首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet activation by thrombin is relevant to arterial thrombosis, therefore it is an attractive target for the development of new antithrombotic drugs. In the 1970s the platelet membrane complex glycoprotein (GP) Ib-V-IX was shown to have a high affinity binding site for thrombin on GPIbα and a substrate cleaved by thrombin, GPV. For several years it was considered to be involved in platelet activation by thrombin. The discovery of the protease activated receptors (PARs) in 1991 was a major breakthrough in the field. The first member of this family of receptors to be discovered was PAR1, a seven transmembrane G-protein coupled receptor which, upon cleavage by thrombin, unmasks a new amino-terminus able to bind intramolecularly to PAR1 itself thus inducing signaling. On human platelets PAR1 and, later PAR4, were demonstrated to mediate most of the platelet responses to thrombin. However, after the discovery of PARs, different groups demonstrated that GPIbα is required to stimulate a full platelet activation by thrombin. A model where thrombin binds to the GPIb receptor prior to proteolysis of the PAR receptors was supported by several lines of evidence. A role for GPV as inhibitor of GPIbα signaling has been shown by using GPV knock-out mice. Crystallographic data suggested that thrombin bound to GPIbα might be able to interact with other GPIbα molecules on the same or other platelets, shedding light on a new role for thrombin binding to GPIbα. Finally, anti-PAR1 molecules were developed which are now in phase II and III clinical studies as antithrombotic drugs.  相似文献   

2.
Thrombin is a pivotal enzyme formed in the coagulation cascade and an important and potent platelet activator. The two protease-activated thrombin receptors on human platelets are denoted PAR1 and PAR4. The physiological relevance of PAR4 is still unclear, as both aggregation and secretion can be accomplished by PAR1 activation alone. In the present study we have investigated the role of PARs in platelet activation, blood coagulation, clot elasticity and fibrinolysis. Flow cytometry, free oscillation rheometry and thrombin generation measurements were used to analyze blood or platelet-rich plasma from healthy individuals. Maximum PAR1 activation with the peptide SFLLRN gave fewer fibrinogen-binding platelets with lower mean fluorescent intensity than maximum PAR4 activation with AYPGKF. Inhibition of any of the receptors prolonged clotting times. However, PAR1 is more important for fibrinolysis; inhibition of this receptor prolonged all the steps in the fibrinolytic process. Clot elasticity decreased significantly when the PAR4 receptor was inhibited. In the thrombin generation measurements, PAR4 inhibition delayed the thrombin generation start and peak, but did not affect the total amount of thrombin generated. PAR1 inhibition had no significant impact on thrombin generation. We found that PAR4 is most likely activated by low concentrations of thrombin during the initial phase of thrombin generation and is of importance to the clotting time. Furthermore, we suggest that the PAR4 receptor may have a physiological role in the stabilisation of the coagulum.  相似文献   

3.
Thrombin is a coagulation protease that activates platelets, endothelial cells, leukocytes and mesenchymal cells. Thrombin signaling is mediated at least in part by protease-activated receptors (PARs). As little is known about the in vivo regulation of PAR1, this study aimed to characterize the effects of systemic thrombin formation during human endotoxemia on the regulation of PAR1 and the associated responsiveness of human platelets to thrombin receptor activating peptide (TRAP). Endotoxin (2 ng/kg) was infused into 40 healthy men to study the regulation of PAR1 in systemic human inflammation. The SPAN12 antibody was used to determine the in vivo regulation of PAR1. To measure whether modulation of the PAR1 receptor may be associated with altered platelet reactivity, whole blood was stimulated with TRAP ex vivo. Thrombin generation was determined by prothrombin (F(1+2)) fragment. F(1+2) levels increased almost 9-fold from 0.5+/-0.1 nmol/L to 4.5+/-1.9 nmol/L at 4 h (p<0.001). PAR1 decreased by approximately 8% (p<0.001) within 2 h after endotoxin infusion and stayed at those levels until 6 h. Concomitantly, TRAP induced P-selectin expression maximally decreased by 18% (p<0.001) at 6 h. In conclusion, PAR1 expression is down-regulated on platelets during systemic thrombin formation induced by inflammation in humans which results in decreased responsiveness to subsequent stimulation of the PAR1 receptor.  相似文献   

