首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Volatile anesthetics produce bronchodilation in part by depleting sarcoplasmic reticulum Ca stores in airway smooth muscle (ASM). Other bronchodilatory drugs are known to act via cyclic nucleotides (cyclic adenosine 3',5'-cyclic monophosphate, cyclic guanosine 3',5'-cyclic monophosphate). Intracellular Ca regulation in ASM involves plasma membrane Ca influx, including that triggered by sarcoplasmic reticulum Ca depletion (store-operated Ca entry [SOCE]). The authors hypothesized that anesthetics and bronchodilatory agents interact in inhibiting SOCE, thus enhancing ASM relaxation. METHODS: In enzymatically dissociated porcine ASM cells imaged using fluorescence microscopy, sarcoplasmic reticulum Ca was depleted by 1 microm cyclopiazonic acid in 0 extracellular Ca, nifedipine, and potassium chloride (preventing Ca influx through L-type channels and SOCE). Extracellular Ca was rapidly reintroduced to selectively activate SOCE in the presence or absence of 1 minimum alveolar concentration (MAC) halothane, isoflurane, or sevoflurane. Anesthetic interference with SOCE regulation by cyclic nucleotides was examined by activating SOCE in the presence of (1) 1 microm acetylcholine, (2) 100 microm dibutryl cyclic adenosine 3',5'-cyclic monophosphate, or (3) 100 microm 8-bromo-cyclic guanosine 3',5'-cyclic monophosphate. RESULTS: SOCE was enhanced by acetylcholine, whereas volatile anesthetics and both cyclic nucleotides partially inhibited Ca influx. Preexposure to 1 or 2 MAC anesthetic (halothane > isoflurane > sevoflurane) inhibited SOCE. Only halothane and isoflurane inhibited acetylcholine-induced augmentation of Ca influx, and significantly potentiated cyclic nucleotide inhibition such that no influx was observed in the presence of anesthetics and cyclic nucleotides. CONCLUSIONS: These data indicate that volatile anesthetics prevent sarcoplasmic reticulum refilling by inhibiting SOCE and enhancing cyclic nucleotide blunting of Ca influx in ASM. Such interactions likely result in substantial airway relaxation in the presence of both anesthetics and bronchodilatory agents such as beta agonists or nitric oxide.  相似文献   

2.
Background: In airway smooth muscle (ASM), volatile anesthetics deplete sarcoplasmic reticulum (SR) Ca2+ stores by increasing Ca2+ "leak." Accordingly, SR replenishment becomes dependent on Ca2+ influx. Depletion of SR Ca2+ stores triggers Ca2+ influx via specific plasma membrane channels, store-operated Ca2+ channels (SOCC). We hypothesized that anesthetics inhibit SOCC triggered by increased SR Ca2+ "leak," preventing SR replenishment and enhancing ASM relaxation.

Methods: In porcine ASM cells, SR Ca2+ was depleted by cyclopiazonic acid or caffeine in 0 extracellular Ca2+, nifedipine and KCl (preventing Ca2+ influx through L-type and SOCC channels). Extracellular Ca2+ was rapidly introduced to selectively activate SOCC. After SOCC activation, SR was replenished and the protocol repeated in the presence of 1 or 2 minimum alveolar concentration halothane, isoflurane, or sevoflurane. In other cells, characteristics of SOCC and interactions between acetylcholine (Ach) and volatile anesthetics were examined.

Results: Cyclopiazonic acid produced slow SR leak, whereas the caffeine response was transient in ASM cells. Reintroduction of extracellular Ca2+ rapidly increased [Ca2+]i. This influx was insensitive to nifedipine, SKF-96365, and KBR-7943, inhibited by Ni2+ and blockade of inositol 1,4,5-triphosphate-induced SR Ca2+ release, and enhanced by ACh. Preexposure to 1 or 2 minimum alveolar concentration halothane completely inhibited Ca2+ influx when extracellular Ca2+ was reintroduced, whereas isoflurane and sevoflurane produced less inhibition. Only halothane and isoflurane inhibited ACh-induced augmentation of Ca2+ influx.  相似文献   


