首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electroporation is a widely used technique for enhancing the efficiency of DNA delivery into cells. Application of electric pulses after local injection of DNA temporarily opens cell membranes and facilitates DNA uptake. Delivery of plasmid DNA by electroporation to alter gene expression in tissue has also been explored in vivo. This approach may constitute an alternative to viral gene transfer, or to transgenic or knock-out animals. Among the most frequently electroporated target tissues are skin, muscle, eye, and tumors. Moreover, different regions in the central nervous system (CNS), including the developing neural tube and the spinal cord, as well as prenatal and postnatal brain have been successfully electroporated. Here, we present a comprehensive review of the literature describing electroporation of the CNS with a focus on the adult brain. In addition, the mechanism of electroporation, different ways of delivering the electric pulses, and the risk of damaging the target tissue are highlighted. Electroporation has been successfully used in humans to enhance gene transfer in vaccination or cancer therapy with several clinical trials currently ongoing. Improving the knowledge about in vivo electroporation will pave the way for electroporation-enhanced gene therapy to treat brain carcinomas, as well as CNS disorders such as Alzheimer's disease, Parkinson's disease, and depression.  相似文献   

2.
Electroporation for Gene Transfer to Skeletal Muscles   总被引:9,自引:0,他引:9  
Naked plasmid DNA can be used to introduce genetic material into a variety of cell types in vivo. However, such gene transfer and expression is generally very low compared with that achieved with viral vectors and so is unsuitable for clinical therapeutic application in most cases. This difference in efficiency has been substantially reduced by the introduction of in vivo electroporation to enhance plasmid delivery to a wide range of tissues including muscle, skin, liver, lung, artery, kidney, retina, cornea, spinal cord, brain, synovium, and tumors. The precise mechanism of in vivo electroporation is uncertain, but appears to involve both electropore formation and an electrophoretic movement of the plasmid DNA. Skeletal muscle is a favored target tissue for three reasons: there is a pressing need to develop effective therapies for muscular dystrophies; skeletal muscle can act as an effective platform for the long-term secretion of therapeutic proteins for systemic distribution; and introduction of DNA vaccines into skeletal muscle promotes strong humoral and cellular immune responses. All of these applications are significantly improved by the application of in vivo electroporation. Importantly, the increased efficiency of plasmid delivery following electroporation is seen in larger species as well as rodents, in contrast to the decreasing efficiencies with increasing body size for simple intramuscular injection of naked plasmid DNA. As this electroporation-enhanced non-viral gene delivery system works well in larger species and avoids the vector-specific immune responses associated with recombinant viruses, the prospects for clinical application are promising.  相似文献   

3.
An efficient and safe method to deliver DNA in vivo is a requirement for several purposes, such as study of gene function and gene therapy applications. Among the different non-viral delivery methods currently under investigation, in vivo DNA electrotransfer has proven to be one of the most efficient and simple. This technique is a physical method of gene delivery consisting in local application of electric pulses after DNA injection. Although this technique can be applied to almost any tissue of a living animal, including tumors, skin, liver, kidney, artery, retina, cornea or even brain, this review will focus on electrotransfer of plasmid DNA into skeletal muscle and its possible uses in gene therapy, vaccination, or functional studies. Skeletal muscle is a good target for electrotransfer of DNA as it is: a large volume easily accessible, an endocrine organ capable of expressing several local and systemic factors, and muscle fibres as post-mitotic cells have a long lifespan that allows long-term gene expression. In this review, we describe the mechanism of DNA electrotransfer, we assess toxicity and safety considerations related to this technique, and we focus on important therapeutic applications of electrotransfer demonstrated in animal models in recent years.  相似文献   

4.
Simple plasmid DNA injection is a safe and feasible gene transfer method, but it confers low transfection efficiency and transgene expression. This non-viral gene transfer method is enhanced by physical delivery methods, such as electroporation and the use of a gene gun. In vivo electroporation has been rapidly developed over the last two decades to deliver DNA to various tissues or organs. It is generally considered that membrane permeabilization and DNA electrophoresis play important roles in electro-gene transfer. Skeletal muscle is a well characterized target tissue for electroporation, because it is accessible and allows for long-lasting gene expression ( > one year). Skin is also a target tissue because of its accessibility and immunogenicity. Numerous studies have been performed using in vivo electroporation in animal models of disease. Clinical trials of DNA vaccines and immunotherapy for cancer treatment using in vivo electroporation have been initiated in patients with melanoma and prostate cancer. Furthermore, electroporation has been applied to DNA vaccines for infectious diseases to enhance immunogenicity, and the relevant clinical trials have been initiated. The gene gun approach is also being applied for the delivery of DNA vaccines against infectious diseases to the skin. Here, we review recent advances in the mechanism of in vivo electroporation, and summarize the findings of recent preclinical and clinical studies using this technology.  相似文献   

