首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Evidence of potent rodent carcinogenicity via an unclear mechanism suggests that furan in various foods [leading to an intake of up to 3.5 μg/kg body weight (bw)/day] may present a potential risk to human health.

Objectives

We tested the hypothesis that altered expression of genes related to cell cycle control, apoptosis, and DNA damage may contribute to the carcinogenicity of furan in rodents. In addition, we investigated the reversibility of such changes and the potential role of epigenetic mechanisms in response to furan doses that approach the maximum estimated dietary intake in humans.

Methods

The mRNA expression profiles of genes related to cell cycle, apoptosis, and DNA damage in rat liver treated with furan concentrations of 0.1 and 2 mg/kg bw were measured by quantitative polymerase chain reaction (PCR) arrays. We assessed epigenetic changes by analysis of global and gene-specific DNA methylation [methylation-specific PCR, combined bisulfite restriction analysis (COBRA), and methylated DNA immunoprecipitation chip] and microRNA (miRNA) analyses.

Results

The expression profiles of apoptosis-related and cell-cycle–related genes were unchanged after 5 days of treatment, although we observed a statistically significant change in the expression of genes related to cell cycle control and apoptosis, but not DNA damage, after 4 weeks of treatment. These changes were reversed after an off-dose period of 2 weeks. None of the gene expression changes was associated with a change in DNA methylation, although we detected minor changes in the miRNA expression profile (5 miRNA alterations out of 349 measured) that may have contributed to modification of gene expression in some cases.

Conclusion

Nongenotoxic changes in gene expression may contribute to the carcinogenicity of furan in rodents. These findings highlight the need for a more comprehensive risk assessment of furan exposure in humans.  相似文献   

2.

Background

1,3-Butadiene (BD) is a high-volume industrial chemical and a known human carcinogen. The main mode of BD carcinogenicity is thought to involve formation of genotoxic epoxides.

Objectives

In this study we tested the hypothesis that BD may be epigenotoxic (i.e., cause changes in DNA and histone methylation) and explored the possible molecular mechanisms for the epigenetic changes.

Methods and Results

We administered BD (6.25 and 625 ppm) to C57BL/6J male mice by inhalation for 2 weeks (6 hr/day, 5 days a week) and then examined liver tissue from these mice for signs of toxicity using histopathology and gene expression analyses. We observed no changes in mice exposed to 6.25 ppm BD, but glycogen depletion and dysregulation of hepatotoxicity biomarker genes were observed in mice exposed to 625 ppm BD. We detected N-7-(2,3,4-trihydroxybut-1-yl)guanine (THB-Gua) adducts in liver DNA of exposed mice in a dose-responsive manner, and also observed extensive alterations in the cellular epigenome in the liver, including demethylation of global DNA and repetitive elements and a decrease in histone H3 and H4 lysine methylation. In addition, we observed down-regulation of DNA methyltransferase 1 (Dnmt1) and suppressor of variegation 3–9 homolog 1, a histone lysine methyltransferase (Suv39h1), and up-regulation of the histone demethylase Jumonji domain 2 (Jmjd2a), proteins responsible for the accurate maintenance of the epigenetic marks. Although the epigenetic effects were most pronounced in the 625-ppm exposure group, some effects were evident in mice exposed to 6.25 ppm BD.

Conclusions

This study demonstrates that exposure to BD leads to epigenetic alterations in the liver, which may be important contributors to the mode of BD carcinogenicity.  相似文献   

3.

Background

Fetal lead exposure is associated with adverse pregnancy outcomes and developmental and cognitive deficits; however, the mechanism(s) by which lead-induced toxicity occurs remains unknown. Epigenetic fetal programming via DNA methylation may provide a pathway by which environmental lead exposure can influence disease susceptibility.

Objective

This study was designed to determine whether prenatal lead exposure is associated with alterations in genomic methylation of leukocyte DNA levels from umbilical cord samples.

Methods

We measured genomic DNA methylation, as assessed by Alu and LINE-1 (long interspersed nuclear element-1) methylation via pyrosequencing, on 103 umbilical cord blood samples from the biorepository of the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) study group. Prenatal lead exposure had been assessed by measuring maternal bone lead levels at the mid-tibial shaft and the patella using a spot-source 109Cd K-shell X-ray fluorescence instrument.

