosity (LOH) across the TP53 region in 11 samples, with novel TP53 point mutations in four tumors.  相似文献   

15.
We coincidently detected an atypical deletion of at least 1.3‐Mb, encompassing the NF1 tumor suppressor gene and several adjacent genes at an apparent heterozygous level in the blood of a 65‐year‐old female patient. She had multiple subcutaneous tumors that appeared with a certain similarity of subcutaneous neurofibromas, which, however, was revealed as lipomas by histological examination. Comprehensive and exhaustive clinical and radiological examinations did not detect any neurofibromatosis type 1‐related clinical symptoms in the patient. Multiplex ligation‐dependent probe amplification detected no or only very low level of the 1.3‐Mb NF1 deletion in six lipomas and two skin biopsies. Digital polymerase chain reaction estimated the proportion of cells carrying a heterozygous NF1 deletion at 87% in the blood, and 8%, 10%, 13%, 17%, and 20%, respectively, in the five lipomas investigated by this method, confirming our hypothesis of mosaicism. Our findings suggest that de novo cases of genetic disease are potentially mosaic regardless of finding the mutation at an apparently heterozygous level in the blood and that the possibility of mosaicism should be considered in genotype–phenotype studies and genetic counseling.  相似文献   

16.
Denaturing high performance liquid chromatography (DHPLC) using ion-pairing reverse phase chromatography (IPRPC) columns is a technique for the screening of gene mutations. In order to evaluate the potential utility of this assay method in a clinical laboratory setting, we subjected the PCR products of 73 CF patients known to bear CFTR mutations to this analytic technique. We used thermal denaturation profile parameters specified by the MELT program tool, made available by Stanford University. Using this strategy, we determined an initial analytic sensitivity of 90.4% for any of 73 known CFTR mutations. Most of the mutations not detected by DHPLC under these conditions are alpha-substitutions. This information may eventually help to improve the MELT algorithm. Increasing column denaturation temperatures for one or two degrees above those recommended by the MELT program allowed 100% detection of CFTR mutations tested. By comparing DHPLC methodology used in this study with the recently reported study based on Wavemaker 3.4.4 software (Transgenomic, Omaha, NE) [Le Marechal et al., 2001) and with previous SSCP analysis of CFTR mutations [Ravnik-Glavac et al., 1994] we emphasized differences and similarities in order to refine the DHPLC system and discuss the relationship to the alternative approaches. We conclude that the DHPLC method, under optimized conditions, is highly accurate, rapid, and efficient in detecting mutations in the CFTR gene and may find high utility in screening individuals for CFTR mutations. Hum Mutat 19:374-383, 2002. Published 2002 Wiley-Liss, Inc.  相似文献   