4.
Thrombin is a multifunctional serine protease generated at the site of vascular injury that transforms fibrinogen into fibrin, activates blood platelets and elicits multiple effects on a variety of cell types including endothelial cells, vascular smooth muscle cells (VSMC), monocytes, T lymphocytes and fibroblasts. Cellular effects of thrombin are mediated by protease-activated receptors (PARs), members of the G protein-coupled receptors that carry their own ligand which remains cryptic until unmasked by proteolytic cleavage. Thrombin signalling in platelets contributes to haemostasis and thrombosis. In normal arteries PARs are mainly expressed in endothelial cells, while their expression in VSMC is limited. Endothelial PARs participate in the regulation of vascular tone, vascular permeability and endothelial secretory activity while in VSMC they mediate contraction, migration, proliferation, hypertrophy and production of extracellular matrix. PARs contribute to the pro-inflammatory phenotype observed in endothelial dysfunction and their up-regulation in VSMC seems to be a key element in the pathogenesis of atherosclerosis and restenosis. In the last years a myriad of studies have emphasized the critical role of PAR signalling in thrombin mediated effects in haemostasis, inflammation, cancer and embryonic development. Lately, PARs have become a therapeutic target to inhibit platelet aggregation and thrombosis. Early data from a clinical trial (TRA-PCI) to evaluate safety and efficacy of a potent new oral thrombin receptor antagonist (TRA) have promisingly indicated that overall TRA treatment reduces adverse event rates without an increase in bleeding risk. In this paper we review cellular responses triggered by thrombin and their implication in vascular pathophysiology.  相似文献   

5.
In vivo platelet activation results are often confounded by activation induced in vitro during the preparative procedures. We measured ex vivo (basal) and in vitro (thrombin-induced) platelet activation in sodium citrate, ethylenediaminetetraacetic acid (EDTA), and Citrate Theophylline Dipyridamole Adenosine (CTAD) whole blood specimens. Determinations were made by measurements of platelet density (mean platelet component: MPC concentration) on the Advia 120 Hematology System. The MPC has been previously shown to correlate with a fluorescence flow cytometric method, also determined in this study, using the surface expression of CD62P. Moreover, platelet shape and structure changes in EDTA and CTAD anticoagulated whole blood specimens were characterized by transmission electron microscopy (TEM). Observations made using the Advia 120 Hematology System platelet density parameter, MPC, in the absence of thrombin were 25.7 +/- 0.9 g/dl, 27.9 +/- 0.9 g/dl and 24.8 +/- 1.2 g/dl in sodium citrate, EDTA and CTAD whole blood specimens, respectively. Addition of thrombin induced a significant change in platelet MPC for sodium citrate (21.9 +/- 1.9 g/dl; p<0.0001) and EDTA (23.2 +/- 0.9 g/dl; p<0.0001) whole blood specimens. In contrast, thrombin had no effect on MPC measured in whole blood taken into CTAD tubes. In vitro fluorescence flow cytometric platelet activation experiments measuring the percentage of platelets expressing anti-CD62P showed increase in sodium citrate specimens from 9.2 +/- 7.0 to 55.5 +/- 23.1 % (p<0.0001) and in EDTA specimens from 1.9 +/- 1.7 to 64.6 +/- 12.4 % (p<0.0001) after addition of thrombin. However, in blood taken into CTAD tubes, there was no significant change. Studies on platelets isolated from whole blood in CTAD showed activation by thrombin indicating that platelets in CTAD, while protected in its presence remained functional upon its removal. When observed by TEM over time, platelets in EDTA appear more activated and contain fewer granules than platelets in CTAD. We conclude that CTAD demonstrates in vitro platelet activation inhibition and may be useful in stabilizing ex vivo platelet activation. The novel platelet activation parameter, MPC, measured by an automated routine hematology system, using customized proprietary software, may be used in conjunction with CTAD, a stabilizing anticoagulant, to measure the ex vivo platelet activation state in whole blood specimens. TEM studies verify shape modifications and simultaneous retention of intracellular granules at early post-venipuncture time periods in CTAD specimens.  相似文献   