Results

We found an inverse dose–response relationship in which quartiles of patella lead correlated with cord LINE-1 methylation (p for trend = 0.01) and and tibia lead correlated with Alu methylation (p for trend = 0.05). In mixed effects regression models, maternal tibia lead was negatively associated with umbilical cord genomic DNA methylation of Alu (β= −0.027; p = 0.01). We found no associations between cord blood lead and cord genomic DNA methylation.

Conclusions

Prenatal lead exposure is inversely associated with genomic DNA methylation in cord blood. These data suggest that the epigenome of the developing fetus can be influenced by maternal cumulative lead burden, which may influence long-term epigenetic programming and disease susceptibility throughout the life course.  相似文献   

4.

Background

In humans, inorganic arsenic (iAs) is metabolized to methylated arsenical species in a multistep process mainly mediated by arsenic (+3 oxidation state) methyltransferase (AS3MT). Among these metabolites is monomethylarsonous acid (MMAIII), the most toxic arsenic species. A recent study in As3mt-knockout mice suggests that unidentified methyltransferases could be involved in alternative iAs methylation pathways. We found that yeast deletion mutants lacking MTQ2 were highly resistant to iAs exposure. The human ortholog of the yeast MTQ2 is N-6 adenine-specific DNA methyltransferase 1 (N6AMT1), encoding a putative methyltransferase.

Objective

We investigated the potential role of N6AMT1 in arsenic-induced toxicity.

Methods

We measured and compared the cytotoxicity induced by arsenicals and their metabolic profiles using inductively coupled plasma–mass spectrometry in UROtsa human urothelial cells with enhanced N6AMT1 expression and UROtsa vector control cells treated with different concentrations of either iAsIII or MMAIII.

Results

N6AMT1 was able to convert MMAIII to the less toxic dimethylarsonic acid (DMA) when overexpressed in UROtsa cells. The enhanced expression of N6AMT1 in UROtsa cells decreased cytotoxicity of both iAsIII and MMAIII. Moreover, N6AMT1 is expressed in many human tissues at variable levels, although at levels lower than those of AS3MT, supporting a potential participation in arsenic metabolism in vivo.

Conclusions

Considering that MMAIII is the most toxic arsenical, our data suggest that N6AMT1 has a significant role in determining susceptibility to arsenic toxicity and carcinogenicity because of its specific activity in methylating MMAIII to DMA and other unknown mechanisms.  相似文献   

5.

Background

In Bangladesh, millions of people are exposed to arsenic in drinking water; arsenic is associated with increased risk of cancer. Once ingested, arsenic is metabolized via methylation and excreted in urine. Knowledge about nutritional factors affecting individual variation in methylation is limited.

Objectives

The purpose of this study was to examine associations between intakes of protein, methionine, and cysteine total urinary arsenic in a large population-based sample.

Methods

The study subjects were 10,402 disease-free residents of Araihazar, Bangladesh, who participated in the Health Effects of Arsenic Longitudinal Study (HEALS). Food intakes were assessed using a validated food frequency questionnaire developed for the study population. Nutrient composition was determined by using the U.S. Department of Agriculture National Nutrient Database for Standard Reference. Generalized estimating equations were used to examine association between total urinary arsenic across quintiles of nutrient intakes while controlling for arsenic exposure from drinking water and other predictors of urinary arsenic.

Results

Greater intakes of protein, methionine, and cysteine were associated with 10–15% greater total urinary arsenic excretion, after controlling for total energy intake, body weight, sex, age, tobacco use, and intake of some other nutrients.

Conclusions

Given previously reported risks between lower rates of arsenic excretion and increased rates of cancer, these findings support the role of nutrition in preventing arsenic-related disease.  相似文献   

6.

Objectives

There are some common occupational agents and exposure circumstances for which evidence of carcinogenicity is substantial but not yet conclusive for humans. Our objectives were to identify research gaps and needs for 20 agents prioritized for review based on evidence of widespread human exposures and potential carcinogenicity in animals or humans.