3.
BACKGROUND: In airway smooth muscle (ASM), volatile anesthetics deplete sarcoplasmic reticulum (SR) Ca(2+) stores by increasing Ca(2+) "leak." Accordingly, SR replenishment becomes dependent on Ca(2+) influx. Depletion of SR Ca(2+) stores triggers Ca(2+) influx via specific plasma membrane channels, store-operated Ca(2+) channels (SOCC). We hypothesized that anesthetics inhibit SOCC triggered by increased SR Ca(2+) "leak," preventing SR replenishment and enhancing ASM relaxation. METHODS: In porcine ASM cells, SR Ca was depleted by cyclopiazonic acid or caffeine in 0 extracellular Ca(2+), nifedipine and KCl (preventing Ca(2+) influx through L-type and SOCC channels). Extracellular Ca(2+) was rapidly introduced to selectively activate SOCC. After SOCC activation, SR was replenished and the protocol repeated in the presence of 1 or 2 minimum alveolar concentration halothane, isoflurane, or sevoflurane. In other cells, characteristics of SOCC and interactions between acetylcholine (Ach) and volatile anesthetics were examined. RESULTS: Cyclopiazonic acid produced slow SR leak, whereas the caffeine response was transient in ASM cells. Reintroduction of extracellular Ca(2+) rapidly increased [Ca(2+)]i. This influx was insensitive to nifedipine, SKF-96365, and KBR-7943, inhibited by Ni and blockade of inositol 1,4,5-triphosphate-induced SR Ca(2+) release, and enhanced by ACh. Preexposure to 1 or 2 minimum alveolar concentration halothane completely inhibited Ca(2+) influx when extracellular Ca(2+) was reintroduced, whereas isoflurane and sevoflurane produced less inhibition. Only halothane and isoflurane inhibited ACh-induced augmentation of Ca(2+) influx. CONCLUSION: Volatile anesthetics inhibit a Ni/La-sensitive store-operated Ca(2+) influx mechanism in porcine ASM cells, which likely helps maintain anesthetic-induced bronchodilation.  相似文献   

4.
The purpose of this study was to determine whether volatile anesthetics modify the release of endothelium-derived relaxing factor. We examined the effects of halothane and isoflurane on endothelium-dependent relaxation and 3',5'-cyclic guanosine monophosphate formation elicited by acetylcholine and ionophore A23187 in isolated rat aorta. Halothane and isoflurane (1%-2%) significantly attenuated acetylcholine-induced relaxation of the phenylephrine-contracted aorta but had no significant effect on relaxation induced by A23187, nitroprusside, and nitroglycerin. Basal and A23187 (10(-7) M)-stimulated levels of 3',5'-cyclic guanosine monophosphate were slightly lowered by halothane and isoflurane (2%). In contrast, the increase of 3',5'-cyclic guanosine monophosphate elicited by acetylcholine (10(-5) M) was significantly attenuated by halothane (2%) and abolished by isoflurane (2%). These findings indicate that halothane and isoflurane strongly inhibit the release of endothelium-derived relaxing factor elicited by acetylcholine.  相似文献   

5.
Background: Volatile anesthetics relax airway smooth muscle (ASM) by altering intracellular Ca2+ concentration ([Ca2+]i). The authors hypothesized that relaxation is produced by decreasing sarcoplasmic reticulum Ca2+ content via increased Ca2+ "leak" through both inositol trisphosphate (IP3) and ryanodine receptor channels.

Methods: Enzymatically dissociated porcine ASM cells were exposed to acetylcholine in the presence or absence of 2 minimum alveolar concentration (MAC) halothane, and IP3 levels were measured using radioimmunoreceptor assay. Other cells were loaded with the Ca2+ indicator fluo-3 and imaged using real-time confocal microscopy.

Results: Halothane increased IP3 concentrations in the presence and absence of acetylcholine. Inhibition of phospholipase C blunted the IP3 response to halothane. Exposure to 2 MAC halothane induced a transient [Ca2+]i response, suggesting depletion of sarcoplasmic reticulum Ca2+. Exposure to 20 [mu]m Xestospongin D, a cell-permeant IP3 receptor antagonist, resulted in a 45 +/- 13% decrease in the [Ca2+]i response to halothane compared with halothane exposure alone. In permeabilized cells, Xestospongin D or 0.5 mg/ml heparin decreased the [Ca2+]i response to halothane by 65 +/- 13% and 68 +/- 22%, respectively, compared with halothane alone. In both intact and permeabilized cells, 20 [mu]m ryanodine blunted the [Ca2+]i response to halothane by 32 +/- 13% and 39 +/- 21%, respectively, compared with halothane alone. Simultaneous exposure to Xestospongin D and ryanodine completely inhibited the [Ca2+]i response to halothane.  相似文献   


6.
Background: Volatile anesthetics are used to provide anesthesia to patients with heart disease under heightened adrenergic drive. The purpose of this study was to test whether volatile anesthetics can inhibit norepinephrine (NE)-induced apoptosis in cardiomyocytes.

