首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study examines the occurence of C-fibers in lumbar ventral roots after sciatic nerve crush in neonatal and adult rats. Electron microscopic analysis showed that the number of C-fibers in the ventral root L5 increased significantly on the lesion side after neonatal but not adult sciatic nerve crush and that the number of C-fibers was higher in the ventral root L5 on the unoperated side compared to this root in normal control rats. In order to determine whether the new C-fibers in the L5 root on the lesion side are sensory or sympathetic we made immunohistochemical studies on roots from neonatally crushed rats. We found that there was no obvious lesion side/contralateral side or operated rat/control rat difference with respect to the occurence and general configuration of axons with substance P-, calcitonin gene-related peptide- or vasoactive intestinal polypeptide-like immunoreactivity. However, the occurrence of axons with tyrosine hydroxylase-like immunoreactivity appeared clearly higher in the ventral root L5 on the lesion side compared to the unoperated side in neonatally crushed rats. Moreover, these axons seemed to be more numerous also in the ventral root L5 on the unoperated side compared to normal control rats. No lesion side/contralateral side or operated rat/control rat differences were seen in the ventral root L4. We propose that the ventral root L5 is invaded by putative sympathetic C-fibers after sciatic nerve crush lesions in newborn rats.  相似文献   

2.
We explored the possibility that unilateral neurectomy of the sciatic nerve of the rat at the neonatal stage triggers sprouting of afferent fibers in the contralateral ventral root. 3 months after neonatal sciatic neurectomy, the numbers of both myelinated and unmyelinated fibers in the L5 and L3 ventral roots were counted on electron micrographic montages. Age-matched littermates were used as unoperated controls. To identify regenerating axons, electron microscopic immunohistochemistry was done on the ventral roots using antibody against growth-associated phosphoprotein (GAP-43). Neonatal sciatic neurectomy resulted in: (1) about a three-fold increase in the number of unmyelinated fibers in the contralateral L5 ventral root as compared with the unoperated control; (2) about a 25-fold increase in the number of unmyelinated fibers in the ipsilateral L5 ventral root as compared with the control; (3) 25% of the unmyelinated fibers in the contralateral L5 ventral root expressing GAP-43; and (4) no significant change in the number of unmyelinated fibers in the L3 ventral root of either side as compared with the control. The data suggest that a neonatal sciatic neurectomy of the rat triggers sprouting of unmyelinated afferent fibers in the ventral root of the contralateral as well as the ipsilateral side. The sprouting is restricted, however, to spinal segments with receive inputs from the sciatic nerve.  相似文献   

3.
The effects of ACTH4-10, a peptide fragment of corticotropin, on rat dorsal root ganglia (DRG), spinal cord and sciatic nerve were studied following a crush lesion of the sciatic nerve. The in vitro total protein synthesis rate of DRG L4, L5 and L6, measured one and three days after ipsilateral nerve crush, were not altered by various ACTH4-10 treatment regimes. Likewise, neither ACTH4-10 treatment of sham-operated rats nor in vitro exposure of control ganglia to peptide, resulted in changes in synthesis rate. Four days after crush lesion, the amounts of actin and tubulin in the ventral horn L2-L5 region of the spinal cord and of actin in DRG L5 were estimated following 2-dimensional separation. No significant effect of ACTH treatment was found. Degeneration-associated changes in the protein profiles of segments of sciatic nerve were not altered by ACTH4-10 treatment. The data are discussed in relation to the possible site of action of neurotrophic ACTH-like peptides.  相似文献   