Data sources

For each chemical agent (or category of agents), a systematic review was conducted of new data published since the most recent pertinent International Agency for Research on Cancer (IARC) Monograph meeting on that agent.

Data extraction

Reviewers were charged with identifying data gaps and general and specific approaches to address them, focusing on research that would be important in resolving classification uncertainties. An expert meeting brought reviewers together to discuss each agent and the identified data gaps and approaches.

Data synthesis

Several overarching issues were identified that pertained to multiple agents; these included the importance of recognizing that carcinogenic agents can act through multiple toxicity pathways and mechanisms, including epigenetic mechanisms, oxidative stress, and immuno- and hormonal modulation.

Conclusions

Studies in occupational populations provide important opportunities to understand the mechanisms through which exogenous agents cause cancer and intervene to prevent human exposure and/or prevent or detect cancer among those already exposed. Scientific developments are likely to increase the challenges and complexities of carcinogen testing and evaluation in the future, and epidemiologic studies will be particularly critical to inform carcinogen classification and risk assessment processes.  相似文献   

7.
8.

Background

There is increasing concern that early-life exposure to endocrine-disrupting chemicals (EDCs) can influence the risk of disease development. Phthalates and phenols are two classes of suspected EDCs that are used in a variety of everyday consumer products, including plastics, epoxy resins, and cosmetics. In utero exposure to EDCs may affect disease propensity through epigenetic mechanisms.

Objective

The objective of this study was to determine whether prenatal exposure to multiple EDCs is associated with changes in miRNA expression of human placenta, and whether miRNA alterations are associated with birth outcomes.

Methods

Our study was restricted to a total of 179 women co-enrolled in the Harvard Epigenetic Birth Cohort and the Predictors of Preeclampsia Study. We analyzed associations between first-trimester urine concentrations of 8 phenols and 11 phthalate metabolites and expression of 29 candidate miRNAs in placenta by qRT-PCR.

Results

For three miRNAs—miR-142-3p, miR15a-5p, and miR-185—we detected associations between Σphthalates or Σphenols on expression levels (p < 0.05). By assessing gene ontology enrichment, we determined the potential mRNA targets of these microRNAs predicted in silico were associated with several biological pathways, including the regulation of protein serine/threonine kinase activity. Four gene ontology biological processes were enriched among genes significantly correlated with the expression of miRNAs associated with EDC burden.

Conclusions

Overall, these results suggest that prenatal phenol and phthalate exposure is associated with altered miRNA expression in placenta, suggesting a potential mechanism of EDC toxicity in humans.

Citation

LaRocca J, Binder AM, McElrath TF, Michels KB. 2016. First-trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women. Environ Health Perspect 124:380–387; http://dx.doi.org/10.1289/ehp.1408409  相似文献   

9.

Background

DNA methylation is an epigenetic mark that regulates gene expression. Changes in DNA methylation within white blood cells may result from cumulative exposure to environmental metals such as lead. Bone lead, a marker of cumulative exposure, may therefore better predict DNA methylation than does blood lead.

Objective

In this study we compared associations between lead biomarkers and DNA methylation.

Methods

We measured global methylation in participants of the Normative Aging Study (all men) who had archived DNA samples. We measured patella and tibia lead levels by K-X-Ray fluorescence and blood lead by atomic absorption spectrophotometry. DNA samples from blood were used to determine global methylation averages within CpG islands of long interspersed nuclear elements-1 (LINE-1) and Alu retrotransposons. A mixed-effects model using repeated measures of Alu or LINE-1 as the dependent variable and blood/bone lead (tibia or patella in separate models) as the primary exposure marker was fit to the data.

Results

Overall mean global methylation (± SD) was 26.3 ± 1.0 as measured by Alu and 76.8 ± 1.9 as measured by LINE-1. In the mixed-effects model, patella lead levels were inversely associated with LINE-1 (β = −0.25; p < 0.01) but not Alu (β = −0.03; p = 0.4). Tibia lead and blood lead did not predict global methylation for either Alu or LINE-1.