Methods: Rat ventricular cardiomyocytes were exposed to NE (10 [mu]m) alone or in the presence of increasing concentrations of isoflurane and halothane.

Results: Isoflurane at 1.6 minimum alveolar concentration (MAC) (4 +/- 2% [SD]) and halothane at 1.2 MAC (3 +/- 2%) abolished the percentage of cardiomyocytes undergoing NE-induced apoptosis (34 +/- 8%), as assessed by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) (P < 0.0001). Lower concentrations of isoflurane and halothane markedly decreased the number of TUNEL-positive cells. Similarly, isoflurane at 1.6 MAC (5 +/- 3%) and halothane at 1.2 MAC (6 +/- 3%) prevented the increase in annexinV-staining cardiomyocytes (38 +/- 7%;P < 0.0001). These findings were corroborated with a decreased quantity of NE-induced DNA laddering by volatile anesthetics. Halothane at 1.2 MAC abolished the increase in TUNEL-positive cardiomyocytes exposed to the dihydropyridine Ca2+-channel agonist BAY K-8644 (1 [mu]m) (BAY K-8644 + halothane: 3 +/- 2%vs BAY K-8644: 34 +/- 6%;P < 0.0001) and the Ca2+-ionophore 4-bromo-A23187 (1 [mu]m) (4-bromo-A23187 + halothane: 2 +/- 2%vs 4-bromo-A23187: 13 +/- 4%;P = 0.03). NE treatment increased caspase-9 activity to 197 +/- 62% over control myocytes (P < 0.0001), whereas no caspase-8 activation was detectable. This increase in caspase-9 activity was blocked by isoflurane at 1.6 MAC and halothane at 1.2 MAC.  相似文献   


7.
BACKGROUND: Volatile anesthetic actions on intracellular Ca2+ stores (ie., sarcoplasmic reticulum [SR]) of vascular smooth muscle have not been fully elucidated. METHODS: Using isometric force recording method and fura-2 fluorometry, the actions of four volatile anesthetics on SR were studied in isolated endothellum-denuded rat mesenteric arteries. RESULTS: Halothane (> or = 3%) and enflurane (> or = 3%), but not isoflurane and sevoflurane, increased the intracellular Ca2+ concentration ([Ca2+]i) in Ca2+-free solution. These Ca2+-releasing actions were eliminated by procaine. When each anesthetic was applied during Ca2+ loading, halothane (> or = 3%) and enflurane (5%), but not isoflurane and sevoflurane, decreased the amount of Ca2+ in the SR. However, if halothane or enflurane was applied with procaine during Ca2+ loading, both anesthetics increased the amount of Ca2+ in the SR. The caffeine-induced increase in [Ca2+], was enhanced in the presence of halothane (> or = 1%), enflurane (> or = 1%), and isoflurane (> or = 3%) but was attenuated in the presence of sevoflurane (> or = 3%). The norepinephrine-induced increase in [Ca2+], was enhanced only in the presence of sevoflurane (> or = 3%). Not all of these anesthetic effects on the [Ca2+]i were parallel with the simultaneously observed anesthetic effects on the force. CONCLUSIONS: In systemic resistance arteries, the halothane, enflurane, isoflurane, and sevoflurane differentially influence the SR functions. Both halothane and enflurane cause Ca2+ release from the caffeine-sensitive SR. In addition, both anesthetics appear to have a stimulating action on Ca2+ uptake in addition to the Ca2+-releasing action. Halothane, enflurane, and isoflurane all enhance, while sevoflurane attenuates, the Ca2+-induced Ca2+-release mechanism. However, only sevoflurane stimulates the inositol 1,4,5-triphosphate-induced Ca2+ release mechanism. Isoflurane and sevoflurane do not stimulate Ca2+ release or influence Ca2+ uptake.  相似文献   