4.
Selective motor nerve injury by lumbar 5 ventral root transection (L5 VRT) induces neuropathic pain, but the underlying mechanisms remain unknown. Previously, increased expression and secretion of brain-derived neurotrophic factor (BDNF) had been implicated in injury-induced neuropathic pain in the sensory system. In this study, as a step to examine potential roles of BDNF in L5 VRT-induced neuropathic pain, we investigated BDNF gene and protein expression in adult rats with L5 VRT. L5 VRT induced a dramatic upregulation of BDNF mRNA in intact sensory neurons in the ipsilateral L5 dorsal root ganglia (DRG), in non-neuronal cells in the ipsilateral sciatic nerve, and in motoneurons in the ipsilateral spinal cord. L5 VRT also induced de novo synthesis of BDNF mRNA in spinal dorsal horn neurons and in glial cells in the white matter of the ipsilateral spinal cord. Consistent with the mRNA expression pattern, BDNF protein was also mainly upregulated in all populations of sensory neurons in the ipsilateral L5 DRG and in spinal neurons and glia. Quantitative analysis by ELISA showed that the BDNF content in the DRG and sciatic nerve peaked on day 1 and remained elevated 14 days after L5 VRT. These results suggest that increased BDNF expression in intact primary sensory neurons and spinal cord may be an important factor in the induction of neuropathic pain without axotomy of sensory neurons.  相似文献   

5.
After application of a solution of horseradish peroxidase (HRP) around intact sciatic nerve axons in the rat, numerous HRP-labeled neurons were found in the ipsilateral L5 dorsal root ganglion and spinal cord ventral horn. These findings indicate that HRP enters intact peripheral nerve axons, and is transported retrogradely from its site of entry to their cell bodies of origin.  相似文献   

6.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a widely expressed neuropeptide that has been involved in nerve regeneration, neurone survival and nociception. In this study, the distribution of PACAP and PACAP-receptors were investigated in rat dorsal root ganglia (DRG), spinal cord and medulla oblongata at 3, 7 or 14 days following unilateral sciatic nerve transection using immunohistochemistry, 125I-PACAP-binding and in situ hybridisation. In control (contralateral side) DRG, about 30% of the nerve cell bodies (92% being small) were PACAP-immunoreactive (PACAP-IR). In the spinal cord, PACAP-IR fibres were seen in laminae I-II but not in the gracile nuclei. Following sciatic nerve transection, PACAP-IR fibres appeared in the gracile nuclei and occasionally in the deeper laminae of the dorsal horn consistent with the relative increase in larger PACAP-IR DRG neurones. However, the relative number of small PACAR-IR neurones was significantly lower on the transected side as compared to the control side suggesting a dual reaction for PACAP in the DRG following nerve injury. 125I-PACAP-binding was found in laminae I-II, around the central canal and in the gracile nuclei but not in the DRG. At 14 days after transection, 125I-PACAP-binding density was significantly reduced in the ipsilateral dorsal horn. PACAP-receptor (PAC(1)) mRNA was detected in neurones of the dorsal and ventral horn and in the gracile nuclei with no overt changes observed after transection. Very few DRG nerve cell bodies contained PAC(1) mRNA. The findings are consistent with a role for PACAP both in nociception and regeneration.  相似文献   

7.
The sciatic nerve adults rats was either cut and ligated or was crushed on one side. The response of the spinal cord to stimulation of the proximal part of the injured nerve was examined at various times after the lesion and compared to the effects of stimulating the intact nerve on the other side. During the first 10 days after nerve section the following measures were not affected: (i) the size of the input volley (compound action potential, CAP, measured on a dorsal root that carried sciatic nerve afferents (L5); (ii) the volley running in the dorsal columns; (iii) the dorsal root potential (DRP) evoked on neighbouring dorsal roots which do not contain sciatic afferents (L2 and L3); (iv) the post-synaptic volleys ascending in the spinal cord. However, by the fourth day after nerve section, there was a decrease of the DRP evoked on the ipsilateral L5 dorsal root by stimulation of the cut nerve. By 10 days this DRP had decreased by 50%. There was also a decrease in the DRP on the L5 root evoked by stimulation of the contralateral intact nerve. Crush lesions of the sciatic nerve did not produce DRP charge. Beginning 10–20 days after nerve cut, there was a decrease in the amplitude of the afferent CAP and of all the measures of central response to the afferent volley. We discuss the possibility that the loss of the DRP may be associated with a disinhibition which results in novel receptive fields which we observe in cord cells deafferented by the peripheral nerve section. The decrease of DRP and the appearance of novel receptive fields do not occur if the peripheral nerve is crushed rather than cut.  相似文献   