Conclusion

Patella lead levels predicted reduced global DNA methylation within LINE-1 elements. The association between lead exposure and LINE-1 DNA methylation may have implications for the mechanisms of action of lead on health outcomes, and also suggests that changes in DNA methylation may represent a biomarker of past lead exposure.  相似文献   

10.

Background

Inhalation of high levels of airborne inorganic arsenic is a recognized cause of respiratory cancer. Although multiple epidemiologic studies have demonstrated this association, there have been few analyses of the mathematical relationship between cumulative arsenic exposure and risk of respiratory cancer, and no assessment as to whether and how arsenic concentration may modify this association.

Objectives

The objective is an evaluation of the shape of the relationship between respiratory cancer mortality and cumulative inhaled arsenic exposure among copper smelter workers, and the modification of that relationship by arsenic concentration.

Methods

We used Poisson regression methods to analyze data from a cohort of arsenic-exposed copper smelter workers under a linear-exponential model for the excess relative risk.

Results

Within categories of arsenic concentration, the association between respiratory cancer and cumulative arsenic exposure was consistent with linearity. The slope of the linear relationship with cumulative exposure increased with increasing arsenic concentration category.

Conclusions

Our results suggested a direct concentration effect from inhaled inorganic arsenic, whereby the excess relative risk for a fixed cumulative exposure was greater when delivered at a higher concentration and shorter duration than when delivered at a lower concentration and longer duration.  相似文献   

11.

Background

Exposure to arsenic is a critical risk factor in the complex interplay among genetics, the environment, and human disease. Despite the potential for in utero exposure, the mechanism of arsenic action on vertebrate development and disease is unknown.

Objectives

The objective of this study was to identify genes and gene networks perturbed by arsenic during development in order to enhance understanding of the molecular mechanisms of arsenic action.

Methods

We exposed zebrafish embryos at 0.25–1.25 hr postfertilization to 10 or 100 ppb arsenic for 24 or 48 hr. We then used total RNA to interrogate genome microarrays and to test levels of gene expression changes by quantitative real-time polymerase chain reaction (QPCR). Computational analysis was used to identify gene expression networks perturbed by arsenic during vertebrate development.

Results

We identified a set of 99 genes that responded to low levels of arsenic. Nineteen of these genes were predicted to function in a common regulatory network that was significantly associated with immune response and cancer (p < 10−41). Arsenic-mediated expression changes were validated by QPCR.

Conclusions

In this study we demonstrated that arsenic significantly down-regulates expression levels of multiple genes potentially critical for regulating the establishment of an immune response. The data also provide molecular evidence consistent with phenotypic observations reported in other model systems. Additional mechanistic studies will help explain molecular events regulating early stages of the immune system and long-term consequences of arsenic-mediated perturbation of this system during development.  相似文献   

12.

Background

Accumulating evidence has shown an increased risk of type 2 diabetes in general populations exposed to arsenic, but little is known about exposures during pregnancy and the association with gestational diabetes (GD).

Objectives

We studied 532 women living proximate to the Tar Creek Superfund Site to investigate whether arsenic exposure is associated with impaired glucose tolerance during pregnancy.

Methods

Blood glucose was measured between 24 and 28 weeks gestation after a 1-hr oral glucose tolerance test (GTT) as part of routine prenatal care. Blood and hair were collected at delivery and analyzed for arsenic using inductively coupled plasma mass spectrometry with dynamic reaction cell.

Results

Arsenic concentrations ranged from 0.2 to 24.1 μg/L (ppb) (mean ± SD, 1.7 ±1.5) and 1.1 to 724.4 ng/g (ppb) (mean ± SD, 27.4 ± 61.6) in blood and hair, respectively. One-hour glucose levels ranged from 40 to 284 mg/dL (mean ± SD, 108.7 ± 29.5); impaired glucose tolerance was observed in 11.9% of women when using standard screening criterion (> 140 mg/dL). Adjusting for age, Native-American race, prepregnancy body mass index, Medicaid use, and marital status, women in the highest quartile of blood arsenic exposure had 2.8 higher odds of impaired GTT than women in the lowest quartile of exposure (95% confidence interval, 1.1–6.9) (p-trend = 0.008).