5.
Muscle is a convenient and accessible site for non-viral gene delivery, which can manufacture gene products and provide a long-duration of gene expression. The level of gene expression after administration of naked DNA plasmid or polymer-formulated DNA plasmid containing a reporter gene to muscle via syringe injection, however, is very low. As a result, no significant therapeutic effect can be detected after saline- or polymer-mediated gene delivery into muscle. In 1998, investigators published a striking new approach--electrotransfection--for intramuscular gene delivery (now commonly referred to as electroporation or electroinjection). Electroporation of a non-viral gene into the muscles of small animals has increased the level of gene expression by as much as two orders of magnitude, which is comparable to levels achieved with adenoviral gene delivery. Three years later, intramuscular electroporation gene delivery technology has blossomed. Treatments for different diseases using this approach in animal models have been reported. In this review, I discuss the applications of intramuscular electroporation gene therapy to treat malignancies, renal disease, and anemia, and to prevent drug toxicity to sensory nerves.  相似文献   

6.
Plasmids are circular or linear DNA molecules propagated extra-chromosomally in bacteria. Evolution shaped plasmids are inherently mosaic structures with individual functional units represented by distinct segments in the plasmid genome. The patchwork of plasmid genetic modules is a convenient template and a model for the generation of artificial plasmids used as vehicles for gene delivery into human cells. Plasmid gene vectors are an important tool in gene therapy and in basic biomedical research, where these vectors offer efficient transgene expression in many settings in vitro and in vivo. Plasmid vectors can be attached to nuclear directing ligands or transferred by electroporation as naked DNA to deliver the payload genes to the nuclei of the target cells. Transgene expression silencing by plasmid sequences of bacterial origin and immune stimulation by bacterial unmethylated CpG motifs can be avoided by the generation of plasmid-based minimized DNA vectors, such as minicircles. Systems of efficient site-specific integration into human chromosomes and stable episomal maintenance in human cells are being developed for further reduction of the chances for transgene silencing. The successful generation of plasmid vectors is governed by a number of vector design rules, some of which are common to all gene vectors, while others are specific to plasmid vectors. This review is focused both on the guiding principles and on the technical know-how of plasmid gene vector design.  相似文献   

7.
Models for electric field interactions with biological cells predict that pulses with durations shorter than the charging time of the outer membrane can affect intracellular structures. Experimental studies in which human cells were exposed to pulsed electric fields of up to 300 kV/cm amplitude, with durations as short as 10 ns, have confirmed this hypothesis. The observed effects include the breaching of intracellular granule membranes without permanent damage to the cell membrane, abrupt rises in intracellular free calcium levels, enhanced expression of genes, cytochrome c release, and electroporation for gene transfer and drug delivery. At increased electric fields, the application of nanosecond pulses induces apoptosis (programmed cell death) in biological cells, an effect that has been shown to reduce the growth of tumors. Possible applications of the intracellular electroeffects are enhancing gene delivery to the nucleus, controlling cell functions that depend on calcium release (causing cell immobilization), and treating tumors. Such nanosecond electrical pulses have been shown to successfully treat melanoma tumors by using needle arrays as pulse delivery systems. Reducing the pulse duration of intense electric field pulses even further into the subnanosecond range will allow for the use of wideband antennas to deliver the electromagnetic fields into tissue with a spatial resolution in the centimeter range. This review carefully examines the above concepts, provides a theoretical basis, and modeling results based on both continuum approaches and atomistic molecular dynamics methods. Relevant experimental data are also presented, and some of the many potential bioengineering applications discussed.  相似文献   