6.
Introduction: In vivo, initial platelet activation is likely caused by platelet contacts with collagen in the subendothelium or from the small amounts of thrombin formed by the tissue factor/factor VIIa complex. Our aim was to study the coagulative role of ADP released by the platelets after activation with strong stimuli such as collagen and/or thrombin, and the relative importance of the platelet ADP receptors P2Y1 and P2Y12. Materials and methods: We used 10 Hz free oscillation rheometry to measure clotting time, clot elasticity and fibrinolysis resistance of non-anticoagulated whole blood. The platelets were activated with a collagen-related peptide (CRP), with the PAR1 thrombin receptor activating peptide TRAP-6 or by thrombin, the latter generated by small amounts of thromboplastin. To inhibit the platelet ADP receptors, we used the P2Y1 antagonist MRS2179 and the P2Y12 antagonist AR-C69931MX. Results: Both antagonists significantly retarded the clotting induced by CRP. The effects were most pronounced with AR-C69931MX. For TRAP-6, the same trend was seen, but the retardation was only significant with AR-C69931MX. Clotting induced by small amounts of thromboplastin was not affected by any ADP-receptor antagonist. Addition of both antagonists did not change the results as compared to samples with AR-C69931MX alone. Nor did the antagonists, one at a time or in concert, effect fibrinolysis or the elastic properties of the clot. Conclusion: We conclude that ADP-receptor inhibition prolongs the clotting time for whole blood activated by CRP, but that it does not affect the properties of the subsequently formed coagulum.  相似文献   

7.
There are two protease-activated receptors (PARs), PAR1 and PAR4, in human platelets. It has been suggested that PAR1 mediates platelet responses to low concentrations of thrombin, whereas PAR4 mediates signaling only at high concentrations. In the present study, we used a selective PAR4 blocker, YD-3, to investigate the role of PAR4 in thrombin-induced thromboxane formation in human platelets. YD-3 completely prevented thromboxane production by either a low concentration of thrombin (0.1 U/ml) or the PAR4 agonist peptide GYPGKF. In contrast, YD-3 did not affect thromboxane production caused by the PAR1 agonist peptide SFLLRN, collagen or arachidonic acid. YD-3 also decreased [(3) H]arachidonic acid release from thrombin-stimulated platelets. Moreover, desensitization of platelets with GYPGKF prevented low thrombin-induced thromboxane formation. The decreased thromboxane production by YD-3 is linked to inhibition of calcium influx in thrombin-stimulated platelets. These results suggest that PAR4 plays an important role in the regulation of thromboxane formation in platelets responding to thrombin through prolonged elevation of [Ca(2+)](i) and activation of phospholipase A(2). These data also indicate that PAR4 can be activated by relatively low concentrations of thrombin in human platelets. The selective inhibition of thrombin-induced thromboxane production by YD-3 may be of therapeutic benefit for thrombotic diseases.  相似文献   

8.
Platelet P2Y?? receptors play an important role in arterial thrombosis by stimulating thrombus growth. Both irreversibly (clopidogrel) and reversibly binding (ticagrelor, AZD6140) P2Y?? antagonists are clinically used for restricted periods, but possible differences in platelet function recovery after drug cessation have not been investigated. We treated WKY rats with a single, high dose of 200 mg/kg clopidogrel or 40 mg/kg ticagrelor. Blood was collected at different time points after treatment. Flow cytometry confirmed full platelet protection against ADP-induced αIIbβ? activation shortly after clopidogrel or ticagrelor treatment. At later time points after clopidogrel treatment, a subpopulation of juvenile platelets appeared that was fully responsive to ADP. Addition of ticagrelor to clopidogrel-treated blood reduced αIIbβ? activation of the unprotected platelets. In contrast, at later time points after ticagrelor treatment, all platelets gradually lost their protection against ADP activation. Perfusion experiments showed abolishment of thrombus formation shortly after clopidogrel or ticagrelor treatment. Thrombus formation on collagen was determined under high shear flow conditions. At later time points, large thrombi formed in the clopidogrel but not in the ticagrelor group, and unprotected, juvenile platelets preferentially incorporated into the formed thrombi. However, platelets from both groups were still similarly reduced in assays of whole blood aggregation. Conclusively, recovery of rat platelet function after ticagrelor differs mechanistically from that after clopidogrel. This difference is masked by conventional platelet aggregation methods, but is revealed by thrombus formation measurement under flow. Juvenile platelets formed at later time points after clopidogrel treatment promoted thrombus formation.  相似文献   