17.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with an incidence of between 1: 3000 and 1: 4000. Common clinical signs include more than six café‐au‐lait spots, multiple cutaneous neurofibromas and iris Lisch nodules. Rarer are skeletal anomalies, learning disabilities and an increased risk of malignancy. The NF1 gene contains at least 60 exons with intron sizes ranging from 60 bp to more than 40 kb. Despite using different techniques including PTT, SSCP, heteroduplex analyses and direct sequencing, only a relatively small number of mutations have been reported world‐wide. Using the more sensitive technique of temperature gradient gel electrophoresis (TGGE), we analysed a part of the NF1‐GAP‐region, namely exon 25, in DNA samples from 131 unrelated patients. We have identified a novel mutation L1425P in exon 25 of the NF1 gene in a 12‐year‐old boy (clinically diagnosed with NF1 at the age of 7). In contrast to those cases diagnosed with having both GAP‐region mutations and malignant tumours, neither the proband nor four clinically affected family members with this mutation showed any evidence of malignancies. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
Neurofibromatosis type-1 (NF1), caused by heterozygous inactivation of the NF1 tumour suppressor gene, is associated with the development of benign and malignant peripheral nerve sheath tumours (MPNSTs). Although numerous germline NF1 mutations have been identified, relatively few somatic NF1 mutations have been described in neurofibromas. Here we have screened 109 cutaneous neurofibromas, excised from 46 unrelated NF1 patients, for somatic NF1 mutations. NF1 mutation screening (involving loss-of-heterozygosity (LOH) analysis, multiplex ligation-dependent probe amplification and DNA sequencing) identified 77 somatic NF1 point mutations, of which 53 were novel. LOH spanning the NF1 gene region was evident in 25 neurofibromas, but in contrast to previous data from MPNSTs, it was absent at the TP53, CDKN2A and RB1 gene loci. Analysis of DNA/RNA from neurofibroma-derived Schwann cell cultures revealed NF1 mutations in four tumours whose presence had been overlooked in the tumour DNA. Bioinformatics analysis suggested that four of seven novel somatic NF1 missense mutations (p.A330T, p.Q519P, p.A776T, p.S1463F) could be of functional/clinical significance. Functional analysis confirmed this prediction for p.S1463F, located within the GTPase-activating protein-related domain, as this mutation resulted in a 150-fold increase in activated GTP-bound Ras. Comparison of the relative frequencies of the different types of somatic NF1 mutation observed with those of their previously reported germline counterparts revealed significant (P=0.001) differences. Although non-identical somatic mutations involving either the same or adjacent nucleotides were identified in three pairs of tumours from the same patients (P<0.0002), no association was noted between the type of germline and somatic NF1 lesion within the same individual.  相似文献   

19.
Most sporadic gastrointestinal stromal tumours (GISTs) have somatic c-kit gene mutations that are considered to be causal. Neurofibromatosis type 1 (NF1) is caused by mutations of the NF1 gene and NF1 patients have an increased risk of developing GISTs. Since most neoplasms are considered to develop as a result of the combination of several gene mutations, these findings suggest that GISTs from NF1 patients might have somatic c-kit gene mutations and that sporadic GISTs from non-NF1 patients might have somatic NF1 gene mutations. The present study analysed 29 GISTs from seven NF1 patients for c-kit gene mutations and ten sporadic GISTs from ten non-NF1 patients for NF1 mutations. Exons 9, 11, 13, and 17 of the c-kit gene were amplified and directly sequenced after the extraction of genomic DNA from wax-embedded tissues from 26 GISTs from five NF1 patients. The whole coding region of the c-kit cDNA and the whole coding region of the NF1 cDNA were amplified and directly sequenced after RNA extraction and cDNA synthesis in three fresh GIST tissues from two NF1 patients and ten fresh GIST tissues from ten non-NF1 patients. Of the ten sporadic GISTs, eight had heterozygous mutations at exon 11, and one at exon 9, of c-kit. Heterozygous NF1 gene mutations were detected in GISTs from the two NF1 patients from whom fresh tissues were available. None of the 29 GISTs derived from NF1 patients had detectable c-kit gene mutations and none of the ten GISTs derived from non-NF1 patients had detectable NF1 mutations. These results suggest that the pathogenesis of GISTs in NF1 patients is different from that in non-NF1 patients.  相似文献   

20.
Type 1 Neurofibromatosis, NF1, is a common genetic disorder with variable clinical manifestations. Although NF1 often is only of cosmetic concern, serious and even lethal complications may occur. It is not possible to predict which symptoms will develop in any affected individual. The NNFF International Database is a multicentre collaborative system for collecting information about this condition. At the time of this analysis, complete clinical information was available on 1,479 probands and 249 of their affected relatives with NF1. On average, the age at diagnosis of NF1 was 8 years younger in the probands than in the affected relatives (P<.01). Many of the manifestations of NF1 were more frequent in the probands than in their affected relatives. The age-specific prevalence of most manifestations of NF1 increases with age. Despite biases inherent in a convenience sample from specialist clinics, the frequencies of many of the serious manifestations of NF1 are similar to those of two smaller population-based studies. The frequencies in this study are likely representative of patients seen at specialized clinics. Am. J. Med. Genet. 70:138–143, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号