8.
Nonviral gene transfer is markedly enhanced by the application of in vivo electroporation (also denoted electro-gene transfer or electrokinetic enhancement). This approach is safe and can be used to deliver nucleic acid fragments, oligonucleotides, siRNA, and plasmids to a wide variety of tissues, such as skeletal muscle, skin and liver. In this review, we address the principles of electroporation and demonstrate its effectiveness in disease models. Electroporation has been shown to be equally applicable to small and large animals (rodents, dogs, pigs, other farm animals and primates), and this addresses one of the major problems in gene therapy, that of scalability to humans. Gene transfer can be optimized and tissue injury minimized by the selection of appropriate electrical parameters. We and others have applied this approach in preclinical autoimmune and/or inflammatory diseases to deliver either cytokines, anti-inflammatory agents or immunoregulatory molecules. Electroporation is also effective for the intratumoral delivery of therapeutic vectors. It strongly boost DNA vaccination against infectious agents (e.g., hepatitis B virus, human immunodeficiency virus-1) or tumor antigens (e.g., HER-2/neu, carcinoembryonic antigen). In addition, we found that electroporation-enhanced DNA vaccination against islet-cell antigens ameliorated autoimmune diabetes. One of the most likely future applications, however, may be in intramuscular gene transfer for systemic delivery of either endocrine hormones (e.g., growth hormone releasing hormone and leptin), hematopoietic factors (e.g., erythropoietin, GM-CSF), antibodies, enzymes, or numerous other protein drugs. In vivo electroporation has been performed in humans, and it seems likely it could be applied clinically for nonviral gene therapy.  相似文献   

9.
Gene delivery is a promising technique that involves in vitro or in vivo introduction of exogenous genes into cells for experimental and therapeutic purposes. Successful gene delivery depends on the development of effective and safe delivery vectors. Two main delivery systems, viral and non-viral gene carriers, are currently deployed for gene therapy. While most current gene therapy clinical trials are based on viral approaches, non-viral gene medicines have also emerged as potentially safe and effective for the treatment of a wide variety of genetic and acquired diseases. Non-viral technologies consist of plasmid-based expression systems containing a gene associated with the synthetic gene delivery vector. Polysaccharides compile a large family of heterogenic sequences of monomers with various applications and several advantages as gene delivery agents. This chapter, compiles the recent progress in polysaccharide based gene delivery, it also provides an overview and recent developments of polysaccharide employed for in vitro and in vivo delivery of therapeutically important nucleotides, e.g. plasmid DNA and small interfering RNA.  相似文献   

10.
Electroporation designates the use of short high-voltage pulses to overcome the barrier of the cell membrane. By applying an external electric field, which just surpasses the capacitance of the cell membrane, transient and reversible breakdown of the membrane can be induced. This transient, permeabilized state can be used to load cells with a variety of different molecules, either through simple diffusion in the case of small molecules, or through electrophoretically driven processes allowing passage through the destabilized membrane--as is the case for DNA transfer. Initially developed for gene transfer, electroporation is now in use for delivery of a large variety of molecules: From ions to drugs, dyes, tracers, antibodies, and oligonucleotides to RNA and DNA. Electroporation has proven useful both in vitro, in vivo and in patients, where drug delivery to malignant tumours has been performed. Whereas initial electroporation procedures caused considerable cell damage, developments over the past decades have led to sophistication of equipment and optimization of protocols. The electroporation procedures used in many laboratories could be optimized with limited effort. This review (i) outlines the theory of electroporation, (ii) discusses factors of importance for optimization of electroporation protocols for mammalian cells, (iii) addresses particular concerns when using electroporation in vivo, e.g. effects on blood flow and considerations regarding choice of electrodes, (iv) describes DNA electrotransfer with emphasis on use in the in vivo setting, and (v) sums up data on safety and efficacy of electroporation used to enhance delivery of chemotherapy to tumours in cancer patients.  相似文献   

11.
12.
Among all vectors designed for gene therapy purposes, adenovirus appears to be the most efficient in vivo vehicle to transduce the broadest spectrum of cellular targets. However, the deleterious immunogenicity of this viral vector impedes its use in chronic diseases. Non-viral vectors, such as naked DNA, are attractive alternatives for safety and technical issues, such as scale-up production. Naked DNA injection, greatly improved when combined with electroporation, showed great potential in adult animals, especially when directed to the muscle. We have recently proven the therapeutic effect of a neonatal single intramuscular injection of a cardiotrophin-1 (CT-1)-encoding adenovirus in a hereditary disease mouse model of human motor neuron disease, the progressive motor neuronopathy (pmn) mutant. We now demonstrate that a single injection/electroporation of a CT-1-encoding plasmid in neonate pmn mice is almost as efficient as adenovirus-mediated gene transfer with respect to survival, muscular function and neuroprotection of the animals. Treated mice gain global weight, their mean lifespan is extended by 25%, all their electromyographic parameters are improved and myelinated axons of their phrenic nerves are protected. Moreover, we show that re-injection/electroporation leads to improvements in this neuroprotection. We therefore demonstrate for the first time the therapeutic efficacy of neonatal intramuscular DNA injection/electroporation in a murine model of a human hereditary disorder.  相似文献   