8.
In the study reported here we have examined the nerve regeneration that occurs over a 25-mm gap using a novel biodegradable nerve guide tube. The tube was a composite of polyglycolic acid (PGA) mesh coated with collagen which was filled with neurotrophic factors. The left sciatic nerve of ten adult cats was dissected. The stumps were connected by the tube, and fixed gap. Histological examinations carried out 4–16 months after implantation of the tube revealed regeneration of well vascularized nerve tissue. Regeneration of both myelinated, unmyelinated axons and Schwann cells was confirmed by electron microscopy 5 months after surgery. Following injection of horseradish peroxidase (HRP) into a site peripheral to the regenerated segment of the sciatic nerves, motoneurons in the ventral horn of the spinal cord, afferent terminals in the medial portion of the dorsal column of the medulla oblongata, and sensory afferent nerve terminals in the dorsal horn of the spinal cord were labelled. Electrophysiological examinations revealed restoration of evoked electromyograms and sensory evoked potentials (SEPs) recorded from the cerebral cortex as well as the spinal cord. We also found that some of the regenerated motor axons exhibited branching in the regenerated segments. In two cases, a single motoneuronal axon from the regenerated side projected to both flexors and extensors, simultaneously. Our results indicate that the PGA-collagen composite tube is a promising tool for use as a nerve guide tube in peripheral nerve regeneration.  相似文献   

9.
目的  研究单侧坐骨神经结扎对大鼠腰 4~ 5脊髓节段和相应的背根神经节 (DRGs)内VGluT1样免疫阳性反应产物表达的影响以及VGluT1通过轴浆流向外周转运的情况。 方法  采用免疫组织化学方法观察单侧坐骨神经结扎后不同时间内腰 4~ 5脊髓节段、DRGs和结扎部位的近、远侧端神经干内VGLuT1样免疫阳性反应强度的变化。结果  (1)坐骨神经结扎后第 1和第 2天 ,VGluT1样免疫阳性产物在结扎的同侧腰 4~ 5脊髓节段和相应节段的DRGs内未检测到明显变化 ;但自术后第 4天开始 ,可观察到VGluT1样免疫阳性产物的表达在上述部位逐渐减弱 ;VGluT1样免疫阳性产物表达的降低在上述部位所出现的时间和程度相平行。 (2 )结扎后第 1天即可观察到VGluT1样免疫阳性产物在坐骨神经结扎部位近侧端的表达有所升高 ,但自术后第 4天开始逐渐降低 ;而VGluT1样免疫阳性产物在坐骨神经结扎部位远侧端的表达自结扎后第 1天起就逐渐降低 ,至第 4周时已完全消失。结论  (1)DRG神经元合成VGluT1,并通过轴浆流将VGLluT1向中枢突和周围突运输 ,故腰髓内部分VGluT1样阳性末梢起源于DRG神经元 ;(2 )外周神经的损伤很易影响到DRG神经元内VGluT1的合成  相似文献   