9.
The purpose of the present communication is to evaluate the importance of blood flow and surface reactivity for measurement of antithrombotic drug activity or efficacy in selected model systems of thrombus formation. Such information is essential for proper evaluation of antithrombotic drug profiles. The continuous development of flow-dependent thrombosis models for in vitro (anticoagulated blood) and ex vivo (native blood) studies and their application in in vivo animal models from the early 1970s and onwards are briefly considered. Central to this process was the development of various types of perfusion chambers in which a thrombogenic surface is exposed to flowing blood. Such perfusion chambers have been inserted into arteriovenous (AV) shunts in baboon, pig, dog, and rabbit. These approaches have allowed reproducible testing of traditional and novel experimental antithrombotic drugs, and studies on novel drug strategies under well-defined shear conditions and surface reactivity. Shear-dependent antithrombotic efficacy in these models is observed with anticoagulants such as unfractionated heparin, low-molecular weight heparins, or selective inhibitors of thrombin, Factor Xa, or Factor VIIa. However, the degree of shear dependency depends on the nature of the thrombogenic surface, e.g., the inhibition is more pronounced on a tissue factor (TF)-rich surface than on a collagen-rich surface, particularly at venous or low arterial shear. Platelet antagonists such as the COX-1 inhibitor aspirin, inhibitors of thromboxane A2 (TxA2) synthetase, the TxA2 platelet receptor, and of von Willebrand factor (vWf) are shear dependent also, being more efficient at high arterial shear. In contrast, the platelet ADP antagonist clopidogrel, or antagonists to the active platelet membrane glycoprotein IIb-IIIa complex (GPIIb-IIIa) are shear independent. At extremely high arterial shear, which activates platelets and elicit aggregates of circulating platelets, aspirin looses its antithrombotic effect, whereas ADP and GPIIb-IIIa antagonists still interrupt thrombus formation. In general, results obtained with these models mimic and predict antithrombotic efficacy in man when comparison is possible. Information on antithrombotic efficacy in flow devices with various thrombogenic surfaces is now sufficiently available to suggest recommendations for experimental conditions, particularly with regard to blood flow and reactive surfaces.  相似文献   

10.
Platelets are subjected to vastly differing shear forces under laminar and nonlaminar flow patterns throughout the tortuous cardiovascular system. Different activation pathways appear to be associated with platelet adhesion and aggregation under high shear rates vs. low shear rates. We found that platelets continue to aggregate at very low stirring rates (100 RPM) and low shear forces although significantly less than at high stirring rates (1000 RPM). These conditions may model vortices encountered in vivo, such as downstream of partially occluded blood vessels. The extent of agonist-induced platelet aggregation, at varying stir rates, remained essentially unchanged between 1200 and 600 RPM. This was true for both freshly prepared and stored platelets even though the extent of aggregation was significantly reduced with stored platelets. Agonists used were thrombin, thrombin receptor activating peptide (TRAP), SFLLRNP, the thromboxane A2 mimetic, U46619, plus epinephrine and ADP+epinephrine. At lower stir rates (100-400 RPM), little or no difference in aggregation levels was observed between fresh and stored platelets, depending upon agonist used. This may indicate that old and young platelets, in vivo, would be equally active at vessel walls exposed to blood flowing through a slow vortex at low shear rates. ATP, released from activated platelets, may act as a potent regulator of platelet aggregation within a vortex where the resident time of platelets and bioactive molecules is greater than in laminar flow regions. High levels of extracellular ATP (100 microM) inhibited agonist-induced aggregation of fresh platelets to a greater extent than stored platelets, except with ADP+epinephrine where the converse was observed. Inhibition, in general, appeared to be inversely related to stir rates. Low levels of extracellular ATP (10 nM, 1 microM) generally stimulated agonist-induced aggregations independent of stir rates and to a greater extent with stored platelets than fresh platelets. Unraveling how hemostasis functions within microenvironments may facilitate ways to further regulate this process.  相似文献   