Conclusions

Among this population of pregnant women, arsenic exposure was associated with increased risk of impaired GTT at 24–28 weeks gestation and therefore may be associated with increased risk of GD.  相似文献   

13.

Background

Mice exposed to high levels of arsenic in utero have increased susceptibility to tumors such as hepatic and pulmonary carcinomas when they reach adulthood. However, the effects of in utero arsenic exposure on general physiological functions such as reproduction and metabolism remain unclear.

Objectives

We evaluated the effects of in utero exposure to inorganic arsenic at the U.S. Environmental Protection Agency (EPA) drinking water standard (10 ppb) and at tumor-inducing levels (42.5 ppm) on reproductive end points and metabolic parameters when the exposed females reached adulthood.

Methods

Pregnant CD-1 mice were exposed to sodium arsenite [none (control), 10 ppb, or 42.5 ppm] in drinking water from gestational day 10 to birth, the window of organ formation. At birth, exposed offspring were fostered to unexposed dams. We examined reproductive end points (age at vaginal opening, reproductive hormone levels, estrous cyclicity, and fertility) and metabolic parameters (body weight changes, hormone levels, body fat content, and glucose tolerance) in the exposed females when they reached adulthood.

Results

Arsenic-exposed females (10 ppb and 42.5 ppm) exhibited early onset of vaginal opening. Fertility was not affected when females were exposed to the 10-ppb dose. However, the number of litters per female was decreased in females exposed to 42.5 ppm of arsenic in utero. In both 10-ppb and 42.5-ppm groups, arsenic-exposed females had significantly greater body weight gain, body fat content, and glucose intolerance.

Conclusion

Our findings revealed unexpected effects of in utero exposure to arsenic: exposure to both a human-relevant low dose and a tumor-inducing level led to early onset of vaginal opening and to obesity in female CD-1 mice.

Citation

Rodriguez KF, Ungewitter EK, Crespo-Mejias Y, Liu C, Nicol B, Kissling GE, Yao HH. 2016. Effects of in utero exposure to arsenic during the second half of gestation on reproductive end points and metabolic parameters in female CD-1 mice. Environ Health Perspect 124:336–343; http://dx.doi.org/10.1289/ehp.1509703  相似文献   

14.

Background

Inorganic arsenic exposure has been related to the risk of increased blood pressure based largely on cross-sectional studies conducted in highly exposed populations. Pregnancy is a period of particular vulnerability to environmental insults. However, little is known about the cardiovascular impacts of arsenic exposure during pregnancy.

Objectives

We evaluated the association between prenatal arsenic exposure and maternal blood pressure over the course of pregnancy in a U.S. population.

Methods

The New Hampshire Birth Cohort Study is an ongoing prospective cohort study in which > 10% of participant household wells exceed the arsenic maximum contaminant level of 10 μg/L established by the U.S. EPA. Total urinary arsenic measured at 24–28 weeks gestation was measured and used as a biomarker of exposure during pregnancy in 514 pregnant women, 18–45 years of age, who used a private well in their household. Outcomes were repeated blood pressure measurements (systolic, diastolic, and pulse pressure) recorded during pregnancy.

Results

Using linear mixed effects models, we estimated that, on average, each 5-μg/L increase in urinary arsenic was associated with a 0.15-mmHg (95% CI: 0.02, 0.29; p = 0.022) increase in systolic blood pressure per month and a 0.14-mmHg (95% CI: 0.02, 0.25; p = 0.021) increase in pulse pressure per month over the course of pregnancy.

Conclusions

In our U.S. cohort of pregnant women, arsenic exposure was associated with greater increases in blood pressure over the course of pregnancy. These findings may have important implications because even modest increases in blood pressure impact cardiovascular disease risk.

Citation

Farzan SF, Chen Y, Wu F, Jiang J, Liu M, Baker E, Korrick SA, Karagas MR. 2015. Blood pressure changes in relation to arsenic exposure in a U.S. pregnancy cohort. Environ Health Perspect 123:999–1006; http://dx.doi.org/10.1289/ehp.1408472  相似文献   

15.