10.
In the present study we show that, in contrast to the rat, injection of cholera toxin B-subunit (CTB) into the intact sciatic nerve of Macaca mulatta monkey gives rise to labelling of a sparse network of fibers in laminae I–II of spinal cord and of some mainly small dorsal root ganglion (DRG) neurons. Twenty days after sciatic nerve cut, the percentage of CTB-positive lumbar 5 (L5) DRG neuron profiles increased from 11% to 73% of all profiles. In the spinal cord, a marked increase in CTB labelling was seen in laminae I, II, and the dorsal part of lamina III. In the rat L5 DRGs, 18 days after sciatic nerve cut, the percentage of CTB- and CTB conjugated to horseradish peroxidase (HRP)-labelled neuron profiles increased from 45% to 81%, and from 54% to 87% of all neuron profiles, respectively. Cell size measurements in the rat showed that most of the CTB-positive neuron profiles were small in size after axotomy, whereas most were large in intact DRGs. In the rat spinal dorsal horn, a dense network of CTB-positive fibers covered the whole dorsal horn on the axotomized side, whereas CTB-labelled fibers were mainly seen in laminae III and deeper laminae on the contralateral side. A marked increase in CTB-positive fibers was also seen in the gracile nucleus. The present study shows that in both monkey and rat DRGs, a subpopulation of mainly small neurons acquires the capacity to take up CTB/CTB-HRP after axotomy, a capacity normally not associated with these DRG neurons. These neurons may transganglionically transport CTB and CTB-HRP. Thus, after peripheral axotomy, CTB and CTB-HRP are markers not only for large but also for small DRG neurons and, thus, possibly also for both myelinated and unmyelinated primary afferents in the spinal dorsal horn. These findings may lead to a reevaluation of the concept of sprouting, considered to take place in the dorsal horn after peripheral nerve injury. J. Comp. Neurol. 404:143–158, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

11.
Transection of the rat sciatic nerve induces retrograde changes in the dorsal root ganglia (DRG) neurons and in the motoneurons in the ventral grey matter of the lumbar L4-L6 spinal cord segments. In the ipsilateral dorsal grey matter and in the ipsilateral nucleus gracilis, transganglionic changes occur in the terminal fields of the centrally projecting axons of injured DRG neurons. As revealed by immunocytochemistry, the neuronal reactions were associated with a rapid proliferation and activation of microglial cells in the lumbar spinal cord as well as in the nucleus gracilis. Reactive microglial cells were detected as early as 24 h after sciatic axotomy. The microglial reaction had a maximum around day 7 postlesion and disappeared around 6 weeks after axotomy. In addition to light microscopy, activated, perineuronal microglia were identified by immuno-electron microscopy in the ventral grey matter. In the DRG, satellite cells constitutively expressed major histocompatibility complex (MHC) class II antigens. Sciatic axotomy led to a proliferation of satellite cells and an increased expression of MHC class II molecules in particular. This satellite cell reaction started 24 h after axotomy and continued to increase gradually until about 6 weeks after the lesion. Resident macrophages, detected in the DRG interstitial tissue by their expression of monocyte/macrophage markers, also reacted to sciatic axotomy. Our data suggest that (1) sciatic axotomy leads to a rapid microglial reaction in both the ventral and dorsal grey matter of the lumbar spinal cord and in the ipsilateral nucleus gracilis; (2) the immunophenotype of activated microglia following sciatic axotomy is comparable with that observed after axotomy of cranial nerves, e.g. the facial nerve; (3) satellite cells in DRG constitutively express MHC class II molecules; and (4) sciatic axotomy leads to a rapid activation of satellite cells and interstitial macrophages in the axotomized DRG.  相似文献   

12.
The effects of sciatic nerve resection on lumbar dorsal root ganglion cells and their central branches have been studied in the adult rat. A quantitative analysis of the lumbar dorsal root ganglia indicated a 15–30% cell loss on the operated side. Argyrophilia indicating transganglionic degeneration was observed in Fink-Heimer stained sections from the lumbar spinal cord and the brainstem. The areas of degeneration argyrophilia were mainly located in the medial part of the ipsilateral L2–L6 dorsal horn laminae I–IV, the tract of Lissauer, the dorsal funiculus and the gracile nucleus. A few degenerating fibers could also be observed in the ipsilateral dorsal horn laminae V and VI, and in the ipsilateral ventral horn as well as in the contralateral dorsal and the gracile nucleus. The results confirm and extend previous findings at other levels and in other species. This suggests that cell loss and transganglionic degeneration may be general phenomena affecting a substantial proportion of primary sensory neurons following peripheral nerve injury.  相似文献   