8.
BACKGROUND: Although malignant hyperthermia after application of sevoflurane has been reported, little is known about its action on intracellular calcium homeostasis of skeletal muscle. The authors compared the effect of sevoflurane with that of isoflurane and halothane on Ca2+ release of mammalian sarcoplasmic reticulum and applied a novel method to quantify Ca2+ turnover in permeabilized skeletal muscle fibers. METHODS: Liquid sevoflurane, isoflurane, and halothane at 0.6 mM, 3.5 mM, and 7.6 mm were diluted either in weakly calcium buffered solutions with no added Ca2+ (to monitor Ca2+ release) or in strongly Ca2+ buffered solutions with [Ca2+] values between 3 nM and 24.9 microm for [Ca+]-force relations. Measurements were taken on single saponin skinned muscle fiber preparations of BALB/c mice. Individual [Ca2+]force relations were characterized by the Ca2+ concentration at half-maximal force that indicates the sensitivity of the contractile proteins and by the steepness. Each force transient was transformed directly into a Ca2+ transient with respect to the individual [Ca2+]-force relation of the fiber. RESULTS: At 0.6 mM, single force transients induced by sevoflurane were lower compared with equimolar concentrations of isoflurane and halothane (P < 0.05). Similarly, calculated peak Ca2+ transients of sevoflurane were lower than those induced by equimolar halothane (P < 0.05). The Ca2+ concentrations at half maximal force were decreased after the addition of sevoflurane, isoflurane, and halothane in a concentration-dependent manner (P < 0.05). CONCLUSION: Whereas sevoflurane, isoflurane, and halothane similarly increase the Ca2+ sensitivity of the contractile apparatus in skeletal muscle fibers, 0.6 mM sevoflurane induces smaller Ca2+ releases from the sarcoplasmic reticulum than does equimolar halothane.  相似文献   

9.
Background: Volatile anesthetic actions on intracellular Ca2+ stores (i.e., sarcoplasmic reticulum [SR]) of vascular smooth muscle have not been fully elucidated.

Methods: Using isometric force recording method and fura-2 fluorometry, the actions of four volatile anesthetics on SR were studied in isolated endothelium-denuded rat mesenteric arteries.

Results: Halothane (>= 3%) and enflurane (>= 3%), but not isoflurane and sevoflurane, increased the intracellular Ca2+ concentration ([Ca2+]i) in Ca2+-free solution. These Ca2+-releasing actions were eliminated by procaine. When each anesthetic was applied during Ca2+ loading, halothane (>= 3%) and enflurane (5%), but not isoflurane and sevoflurane, decreased the amount of Ca2+ in the SR. However, if halothane or enflurane was applied with procaine during Ca2+ loading, both anesthetics increased the amount of Ca2+ in the SR. The caffeine-induced increase in [Ca2+]i was enhanced in the presence of halothane (>= 1%), enflurane (>= 1%), and isoflurane (>= 3%) but was attenuated in the presence of sevoflurane (>= 3%). The norepinephrine-induced increase in [Ca2+]i was enhanced only in the presence of sevoflurane (>= 3%). Not all of these anesthetic effects on the [Ca2+]i were parallel with the simultaneously observed anesthetic effects on the force.  相似文献   


10.
BACKGROUND: The aim of this study was to describe and compare the effects of isoflurane, sevoflurane, and halothane at selected concentrations (i.e., concentrations that led to equivalent depression of the electrically evoked Ca2+ transient) on myofilament Ca2+ sensitivity, sarcoplasmic reticulum (SR) Ca2+ content, and the fraction of SR Ca2+ released during electrical stimulation (fractional release) in rat ventricular myocytes. METHODS: Single rat ventricular myocytes loaded with fura-2 were electrically stimulated at 1 Hz, and the Ca2+ transients and contractions were recorded optically. Cells were exposed to each anesthetic for 1 min. Changes in myofilament Ca2+ sensitivity were assessed by comparing the changes in the Ca2+ transient and contraction during exposure to anesthetic and low Ca2+. SR Ca2+ content was assessed by exposure to 20 mm caffeine. RESULTS: Isoflurane and halothane caused a depression of myofilament Ca2+ sensitivity, unlike sevoflurane, which had no effect on myofilament Ca2+ sensitivity. All three anesthetics decreased the electrically stimulated Ca2+ transient. SR Ca2+ content was reduced by both isoflurane and halothane but was unchanged by sevoflurane. Fractional release was reduced by both isoflurane and sevoflurane, but was unchanged by halothane. CONCLUSIONS: Depressed myofilament Ca2+ sensitivity contributes to the negative inotropic effects of isoflurane and halothane but not sevoflurane. The decrease in the Ca2+ transient is either responsible for or contributory to the negative inotropic effects of all three anesthetics and is either primarily the result of a decrease in fractional release (isoflurane and sevoflurane) or primarily the result of a decrease in SR Ca2+ content (halothane).  相似文献   