Background

Particulate matter (PM) is associated with adverse airway health effects; however, the underlying mechanism in disease initiation is still largely unknown. Recently, microRNAs (miRNAs; small noncoding RNAs) have been suggested to be important in maintaining the lung in a disease-free state through regulation of gene expression. Although many studies have shown aberrant miRNA expression patterns in diseased versus healthy tissue, little is known regarding whether environmental agents can induce such changes.

Objectives

We used diesel exhaust particles (DEP), the largest source of emitted airborne PM, to investigate pollutant-induced changes in miRNA expression in airway epithelial cells. We hypothesized that DEP exposure can lead to disruption of normal miRNA expression patterns, representing a plausible novel mechanism through which DEP can mediate disease initiation.

Methods

Human bronchial epithelial cells were grown at air–liquid interface until they reached mucociliary differentiation. After treating the cells with 10 μg/cm2 DEP for 24 hr, we analyzed total RNA for miRNA expression using microarray profile analysis and quantitative real-time polymerase chain reaction.

Results

DEP exposure changed the miRNA expression profile in human airway epithelial cells. Specifically, 197 of 313 detectable miRNAs (62.9%) were either up-regulated or down-regulated by 1.5-fold. Molecular network analysis of putative targets of the 12 most altered miRNAs indicated that DEP exposure is associated with inflammatory responses pathways and a strong tumorigenic disease signature.

Conclusions

Alteration of miRNA expression profiles by environmental pollutants such as DEP can modify cellular processes by regulation of gene expression, which may lead to disease pathogenesis.  相似文献   

16.

Background

Determining arsenic exposure in groups based on geographic location, dietary behaviors, or lifestyles is important, as even moderate exposures may lead to health concerns.

Objectives/Methods

The Korean community in Washington State, represents a group warranting investigation, as they consume foods (e.g., shellfish, rice, finfish, and seaweed) known to contain arsenic. As part of the Arsenic Mercury Intake Biometric Study, we examined the arsenic levels in hair and urine along with the diets of 108 women of childbearing age from within this community. Arsenic levels in indoor air and drinking water were also investigated, and shellfish commonly consumed were collected and analyzed for total and speciated arsenic.

Results

The six shellfish species analyzed (n = 667) contain total arsenic (range, 1–5 μg/g) but are a small source of inorganic arsenic (range, 0.01–0.12 μg/g). Six percent of the individuals may have elevated urinary inorganic arsenic levels (> 10 μg/L) due to diet. Seaweed, rice, shellfish, and finfish are principal sources for total arsenic intake/excretion based on mass balance estimates. Rice consumption (163 g/person/day) may be a significant source of inorganic arsenic. Air and water are not significant sources of exposure. Hair is a poor biometric for examining arsenic levels at low to moderate exposures.

Conclusions

We conclude that a portion of this community may have dietary inorganic arsenic exposure resulting in urine levels exceeding 10 μg/L. Although their exposure is below that associated with populations exposed to high levels of arsenic from drinking water (> 100 μg/L), their exposure may be among the highest in the United States.  相似文献   

17.

Background

Inorganic arsenic is a ubiquitous environmental carcinogen affecting millions of people worldwide. Evolving theory predicts that normal stem cells (NSCs) are transformed into cancer stem cells (CSCs) that then drive oncogenesis. In humans, arsenic is carcinogenic in the urogenital system (UGS), including the bladder and potentially the prostate, whereas in mice arsenic induces multiorgan UGS cancers, indicating that UGS NSCs may represent targets for carcinogenic initiation. However, proof of emergence of CSCs induced by arsenic in a stem cell population is not available.

Methods

We continuously exposed the human prostate epithelial stem/progenitor cell line WPE-stem to an environmentally relevant level of arsenic (5 μM) in vitro and determined the acquired cancer phenotype.