13.
Electrotransfer as a non viral method of gene delivery   总被引:2,自引:0,他引:2  
Over the last few decades, various vectors have been developed in the field of gene therapy. There still exist a number of important unresolved problems associated with the use of viral as well as non viral vectors. These techniques can suffer from secondary toxicity or low gene transfer efficiency. Therefore an efficient and safe method of DNA delivery still needs to be found for medical applications. DNA electrotransfer is a physical method that consists of the local application of electric pulses after the introduction of DNA into the extra cellular medium. As electrotransfer has proven to be one of the most efficient and simple non viral methods of delivery, it may provide an important alternative technique in the field of gene therapy. The present review focuses on questions related to the mechanism of DNA electrotransfer, i.e. the basic physical processes responsible for the electropermeabilisation of lipid membranes. It also addresses the current limitations of the method as applied to DNA transfer, in particular its efficiency in achieving in vitro gene expression in cells and also its potential use for in vivo gene delivery.  相似文献   

14.
Saxena A  Mozumdar S  Johri AK 《Biomaterials》2006,27(32):5596-5602
In principle, the technique of gene delivery involves taking complete or parts of genes that can code specific message and delivering them to selected cells in the body. Such a transfer of plasmid DNA into mammalian cells has posed major challenges for gene therapy. This study shows the encapsulation of a plasmid DNA in cross-linked polyvinylpyrrolidone (PVP) nanoparticles of size less than 100 nm. This kind of encapsulation provides complete protection to the plasmid DNA from external DNase environment and generates the hope that the resulting formulation can be developed into a potential vector for effective gene delivery. In order to check this potentially, the reporter gene pSVbeta-gal was encapsulated and in vitro transfection efficiency of this system was found to be nearly 80% compared to the commercially available transfection reagent Polyfect. Further, in vivo biodistribution studies indicated that this system could be used safely for effective gene delivery.  相似文献   

15.
Electroporation designates the use of short high‐voltage pulses to overcome the barrier of the cell membrane. By applying an external electric field, which just surpasses the capacitance of the cell membrane, transient and reversible breakdown of the membrane can be induced. This transient, permeabilized state can be used to load cells with a variety of different molecules, either through simple diffusion in the case of small molecules, or through electrophoretically driven processes allowing passage through the destabilized membrane – as is the case for DNA transfer. Initially developed for gene transfer, electroporation is now in use for delivery of a large variety of molecules: From ions to drugs, dyes, tracers, antibodies, and oligonucleotides to RNA and DNA. Electroporation has proven useful both in vitro, in vivo and in patients, where drug delivery to malignant tumours has been performed. Whereas initial electroporation procedures caused considerable cell damage, developments over the past decades have led to sophistication of equipment and optimization of protocols. The electroporation procedures used in many laboratories could be optimized with limited effort. This review (i) outlines the theory of electroporation, (ii) discusses factors of importance for optimization of electroporation protocols for mammalian cells, (iii) addresses particular concerns when using electroporation in vivo, e.g. effects on blood flow and considerations regarding choice of electrodes, (iv) describes DNA electrotransfer with emphasis on use in the in vivo setting, and (v) sums up data on safety and efficacy of electroporation used to enhance delivery of chemotherapy to tumours in cancer patients.  相似文献   

16.
This study focuses on the design and experimental verification of an electroporation (EP) microchip system for the transfection of zebrafish (Danio rerio). For generating suitable pulses, a circuit is used to provide voltages between 0 and 700 V, with nearly 0–3,500 V/cm electric field. In addition, a proposed EP microchip, designed in a modular fashion, is fabricated using micro electromechanical system (MEMS) technology to allow for rapid and convenient replacement of each component. A numerical simulation is carried out to analyze the uniformity and strength of the EP electric fields generated in the microchip. Trypan blue dye, water-soluble quantum dots (MUA-QDs) and genes coding for green fluorescence protein (pEGFP-N1 plasmids) were employed to verify the successful delivery and transfection of zebrafish embryos. The experimental results show that the optimum delivery rate of trypan blue dyes and MUA-QDs were respectively up to 62 and 36% by using the proposed EP system. The successfully transfected embryos with the pEGFP-N1 plasmid used exhibit green fluorescence in the zebrafish embryos. The approach in the transfection of zebrafish embryos will provide many potential usages for cellular imaging areas, gene therapy research and medical applications.  相似文献   