11.
Background: The surface membrane Ca2+-adenosine triphosphatase and Na+-Ca2+ exchanger transport Ca2+ out of the ventricular myocyte, competing for cytosolic Ca2+ with the Ca2+-adenosine triphosphatase located in the sarcoplasmic reticulum. In this study the authors examined the effects of halothane, isoflurane, and sevoflurane on Ca2+ extrusion from the cell and sarcoplasmic reticulum Ca2+ content.

Methods: Single myocytes from the right ventricular free wall of adult male ferret hearts were isolated, loaded with the acetoxymethyl ester of the fluorescent Ca2+ indicator fluo-3, and electrically stimulated at 0.25 Hz to reach a steady state level of intracellular Ca2+ stores. The effects of halothane, isoflurane, and sevoflurane (1 minimum alveolar concentration) on the peak and rate of decline of the Ca2+ transient induced by 10 mm caffeine were examined. The peak was used as an index of sarcoplasmic reticulum Ca2+ content, and the rate of decline was used to monitor Ca2+ extrusion from the cell.

Results: During control conditions, halothane reduced the Ca2+ content of the sarcoplasmic reticulum, isoflurane maintained it, and sevoflurane caused it to increase. Halothane did not affect Ca2+ extrusion from the cell, but both isoflurane and sevoflurane inhibited it. When Na+-Ca2+ exchange was inhibited by ionic substitution, isoflurane and sevoflurane still reduced the rate of Ca2+ efflux from the cell. However, when the sarcolemmal Ca2+-adenosine triphosphatase was inhibited by carboxyeosin, isoflurane and sevoflurane had no effect on Ca2+ efflux.  相似文献   


12.
BACKGROUND: Halothane and isoflurane depress myocardial contractility by decreasing transsarcolemmal Ca2+ influx and Ca2+ release from the sarcoplasmic reticulum. Decreases in Ca2+ sensitivity of the contractile proteins have been shown in skinned cardiac fibers, but the relative importance of this effect in intact living myocardium is unknown. The aims of this study were to assess whether halothane and isoflurane decrease myofibrillar Ca2+ sensitivity in intact, living cardiac fibers and to quantify the relative importance of changes in myofibrillar Ca2+ sensitivity versus changes in myoplasmic Ca2+ availability caused by these anesthetics. METHODS: The effects of halothane and isoflurane (0-1.5 times the minimum alveolar concentration (MAC) in three equal increments) on isometric and isotonic variables of contractility and on the intracellular calcium transient were assessed in isolated ferret right ventricular papillary muscle microinjected with the Ca2+-regulated photoprotein aequorin. The intracellular calcium transient was analyzed in the context of a multicompartment model of intracellular Ca2+ buffers in mammalian ventricular myocardium. RESULTS: Halothane and isoflurane decreased contractility, time-to-peak force, time to half-isometric relaxation, and intracellular Ca2+ transient in a reversible, concentration-dependent manner. Halothane, but not isoflurane, slowed the increase and the decrease of the intracellular Ca2+ transient. Increasing extracellular Ca2+ in the presence of anesthetic to produce peak force equal to control values increased intracellular Ca2+ to values higher than control values. CONCLUSIONS: Halothane decreases myoplasmic Ca2+ availability more than isoflurane; halothane and isoflurane decrease myofibrillar Ca2+ sensitivity to the same extent; in halothane at 0.5 MAC and isoflurane at 1.0 MAC, the decrease in Ca2+ sensitivity is already fully apparent; halothane decreases intracellular Ca2+ availability more than myofibrillar Ca2+ sensitivity; and isoflurane decreases myoplasmic Ca2+ availability and Ca2+ sensitivity to the same extent, except at 1.5 times the MAC, which decreases Ca2+ availability more.  相似文献   

13.
Background: Although malignant hyperthermia after application of sevoflurane has been reported, little is known about its action on intracellular calcium homeostasis of skeletal muscle. The authors compared the effect of sevoflurane with that of isoflurane and halothane on Ca2+ release of mammalian sarcoplasmic reticulum and applied a novel method to quantify Ca2+ turnover in permeabilized skeletal muscle fibers.