Results

WPE-stem cells rapidly acquired a malignant CSC-like phenotype by 18 weeks of exposure, becoming highly invasive, losing contact inhibition, and hypersecreting matrix metalloproteinase-9. When hetero-transplanted, these cells (designated As-CSC) formed highly pleomorphic, aggressive tumors with immature epithelial- and mesenchymal-like cells, suggesting a highly pluripotent cell of origin. Consistent with tumor-derived CSCs, As-CSCs formed abundant free-floating spheres enriched in CSC-like cells, as confirmed by molecular analysis and the fact that only these floating cells formed xenograft tumors. An early loss of NSC self-renewal gene expression (p63, ABCG2, BMI-1, SHH, OCT-4, NOTCH-1) during arsenite exposure was subsequently reversed as the tumor suppressor gene PTEN was progressively suppressed and the CSC-like phenotype acquired.

Conclusions

Arsenite transforms prostate epithelial stem/progenitor cells into CSC-like cells, indicating that it can produce CSCs from a model NSC population.  相似文献   

18.

Background

Previous studies have reported associations between prenatal arsenic exposure and increased risk of infant mortality. An increase in infectious diseases has been proposed as the underlying cause of these associations, but there is no epidemiologic research to support the hypothesis.

Objective

We evaluated the association between arsenic exposure in pregnancy and morbidity during infancy.

Methods

This prospective population-based cohort study included 1,552 live-born infants of women enrolled during 2002–2004 in Matlab, Bangladesh. Arsenic exposure was assessed by the concentrations of metabolites of inorganic arsenic in maternal urine samples collected at gestational weeks 8 and 30. Information on symptoms of lower respiratory tract infection (LRTI) and diarrhea in infants was collected by 7-day recalls at monthly home visits.

Results

In total, 115,850 person-days of observation were contributed by the infants during a 12-month follow-up period. The estimated risk of LRTI and severe LRTI increased by 69% [adjusted relative risk (RR) = 1.69; 95% confidence interval (CI), 1.36–2.09)] and 54% (RR = 1.54; 95% CI, 1.21–1.97), respectively, for infants of mothers with urinary arsenic concentrations in the highest quintile (average of arsenic concentrations measured in early and late gestation, 262–977 μg/L) relative to those with exposure in the lowest quintile (< 39 μg/L). The corresponding figure for diarrhea was 20% (RR = 1.20; 95% CI, 1.01–1.43).

Conclusions

Arsenic exposure during pregnancy was associated with increased morbidity in infectious diseases during infancy. Taken together with the previous evidence of adverse effects on health, the findings strongly emphasize the need to reduce arsenic exposure via drinking water.  相似文献   

19.
20.

Background

Arsenic exposure in drinking water disproportionately affects small communities in some U.S. regions, including American Indian communities. In U.S. adults with no seafood intake, median total urine arsenic is 3.4 μg/L.

Objective

We evaluated arsenic exposure and excretion patterns using urine samples collected over 10 years in a random sample of American Indians from Arizona, Oklahoma, and North and South Dakota who participated in a cohort study from 1989 to 1999.

Methods

We measured total urine arsenic and arsenic species [inorganic arsenic (arsenite and arsenate), methylarsonate (MA), dimethylarsinate (DMA), and arsenobetaine] concentrations in 60 participants (three urine samples each, for a total of 180 urine samples) using inductively coupled plasma/mass spectrometry (ICPMS) and high-performance liquid chromatography/ICPMS, respectively.

Results

Median (10th, 90th percentiles) urine concentration for the sum of inorganic arsenic, MA, and DMA at baseline was 7.2 (3.1, 16.9) μg/g creatinine; the median was higher in Arizona (12.5 μg/g), intermediate in the Dakotas (9.1 μg/g), and lower in Oklahoma (4.4 μg/g). The mean percentage distribution of arsenic species over the sum of inorganic and methylated species was 10.6% for inorganic arsenic, 18.4% for MA, and 70.9% for DMA. The intraclass correlation coefficient for three repeated arsenic measurements over a 10-year period was 0.80 for the sum of inorganic and methylated species and 0.64, 0.80, and 0.77 for percent inorganic arsenic, percent MA, and percent DMA, respectively.

Conclusions

This study found low to moderate inorganic arsenic exposure and confirmed long-term constancy in arsenic exposure and urine excretion patterns in American Indians from three U.S. regions over a 10-year period. Our findings support the feasibility of analyzing arsenic species in large population-based studies with stored urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号