13.
A peripheral nerve injury often causes neuropathic pain but the underlying mechanisms remain obscure. Several established animal models of peripheral neuropathic pain have greatly advanced our understanding of the diverse mechanisms of neuropathic pain. A common feature of these models is primary sensory neuron injury and the commingle of intact axons with degenerating axons in the sciatic nerve. Here we investigated whether neuropathic pain could be induced without sensory neuron injury following exposure of their peripheral axons to the milieu of Wallerian degeneration. We developed a unilateral lumbar 5 ventral root transection (L5 VRT) model in adult rats, in which L5 ventral root fibers entering the sciatic nerve were sectioned in the spinal canal. This model differs from previous ones in that DRG neurons and their afferents are kept uninjured and intact afferents expose to products of degenerating efferent ventral root fibers in the sciatic nerve and the denervated muscles. We found that the L5 VRT produced rapid (24 h after transection), robust and prolonged (56 days) bilateral mechanical allodynia, to a similar extent to that in rats with L5 spinal nerve transection (L5 SNT), cold allodynia and short-term thermal hyperalgesia (14 days). Furthermore, L5 VRT led to significant inflammation as demonstrated by infiltration of ED-1-positive monocytes/macrophages in the DRG, sciatic nerve and muscle fibers. These findings demonstrated that L5 VRT produced behavioral signs of neuropathic pain with high mechanical sensitivity and thermal responsiveness, and suggested that neuropathic pain can be induced without damage to sensory neurons. We propose that neuropathic pain in this model may be mediated by primed intact sensory neurons, which run through the milieu of Wallerian degeneration and inflammation after nerve injury. The L5 VRT model manifests the complex regional pain syndrome in some human patients, and it may provide an additional dimension to dissect out the mechanisms underlying neuropathic pain.  相似文献   

14.
The retrograde transport of HRP was used to determine the status of axonal transport in the peroneal and sciatic nerves of hibernating and nonhibernating ground squirrels following crush of the peroneal nerve at 10 to 12 mm (SNS) or sciatic nerve at 33 to 35 mm (LNS) from its entrance into the extensor muscle. The ability of the proximal segment to reestablish axonal continuity and thus neuromuscular transmission was also studied. Two weeks to 3 months after nerve crush the extensor muscles were injected with HRP. We found that during hibernation no axonal transport across the site of crush was seen even after 3 months and that regeneration of the nerve during this period was minimal. Evidence of slight regeneration seen at 90 days could be due to periods of awaking of the animals during their natural hibernation cycle. In these animals HRP deposits were seen only in the nerve distal to crush, i.e., between crush site and muscle. In the nonhibernating squirrels, axoplasmic flow was reestablished at the site of injury as early as 2 weeks after crush, and HRP could be detected in the spinal cord in motoneurons of the ipsilateral ventral horn at spinal levels L3 to L5. In one hibernating animal the peroneal nerve was crushed at the distal site (SNS) and also the spinal cord was injured by dropping a weight. After nerve crush and the spinal cord injury the hibernating state could not be maintained and the animal stayed awake 22 days. The time course of regeneration of the nerve in that animal was similar to that seen in nonhibernating squirrels. After nerve crush in nonhibernating animals, reaction product was also found in sensory cell bodies of dorsal root ganglia as well as in terminals in the substantia gelatinosa of the spinal cord at the same levels. Thus, the axonal transport occurs in hibernating and non-hibernating squirrels in both sensory and motor nerve fibers. The extensor muscle fibers of the hibernating squirrels showed substantial membrane depolarization 90 days after crush. Action potentials from these fibers could be obtained from 15 to 35 days only through stimulating the nerve segment distal to the crush. Stimulation of the proximal nerve segment did not evoke muscle activity. These results demonstrate that nerve regeneration was nearly abolished during hibernation and that blockade of axonal transport continued across a region of nerve crush for the duration of the hibernating period.  相似文献   