Methods: Liquid sevoflurane, isoflurane, and halothane at 0.6 mM, 3.5 mM, and 7.6 mM were diluted either in weakly calcium buffered solutions with no added Ca2+ (to monitor Ca2+ release) or in strongly Ca2+ buffered solutions with [Ca2+] values between 3 nM and 24.9 [micro sign]M for [Ca2+]-force relations. Measurements were taken on single saponin skinned muscle fiber preparations of BALB/c mice. Individual [Ca2+]-force relations were characterized by the Ca2+ concentration at half-maximal force that indicates the sensitivity of the contractile proteins and by the steepness. Each force transient was transformed directly into a Ca (2+) transient with respect to the individual [Ca2+]-force relation of the fiber.

Results: At 0.6 mM, single force transients induced by sevoflurane were lower compared with equimolar concentrations of isoflurane and halothane (P < 0.05). Similarly, calculated peak Ca2+ transients of sevoflurane were lower than those induced by equimolar halothane (P < 0.05). The Ca2+ concentrations at half maximal force were decreased after the addition of sevoflurane, isoflurane, and halothane in a concentration-dependent manner (P < 0.05).  相似文献   


14.
Background: Many inhalation anesthetics at clinically relevant concentrations inhibit plasma membrane Ca2+-adenosine triphosphatase (PMCA) ion pumping in brain synaptic membranes and in cultured cells of neural origin. In this study, the authors investigated the effect of inhalation anesthetics on cytosolic calcium homeostasis in cortical neurons maintained at physiologic and room temperatures and on cortical neurons and pheochromocytoma cells with antisense blockade of specific PMCA isoforms.

Methods: Using Ca2+-specific confocal microfluorimetry, the anesthetic effects on Ca2+ dynamics were examined in mouse embryonic cortical neurons in association with ligand-stimulated Ca2+ influx. Studies were done at 21 [degree sign]C and 37 [degree sign]C. Mouse embryonic cortical neurons with oligodeoxyribonucleotide blockade of PMCA2 expression and transfected rat pheochromocytoma cells with blocked expression of PMCA1 were also examined.

Results: Baseline and poststimulation peak cytosolic calcium concentrations ([Ca2+]i) were increased, and Ca2+ clearance was delayed in cells exposed at 37 [degree sign]C, but not at 21 [degree sign]C, to concentrations 相似文献   


15.
Hannon JD  Cody MJ 《Anesthesiology》2002,96(6):1457-1464
BACKGROUND: The surface membrane Ca(2+)-adenosine triphosphatase and Na(+)-Ca(2+) exchanger transport Ca(2+) out of the ventricular myocyte, competing for cytosolic Ca(2+) with the Ca(2+)-adenosine triphosphatase located in the sarcoplasmic reticulum. In this study the authors examined the effects of halothane, isoflurane, and sevoflurane on Ca(2+) extrusion from the cell and sarcoplasmic reticulum Ca(2+) content. METHODS: Single myocytes from the right ventricular free wall of adult male ferret hearts were isolated, loaded with the acetoxymethyl ester of the fluorescent Ca(2+) indicator fluo-3, and electrically stimulated at 0.25 Hz to reach a steady state level of intracellular Ca(2+) stores. The effects of halothane, isoflurane, and sevoflurane (1 minimum alveolar concentration) on the peak and rate of decline of the Ca(2+) transient induced by 10 mm caffeine were examined. The peak was used as an index of sarcoplasmic reticulum Ca(2+) content, and the rate of decline was used to monitor Ca(2+) extrusion from the cell. RESULTS: During control conditions, halothane reduced the Ca(2+) content of the sarcoplasmic reticulum, isoflurane maintained it, and sevoflurane caused it to increase. Halothane did not affect Ca(2+) extrusion from the cell, but both isoflurane and sevoflurane inhibited it. When Na(+)-Ca(2+) exchange was inhibited by ionic substitution, isoflurane and sevoflurane still reduced the rate of Ca(2+) efflux from the cell. However, when the sarcolemmal Ca(2+)-adenosine triphosphatase was inhibited by carboxyeosin, isoflurane and sevoflurane had no effect on Ca(2+) efflux. CONCLUSIONS: These results suggest that isoflurane and sevoflurane inhibit Ca(2+) transport from the cell via the sarcolemmal Ca(2+)-adenosine triphosphatase. This effect seems to counteract the decrease in Ca(2+) influx through sarcolemmal L-type Ca(2+) channels and maintains sarcoplasmic reticulum Ca(2+) stores.  相似文献   