11.
Clopidogrel (25 mg/kg, p.o.), a potent and selective inhibitor of ADP-induced platelet aggregation, significantly inhibited, in the presence of platelets, ex vivo thrombin generation triggered by low concentrations of tissue factor. Clopidogrel reduced the area under the curve (23%, p <0.05) and the thrombin peak concentration (35%, p <0.05) but did not affect the lag phase of thrombin generation. Under the same experimental conditions, heparin (100 microg/ml) inhibited thrombin generation mostly by delaying and by reducing the burst of thrombin. In a stasis-induced venous thrombosis model in rats under low thrombogenic challenge, clopidogrel inhibited thrombus formation (ED50 = 7.9+/-1.5 mg/kg, p.o. - n = 10), confirming the existence of a close relationship between platelet activation and thrombin generation leading to blood coagulation and venous thrombosis.  相似文献   

12.
Previous studies evaluating requirements for occupancy of thrombin receptors in normal platelet secretion and aggregation, using the thrombin antagonists hirudin and PPACK (D-Phe-Pro-Arg-chloromethylketone), have suggested that at low thrombin activating concentrations (0.025-0.13 U/ml), occupancy was required only in the first 45-60 s following activation. In our study, we differentiate between thrombin receptor occupancy requirements for surface expression of secreted adhesive proteins, for activation of GPIIb-IIIa receptors, and for aggregation of washed platelets (WP) in laminar shear flow. Platelets activated with 0.05 U/ml thrombin for 10 min to allow maximal secretion (hereafter referred to as "pre-activated platelets"), then sheared, showed a 50-70% decrease in platelet counts after 60 s of shear. Treatment of pre-activated platelets with hirudin or PPACK produced a 65% reduction of capture efficiencies, alphaG (reflecting experimental/theoretical initial rates of aggregation), as well as a 30-40% decrease in the surface expression of von Willebrand factor (vWF) and thrombospondin (TSP). However, alpha-granule membrane P-selectin expression and numbers of activated GPIIb-IIIa receptors were comparable for treated and non-treated platelets. No significant difference in any of the parameters tested was observed when platelets were similarly pre-activated with 0.2 U/ml thrombin, due to treatment with thrombin antagonists. Binding of soluble FITC-vWF (GRGDSP-sensitive) to pre-activated, thrombin antagonist treated platelets, was greatly reduced (> or =80%). Soluble Fg was shown to bind to antagonist-treated pre-activated platelets, but could not significantly enhance platelet aggregation. Although occupancy of thrombin receptors by catalytically active thrombin is required transiently for secretion and activation of platelets, there is a further requirement for thrombin occupancy at low thrombin concentrations, for optimizing initial rates of platelet aggregation, surface expression of vWF and TSP, and activated GPIIb-IIIa ligand recognition.  相似文献   

13.
We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.  相似文献   

14.
We have investigated the role of the thrombin/GPIbalpha interaction in the adhesion of platelets to fibrin in a whole blood ex vivo perfusion model at a shear rate of 280 s(-1). Blood was perfused through parallel-plate chambers containing coverslips coated with cells expressing tissue factor, leading to the generation of thrombin and thus, deposition of fibrin onto the exposed cells. Adhesion of platelets to fibrin and thrombus growth were analyzed. Interestingly, when GPIbalpha was removed from the platelet surface by action of mocarhagin, platelet adhesion on fibrin was inhibited. Furthermore, a monoclonal antibody, VM16d, directed against the thrombin binding site on GPIbalpha also inhibited platelet adhesion on fibrin, showing the importance of the thrombin/GPIbalpha interaction.We then looked at the involvement of alphaIIbbeta3 and showed that platelet adhesion and thrombus growth on fibrin were inhibited by the dodecapeptide, whereas lamifiban only inhibited the growth of the platelet thrombus. These results indicated that binding of thrombin to GPIbalpha induced an intracellular signaling leading to the interaction of the platelet integrin alphaIIbbeta3 with the fibrin-dodecapeptide sequence.  相似文献   