15.
Histological and electrophysiological studies were performed on Lewis rats with acute experimental allergic encephalomyelitis (EAE) induced by inoculation with guinea-pig myelin basic protein (MBP) and Freund's adjuvant. The histological studies showed demyelination in the lumbar, sacral and coccygeal dorsal and ventral spinal roots and to a lesser extent in the spinal cord, including the dorsal root entry and ventral root exit zones. The electrophysiological studies demonstrated reduced conduction velocities between the lumbar ventral roots and sciatic nerve. Conduction block was demonstrated at the ventral root exit zone of the lumbar spinal cord but was less severe than in rats with whole spinal cord-induced acute EAE. Recordings of the M wave and H reflex elicited in a hindfoot muscle by sciatic nerve stimulation showed a normal M wave, indicating normal peripheral nerve motor conduction, but a markedly reduced H reflex. The reduction in the H reflex is accounted for by demyelination-induced nerve conduction block in the dorsal and ventral spinal roots, intramedullary ventral roots and at the dorsal root entry and ventral root exit zones of the spinal cord. Demyelination and nerve conduction abnormalities were well established in the relevant lumbar segments on the day of onset of hindlimb weakness. It is concluded that demyelination in the lumbar ventral roots and to a lesser extent in the lumbar spinal cord, including the ventral root exit zone, is an important cause of hindlimb weakness in myelin basic protein-induced acute EAE in the Lewis rat.  相似文献   

16.
The expression of growth-associated protein GAP-43 mRNA in spinal cord and dorsal root ganglion (DRG) neurons has been studied using an enzyme linked in situ hybridization technique in neonatal and adult rats. High levels of GAP-43 mRNA are present at birth in the majority of spinal cord neurons and in all dorsal root ganglion cells. This persists until postnatal day 7 and then declines progressively to near adult levels (with low levels of mRNA in spinal cord motor neurons and 2000–3000 DRG cells expressing high levels) at postnatal day 21. A re-expression of GAP-43 mRNA in adult rats is apparent, both in sciatic motor neurons and the majority of L4 and L5 dorsal root ganglion cells, 1 day after sciatic nerve section. High levels of the GAP-43 mRNA in the axotomized spinal motor neurons persist for at least 2 weeks but decline 5 weeks after sciatic nerve section, with the mRNA virtually undetectable after 10 weeks. The initial changes after sciatic nerve crush are similar, but by 5 weeks GAP-43 mRNA in the sciatic motor neurons has declined to control levels. In DRG cells, after both sciatic nerve section or crush, GAP-43 mRNA re-expression persists much longer than in motor neurons. There was no re-expression of GAP-43 mRNA in the dorsal horn of the spinal cord after peripheral nerve lesions. Our study demonstrates a similar developmental regulation in spinal cord and DRG neurons of GAP-43 mRNA. We show moreover that failure of re-innervation does not result in a maintenance of GAP-43 mRNA in axotomized motor neurons.  相似文献   

17.
The distribution of 110/140 laminin-binding protein (110/140 LBP) in the spinal dorsal root ganglia (DRG) and its regulation by partial constriction of the sciatic nerve was studied in adult rats. The cross-sectional area of neurons with 110/140 LBP-immunoreactivity (?I) showed an approximately normal frequency distribution. The 110/140 LBP-I was observed in neuronal cell bodies exclusive of the nucleus. Following sciatic nerve constriction, the 110/140 LBP-I was downregulated in the ipsilateral L4-5 DRG. DRG neurons with a cross-sectional area ≥ 1600 μm2 were preferentially affected. Neonatal capsaicin-treatment, a procedure that selectively destroys a subpopulation of DRG neurons with fine unmyelinated axons, had no effect on the reduction of 110/140 LBP in the DRG induced by sciatic nerve constriction. Western immunoblot analysis confirmed a reduction of 110/140 LBP on the side ipsilateral to the constriction. These results demonstrate a LBP within primary sensory neurons and its suppression by peripheral nerve injury. The data support a role for LBP in the adult nervous system.© 1993 WiIey-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the Unitcd States oC America.
  •   相似文献   