16.
The possibility that the negative inotropic effect of isoflurane is primarily due to a competitive inhibition of the influx of extracellular Ca2+ with little effect on the availability of Ca2+ stored intracellularly in the sarcoplasmic reticulum was examined in rabbit papillary muscle. The negative inotropic effect of isoflurane (1.4%) on steady state contractions (primarily dependent on the influx of extracellular Ca2+) was significantly greater than that on potentiated-state contractions (primarily dependent on Ca2+ released from the sarcoplasmic reticulum). In previous work from this laboratory we found that halothane has an opposite effect in this regard. Increasing stimulation frequency in the presence of isoproterenol (0.1, 1 microM) completely reversed the negative inotropic effect of isoflurane (1.4%) but not that of halothane (0.6%). These results suggest that isoflurane inhibits Ca2+ influx with little effect on the availability of activator Ca2+ stored in and released from the sarcoplasmic reticulum, and that the effect of isoflurane but not that of halothane can be effectively counteracted by conditions that are known to increase Ca2+ influx in the absence of an anesthetic. These properties of isoflurane may in part account for the minimal myocardial depressant effect of the anesthetic on the intact heart in the presence of a functional autonomic system.  相似文献   

17.
Background: The aim of this study was to describe and compare the effects of isoflurane, sevoflurane, and halothane at selected concentrations (i.e., concentrations that led to equivalent depression of the electrically evoked Ca2+ transient) on myofilament Ca2+ sensitivity, sarcoplasmic reticulum (SR) Ca2+ content, and the fraction of SR Ca2+ released during electrical stimulation (fractional release) in rat ventricular myocytes.

Methods: Single rat ventricular myocytes loaded with fura-2 were electrically stimulated at 1 Hz, and the Ca2+ transients and contractions were recorded optically. Cells were exposed to each anesthetic for 1 min. Changes in myofilament Ca2+ sensitivity were assessed by comparing the changes in the Ca2+ transient and contraction during exposure to anesthetic and low Ca2+. SR Ca2+ content was assessed by exposure to 20 mm caffeine.

Results: Isoflurane and halothane caused a depression of myofilament Ca2+ sensitivity, unlike sevoflurane, which had no effect on myofilament Ca2+ sensitivity. All three anesthetics decreased the electrically stimulated Ca2+ transient. SR Ca2+ content was reduced by both isoflurane and halothane but was unchanged by sevoflurane. Fractional release was reduced by both isoflurane and sevoflurane, but was unchanged by halothane.  相似文献   


18.
To clarify the mechanism by which volatile anesthetics initiate malignant hyperthermia (MH), we examined the effect of halothane, isoflurane, and enflurane on Ca2+ uptake and release by sarcoplasmic reticulum vesicles isolated from MH-susceptible (MHS) and normal pig muscle. Clinical concentrations of these anesthetics (0.1-0.5 mM) stimulated sarcoplasmic reticulum ATP-dependent Ca2+ uptake (maximal at approximately 4 mM), whereas 10-20 times the clinical anesthetic concentration inhibited Ca2+ uptake. There was no significant difference between MHS and normal sarcoplasmic reticulum in any aspect of Ca2+ uptake. Ca2+ release from 45Ca(2+)-filled sarcoplasmic reticulum vesicles in a 10(-8) M Ca(2+)-containing medium (pH 7.0) was significantly stimulated at clinical concentrations of all three volatile anesthetics (anesthetic concentration for the 50% stimulation of Ca2+ release = 0.096-0.22 mM); however, the rate constant for Ca2+ release from MHS sarcoplasmic reticulum was in all cases significantly greater than that from normal sarcoplasmic reticulum. Furthermore, 0.5 mM halothane had no effect on Ca2+ release from normal sarcoplasmic reticulum at pH values less than 6.8, although it could still significantly stimulate Ca2+ release from MHS sarcoplasmic reticulum even at pH 6.4; similar results were obtained for isoflurane and enflurane. These studies thus demonstrate that the interaction of volatile anesthetics with the sarcoplasmic reticulum Ca(2+)-release channel is altered in MHS porcine muscle such that the channel may be activated even at a Ca2+ concentration or pH that would be expected to maintain the channel in the closed state.  相似文献   

19.
Background: In neonatal heart, plasma membrane Na+-Ca2+ exchange (NCX) and Ca2+ influx channels play greater roles in intracellular Ca2+ concentration [Ca2+]i regulation compared with the sarcoplasmic reticulum (SR). In neonatal (aged 0-3 days) and adult (aged 84 days) rat cardiac myocytes, we determined the mechanisms underlying greater sensitivity of the neonatal myocardium to inhibition by volatile anesthetics.