15.
Photochemically induced thrombosis (a thrombin-dependent process) was measured in rats treated with moderate doses of anticoagulants, but which appeared to be unchanged. We considered the possibility that platelet-inhibiting agents, which also indirectly inhibit coagulation, would act as more potent antithrombotic agents. Inhibitors used as such were prostaglandin E1 (PGE1), which elevates cyclic AMP levels, and the P2Y12 ADP-receptor antagonist, AR-C69931MX. Effects of these agents were investigated in an ex vivo model system, in which whole blood under coagulant conditions was perfused over fibrinogen at defined wall shear rate. Perfusion of blood (rat or human) in the presence of tissue factor resulted in deposition of activated platelets and subsequent aggregate formation, along with exposure of procoagulant phosphatidylserine (PS) on the platelet surface and formation of fibrin fibers. In the presence of PGE1 aggregation was completely inhibited, but platelet adhesion and PS exposure were only party reduced, while fibrin formation was hardly affected. Treatment with AR-C69931MX caused similar, but less complete effects. These results indicate that in tissue factor-triggered blood under conditions of flow: (i) the platelet procoagulant response is independent of aggregate formation; (ii) the platelet-inhibiting effect of PGE1 and AR-C69931MX is sufficient to suppress aggregation, but not platelet adhesion and coagulation. These platelet inhibitors thus maintain their aggregation-inhibiting effect at sites of thrombin formation.  相似文献   

16.
Thrombin plays a central role in the genesis of thrombotic events and is the most potent known platelet agonist. This enzyme activates platelets by cleaving G-protein coupled protease activated receptors (PARs) and by binding to glycoprotein (GP) Ib. Thrombin also cleaves platelet GPV to liberate a soluble 69 kDa fragment (GPVf1), leaving a 20 kDa fragment (GPVf2) attached to the membrane. The aim of this study was to assess the value of GPV as an in vivo marker of the activation of platelets by thrombin. Newly developed monoclonal and polyclonal antibodies recognizing rat GPVf1 and GPVf2 respectively were used to detect soluble GPV by ELISA and the new NH2-terminus exposed by thrombin using flow cytometry. These assays were employed in a rat thrombosis model designed to trigger thrombin formation in vivo. When thromboplastin (4.8 ml/kg/h) was infused for 30 min, thrombin generation was reflected by a rapid increase in thrombin-antithrombin (TAT) complexes in plasma and by the appearance of GPVf2 at the surface of circulating platelets. Simultaneously, GPVf1 disappeared from the surface of platelets and accumulated as a soluble fragment in plasma, where it was detected by GPV ELISA. These effects were inhibited by pretreatment of the rats with hirudin. Levels of plasma PF4 also increased in this model, but unlike GPV levels which returned slowly (> 2 hours) to baseline, PF4 had a very short half-life. In conclusion, GPV is cleaved by thrombin in vivo, circulates and is a reliable in vivo marker of the activation of platelets by thrombin. Monitoring of GPV levels in rats should be useful to evaluate the effects of antithrombotic and antiplatelet drugs, while further studies will be required to confirm the potential interest of GPV as a marker of thrombotic states in humans.  相似文献   

17.
Thrombin-generation and activation of platelets during percutaneous coronary intervention (PCI) play a key role for early thrombotic events. Heparin and bivalirudin are approved anticoagulants for PCI. We examined the specific effects of these anticoagulants on platelet adhesion and aggregation under high shear conditions, and the presence of excess thrombin. To simulate in vivo conditions that may precipitate a bleeding/thrombotic event, we added thrombin in vitro to blood samples from 89 stable patients who had been randomly assigned to receive heparin or bivalirudin for elective PCI and examined thrombin-inducible platelet adhesion and aggregation under high shear conditions. Platelet adhesion increased by 10% of baseline with heparin, but decreased by 20% with bivalirudin (p=0.0047). Thrombin-inducible platelet adhesion and size of aggregates was equally inhibited by heparin and bivalirudin. Thus, under high shear conditions and excessive thrombin generation as they occur in atherosclerotic vascular compartments and acute vascular syndromes, heparin and bivalirudin inhibit thrombin-induced platelet adhesion and aggregation to a similar extent, while they have opposite effects on platelet adhesion in the absence of thrombin.  相似文献   