17.
Electrochemotherapy is an effective antitumor treatment currently applied to cutaneous and subcutaneous tumors. Electrochemotherapy of tumors located close to the heart could lead to adverse effects, especially if electroporation pulses were delivered within the vulnerable period of the heart or if they coincided with arrhythmias of some types. We examined the influence of electroporation pulses on functioning of the heart of human patients by analyzing the electrocardiogram. We found no pathological morphological changes in the electrocardiogram; however, we demonstrated a transient RR interval decrease after application of electroporation pulses. Although no adverse effects due to electroporation have been reported so far, the probability for complications could increase in treatment of internal tumors, in tumor ablation by irreversible electroporation, and when using pulses of longer durations. We evaluated the performance of our algorithm for synchronization of electroporation pulse delivery with electrocardiogram. The application of this algorithm in clinical electroporation would increase the level of safety for the patient and suitability of electroporation for use in anatomical locations presently not accessible to existing electroporation devices and electrodes.  相似文献   

18.
The efficient targeted delivery of nucleic acids in?vivo provides some of the greatest challenges to the development of genetic therapies. We aim to develop nanocomplex formulations that achieve targeted transfection of neuroblastoma tumours that can be monitored simultaneously by MRI. Here, we have compared nanocomplexes comprising self-assembling mixtures of liposomes, plasmid DNA and one of three different peptide ligands derived from ApoE, neurotensin and tetanus toxin for targeted transfection in?vitro and in?vivo. Neurotensin-targeted nanocomplexes produced the highest levels of transfection and showed a 4.7-fold increase in transfected luciferase expression over non-targeted nanocomplexes in Neuro-2A cells. Transfection of subcutaneous Neuro-2A tumours in?vivo with neurotensin-targeted nanocomplexes produced a 9.3-fold increase in gene expression over non-targeted controls. Confocal microscopy analysis elucidated the time course of DNA delivery with fluorescently labelled nanocomplex formulations in cells. It was confirmed that addition of a gadolinium lipid conjugate contrast agent allowed real time in?vivo monitoring of nanocomplex localisation in tumours by MRI, which was maintained for at least 24?h. The peptide-targeted nanocomplexes developed here allow for the specific enhancement of targeted gene therapy both in?vitro and in?vivo, whilst allowing real time monitoring of delivery with MRI.  相似文献   

19.
The nonviral gene transfer technologies include naked DNA administration, electrical or particle-mediated transfer of naked DNA, and administration of DNA-synthetic macromolecule complex vectors. Each method has its advantage, such as low immunogenicity, inexpensiveness, ease in handling, etc., but the common disadvantage is that the transfection efficiency has been relatively poor as far as conventional plasmid vectors are involved. To improve the nonviral gene transfer systems, Epstein-Barr virus (EBV)-based plasmid vectors (also referred to EBV-based episomal vectors) have been employed. These vectors contain the EBNA1 gene and oriP element that enable high transfer efficiency, strong transgene expression and long term maintenance of the expression. In the current article, I review recent preclinical gene therapy studies with the EBV plasmid vectors conducted against various diseases. For gene therapy against malignancies, drastic tumor suppression was achieved by gancyclovir administrations following an intratumoral injection with an EBV plasmid vector encoding the HSV1-TK suicide gene. Equiping the plasmid with carcinoembryonic antigen (CEA) promoter sequences enabled targeted killing of CEA-positive tumor cells, which was not accomplished by conventional plasmid vectors without the EBV genetic elements. Transfection with an apoptosis-inducing gene was also effective in inhibiting tumors. Interleukin (IL)-12 and IL-18 gene transfer, either local or systemic, induced therapeutic antitumoral immune responses including augmentation of the cytotoxic T lymphocyte (CTL) and natural killer (NK) activities, while an autologous tumor vaccine engineered to secrete Th1 cytokines via the EBV system also induced growth retardation of tumors. Non-EBV conventional plasmids were much less effective in eliciting these therapeutic outcomes. Intracardiomuscular transfer of the beta-adrenergic receptor gene induced a significant elevation in cardiac output in cardiomyopathic animals, suggesting the usefulness of the EBV system in treating heart failure. The EBV-based nonviral delivery also worked as genetic vaccine that triggered prophylactic cellular and humoral immunity against acute lethal viral infection. All the nonviral delivery vehicles so far tested showed an improved transfection rate when combined with the EBV-plasmids. Collectively, the EBV-based plasmid vectors may greatly contribute to nonviral gene therapy against a variety of disorders, including malignant, congenital, chronic and infectious diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号