Methods: The effects of 1 and 2 minimum alveolar concentration halothane and sevoflurane on Ca2+ influx during electrical stimulation in the presence or blockade of NCX and the Ca2+ channel agonist BayK8644 were examined. [Ca2+]i responses to caffeine were used to examine anesthetic effects on SR Ca2+ release (via ryanodine receptor channels) and reuptake (via SR Ca2+ adenosine triphosphatase). Ca2+ influx via NCX was examined during rapid activation in the presence of the reversible SR Ca2+ adenosine triphosphatase inhibitor cyclopiazonic acid and ryanodine to inhibit the SR. Efflux mode NCX was examined during activation by extracellular Na+ in the absence of SR reuptake.

Results: Intracellular Ca2+ concentration transients during electrical stimulation were inhibited to a greater extent in neonates by halothane (80%) and sevoflurane (50%). Potentiation of [Ca2+]i responses by BayK8644 (160 and 120% control in neonates and adults, respectively) was also blunted by anesthetics to a greater extent in neonates. [Ca2+]i responses to caffeine in neonates (~30% adult responses) were inhibited to a lesser extent compared with adults (35 vs. 60% by halothane). Both anesthetics inhibited Ca2+ reuptake at 2 minimum alveolar concentration, again to a greater extent in adults. Reduction in NCX-mediated influx was more pronounced in neonates (90%) compared with adults (65%) but was comparable between anesthetics. Both anesthetics also reduced NCX-mediated efflux to a greater extent in neonates. Potentiation of NCX-mediated Ca2+ efflux by extracellular Na+ and NCX-mediated Ca2+ influx by intracellular Na+ were both prevented by halothane, especially in neonates.  相似文献   


20.
BACKGROUND: In neonatal heart, plasma membrane Na+-Ca2+ exchange (NCX) and Ca2+ influx channels play greater roles in intracellular Ca2+ concentration [Ca2+]i regulation compared with the sarcoplasmic reticulum (SR). In neonatal (aged 0-3 days) and adult (aged 84 days) rat cardiac myocytes, we determined the mechanisms underlying greater sensitivity of the neonatal myocardium to inhibition by volatile anesthetics. METHODS: The effects of 1 and 2 minimum alveolar concentration halothane and sevoflurane on Ca2+ influx during electrical stimulation in the presence or blockade of NCX and the Ca2+ channel agonist BayK8644 were examined. [Ca2+]i responses to caffeine were used to examine anesthetic effects on SR Ca2+ release (via ryanodine receptor channels) and reuptake (via SR Ca2+ adenosine triphosphatase). Ca2+ influx via NCX was examined during rapid activation in the presence of the reversible SR Ca2+ adenosine triphosphatase inhibitor cyclopiazonic acid and ryanodine to inhibit the SR. Efflux mode NCX was examined during activation by extracellular Na+ in the absence of SR reuptake. RESULTS: Intracellular Ca2+ concentration transients during electrical stimulation were inhibited to a greater extent in neonates by halothane (80%) and sevoflurane (50%). Potentiation of [Ca2+]i responses by BayK8644 (160 and 120% control in neonates and adults, respectively) was also blunted by anesthetics to a greater extent in neonates. [Ca2+]i responses to caffeine in neonates ( approximately 30% adult responses) were inhibited to a lesser extent compared with adults (35 vs. 60% by halothane). Both anesthetics inhibited Ca2+ reuptake at 2 minimum alveolar concentration, again to a greater extent in adults. Reduction in NCX-mediated influx was more pronounced in neonates (90%) compared with adults (65%) but was comparable between anesthetics. Both anesthetics also reduced NCX-mediated efflux to a greater extent in neonates. Potentiation of NCX-mediated Ca2+ efflux by extracellular Na+ and NCX-mediated Ca2+ influx by intracellular Na+ were both prevented by halothane, especially in neonates. CONCLUSIONS: These data indicate that greater myocardial depression in neonates induced by volatile anesthetics may be mediated by inhibition of NCX and Ca2+ influx channels rather than inhibition of SR Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号