    18.
    It is generally accepted that mammalian spinal motor neurons return to normal after axotomy if their regenerated axons successfully reinnervate appropriate peripheral targets. However, morphological abnormalities, recently observed in spinal motor neurons examined 1 year after nerve crush injury, raise the possibility that delayed perikaryal changes occur after regeneration is complete. In order to distinguish between chronic and progressive alterations in neurons with long-term regenerated axons, rat spinal motor neurons and dorsal root ganglion cells were examined at 5 and 10 months following unilateral sciatic nerve crush. Neurons with regenerated axons were identified by retrograde labelling with horseradish peroxidase. The structural properties of neurons ipsilateral to nerve injury were compared to those of neurons from the spinal cord and dorsal root ganglia on the contralateral side and from age-matched control rats. At 5 months postcrush, the morphology of motor and sensory neurons ipsilateral to injury was comparable to that of control cells. However, several features of the motor neurons with regenerated axons distinguished them from control motor neurons at 10 months postcrush. Mean perikaryal area of ipsilateral spinal motor neurons was larger than the means for control motor neurons (p less than .001). Ipsilateral spinal motor neurons also appeared clustered within the spinal cord and had thicker dendrites. Dorsal root ganglion cells with regenerated axons were slightly larger than control cells at 10 months postcrush but they exhibited no other morphological changes. The present findings indicate that spinal motor neurons are progressively altered after their regenerated axons have reestablished functional synapses with their peripheral targets.  相似文献   

    19.
    Horseradish peroxidase (HRP) applied to one hypogastric nerve labelled sensory neurons in T11-L3 dorsal root ganglia (DRG) bilaterally and preganglionic neurons (PGN) in the spinal cord segments T13-L3. An average of 130 small DRG neurons were labelled per animal (male or female). These were concentrated in the L1 + L2 DRGs (92%). About 75% were located ipsilateral to the site of HRP application. Central projections from DRG neurons were noted throughout Lissauer's tract and in the marginal zones (medial and lateral) near the borders of Lissauer's tract. A short projection was also seen extending to the dorsolateral funiculus. More than 90% of the preganglionic neurons were located in segments L1 + L2. Most of these were found in the dorsal commissural nucleus (75%) and most of the remainder were located bilaterally in the intermediolateral columns. Somewhat more intermediolateral neurons were labelled on the ipsilateral side than on the contralateral side. There were a few intercalating neurons and a very few funicular cells. An average of 415 PGNs were labelled in the male animals and 110 in the females, demonstrating a strong sexual dimorphism. No dimorphism was found in the sensory components.  相似文献   

    20.
    To elucidate the role of the degeneration of motor and sensory fibers in neuropathic pain, we examined the pain-related behaviors and the changes of brain-derived neurotrophic factor (BDNF) in the L4/5 dorsal root ganglion (DRG) and the spinal cord after L5 ventral rhizotomy. L5 ventral rhizotomy, producing a selective lesion of motor fibers, produced thermal hyperalgesia and increased BDNF expression in tyrosine kinase A-containing small- and medium-sized neurons in the L5 DRG and their central terminations within the spinal cord, but not in the L4 DRG. Furthermore, L5 ventral rhizotomy up-regulated nerve growth factor (NGF) protein in small to medium diameter neurons in the L5 DRG and also in ED-1-positive cells in the L5 spinal nerve, suggesting that NGF synthesized in the degenerative fibers is transported to the L5 DRG and increases BDNF synthesis. On the other hand, L5 ganglionectomy, producing a selective lesion of sensory fibers, produced heat hypersensitivity and an increase in BDNF and NGF in the L4 DRG. These data indicate that degeneration of L5 sensory fibers distal to the DRG, but not motor fibers, might influence the neighboring L4 nerve fibers and induce neurotrophin changes in the L4 DRG. We suggest that these changes of neurotrophins in the intact primary afferents of neighboring nerves may be one of many complex mechanisms, which can explain the abnormal pain behaviors after nerve injury. The ventral rhizotomy and ganglionectomy models may be useful to investigate the pathophysiological mechanisms of neuropathic pain after Wallerian degeneration in motor or sensory or mixed nerve.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号