18.
Mural thrombus generation at sites of damaged vessel walls is essential for both physiological haemostasis and pathological intravascular thrombosis. While thrombi are established by the concerted action of platelet aggregation and blood coagulation, most previous in vitro coagulation assays have evaluated fibrin clot formation in a closed stirring situation that lacks blood cells including platelets. We describe here a modified flow chamber system, established originally for platelet functional studies, that enables real-time observation of intra-thrombus fibrin accumulation during platelet thrombogenesis under flow conditions. Analysis by confocal laser scanning microscopy during perfusion of whole blood anticoagulated to various extents revealed that the size and shape of mural thrombi can depend on the intra-thrombus fibrin development under high shear rate conditions. These observations were confirmed by perfusion of heparinized blood or blood from haemophilia patients with or without addition of activated factor VII. Thus, our experimental system provides visual evidence supporting the concept of “cell-based coagulation under whole blood flow”, which might be the most physiologically relevant model of comprehensive thrombogenicity in vivo to date. This system promises to help formulate strategies for haemostatic management of congenital coagulation disorders as well as for antithrombotic therapy targeting fatal arterial thrombosis.  相似文献   

19.
Protease-activated receptors (PARs) belong to the superfamily of seven transmembrane domain G protein-coupled receptors. Four PAR subtypes are known, PAR-1 to -4. PARs are highly homologous between the species and are expressed in a wide variety of tissues and cell types. Of particular interest is the role which these receptors play in the brain, with regard to neuroprotection or degeneration under pathological conditions. The main agonist of PARs is thrombin, a multifunctional serine protease, known to be present not only in blood plasma but also in the brain. PARs possess an irreversible activation mechanism. Binding of agonist and subsequent cleavage of the extracellular N-terminus of the receptor results in exposure of a so-called tethered ligand domain, which then binds to extracellular loop 2 of the receptor leading to receptor activation. PARs exhibit an extensive expression pattern in both the central and the peripheral nervous system. PARs participate in several mechanisms important for normal cellular functioning and during critical situations involving cellular survival and death. In the last few years, research on Alzheimer's disease and stroke has linked PARs to the pathophysiology of these neurodegenerative disorders. Actions of thrombin are concentration-dependent, and therefore, depending on cellular function and environment, serve as a double-edged sword. Thrombin can be neuroprotective during stress conditions, whereas under normal conditions high concentrations of thrombin are toxic to cells.  相似文献   

20.
Protease-activated receptors (PARs) are G protein-coupled receptors that regulate the cellular response to extracellular serine proteases, like thrombin, trypsin, and tryptase. The PAR family consists of four members: PAR-1, -3, and -4 as thrombin receptors and PAR-2 as the trypsin/tryptase receptor, which are abundantly expressed in the brain throughout development. Recent evidence has supported the direct involvement of PARs in brain development and function. The expression of PARs in the brain is differentially upregulated or downregulated under pathological conditions in neurodegenerative disorders, like Parkinson's disease, Alzheimer's disease, multiple sclerosis, stroke, and human immunodeficiency virus-associated dementia. Activation of PARs mediates cell death or cell survival in the brain, depending on the amplitude and the duration of agonist stimulation. Interference or potentiation of PAR activation is beneficial in animal models of neurodegenerative diseases. Therefore, PARs mediate either neurodegeneration or neuroprotection in neurodegenerative diseases and represent attractive therapeutic targets for treatment of brain injuries. Here, we review the abnormal expression of PARs in the brain under pathological conditions, the functions of PARs in neurodegenerative disorders, and the molecular mechanisms involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号