首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glial cell line-derived neurotrophic factor (GDNF) is a strong candidate agent in the neuroprotective treatment of Parkinson's disease (PD). We investigated whether adeno-associated viral (AAV) vector-mediated delivery of a GDNF gene in a delayed manner could prevent progressive degeneration of dopaminergic (DA) neurons, while preserving a functional nigrostriatal pathway. Four weeks after a unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA), rats received injection of AAV vectors expressing GDNF tagged with FLAG peptide (AAV-GDNFflag) or beta-galactosidase (AAV-LacZ) into the lesioned striatum. Immunostaining for FLAG demonstrated retrograde transport of GDNFflag to the substantia nigra (SN). The density of tyrosine hydroxylase (TH)-positive DA fibers in the striatum and the number of TH-positive or cholera toxin subunit B (CTB, neuronal tracer)-labeled neurons in the SN were significantly greater in the AAV-GDNFflag group than in the AAV-LacZ group. Dopamine levels and those of its metabolites in the striatum were remarkably higher in the AAV-GDNFflag group compared with the control group. Consistent with anatomical and biochemical changes, significant behavioral recovery was observed from 4-20 weeks following AAV-GDNFflag injection. These data indicate that a delayed delivery of GDNF gene using AAV vector is efficacious even 4 weeks after the onset of progressive degeneration in a rat model of PD.  相似文献   

2.
Injection of an adenoviral (Ad) vector encoding human glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic (DA) neurons in the substantia nigra (SN) of young rats. As Parkinson's disease occurs primarily in aged populations, we examined whether chronic biosynthesis of GDNF, achieved by adenovirus-mediated delivery of a GDNF gene (AdGDNF), can protect DA neurons and improve DA-dependent behavioral function in aged (20 months) rats with progressive 6-OHDA lesions of the nigrostriatal projection. Furthermore, the differential effects of injecting AdGDNF either near DA cell bodies in the SN or at DA terminals in the striatum were compared. AdGDNF or control vector was injected unilaterally into either the striatum or SN. One week later, rats received a unilateral intrastriatal injection of 6-OHDA on the same side as the vector injection. AdGDNF injection into either the striatum or SN significantly reduced the loss of FG labelled DA neurons 5 weeks after lesion (P 相似文献   

3.
Subpopulations of dopaminergic (DA) neurons within the substantia nigra pars compacta (SNpc) display a differential vulnerability to loss in Parkinson’s disease (PD); however, it is not clear why these subsets are preferentially selected in PD-associated neurodegeneration. In rodent SNpc, DA neurons can be divided into two subpopulations based on the expression of aldehyde dehydrogenase 1 (ALDH1A1). Here, we have shown that, in α-synuclein transgenic mice, a murine model of PD-related disease, DA neurodegeneration occurs mainly in a dorsomedial ALDH1A1-negative subpopulation that is also prone to cytotoxic aggregation of α-synuclein. Notably, the topographic ALDH1A1 pattern observed in α-synuclein transgenic mice was conserved in human SNpc. Postmortem evaluation of brains of patients with PD revealed a severe reduction of ALDH1A1 expression and neurodegeneration in the ventral ALDH1A1-positive DA subpopulations. ALDH1A1 expression was also suppressed in α-synuclein transgenic mice. Deletion of Aldh1a1 exacerbated α-synuclein–mediated DA neurodegeneration and α-synuclein aggregation, whereas Aldh1a1-null and control DA neurons were comparably susceptible to 1-methyl-4-phenylpyridinium–, glutamate-, or camptothecin-induced cell death. ALDH1A1 overexpression appeared to preferentially protect against α-synuclein–mediated DA neurodegeneration but did not rescue α-synuclein–induced loss of cortical neurons. Together, our findings suggest that ALDH1A1 protects subpopulations of SNpc DA neurons by preventing the accumulation of dopamine aldehyde intermediates and formation of cytotoxic α-synuclein oligomers.  相似文献   

4.
目的 :研究自由基、神经营养因子及细胞凋亡在帕金森病发病中的变化。方法 :通过脑立体定向注射 6 羟基多巴胺的方法建立大鼠PD模型 ,采用TUNEL法 ,免疫组化技术 ,生化方法 ,观察大鼠黑质细胞凋亡数量 ,纹状体多巴胺含量 ,脑胶质源性神经营养因子 (GDNF)表达及自由基和抗自由基酶的变化。结果 :PD大鼠黑质存在明显的细胞凋亡 ,自由基反应增强 ,抗自由基酶和纹状体多巴胺含量及GDNF减少 ,与对照组存在显著性差异 ( P <0 0 5 )。结论 :自由基反应增强 ,营养因子缺乏及细胞凋亡参与了PD的发病 ,可能是其发病机制之一  相似文献   

5.
Recent advances in gene transfer methods, especially development of a high titer recombinant adeno-associated viral (AAV) vector, are making gene therapy for Parkinson's disease (PD) a feasible therapeutic option in the clinical arena. Efficient and long-term expression of genes for dopamine (DA)-synthesizing enzymes in the striatum restored local DA production and allowed behavioral recovery in animal models of PD. Moreover, sustained expression of a glial cell line-derived neurotrophic factor gene in the striatum rescued nigral neurons and led to functional recovery in a rat model of PD, even when treatment was delayed until after the onset of progressive degeneration. A clinical trial to evaluate the efficacy of subthalamic transduction to produce inhibitory transmitters is underway.  相似文献   

6.
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the nigro‐striatal pathway. Interestingly, it has already been shown that an intracerebral administration of neuropeptide Y (NPY) decreases the neurodegeneration induced by 6‐hydroxydopamine (6‐OHDA) in rodents and prevents loss of dopamine (DA) and DA transporter density. The etiology of idiopathic PD now suggest that chronic production of inflammatory mediators by activated microglial cells mediates the majority of DA‐neuronal tissue destruction. In an animal experimental model of PD, the present study shows that NPY inhibited the activation of microglia evaluated by the binding of the translocator protein (TSPO) ligand [3H]PK11195 in striatum and substantia nigra of 6‐OHDA rats. These results suggest a potential role for inflammation in the pathophysiology of the disease and a potential treatment by NPY in PD.  相似文献   

7.
Research in the last two decades has unveiled an important role for neuroinflammation in the degeneration of the nigrostriatal dopaminergic (DA) pathway that constitutes the pathological basis of the prevailing movement disorder, Parkinson's disease (PD). Neuroinflammation is characterized by the activation of brain glial cells, primarily microglia and astrocytes that release various soluble factors that include free radicals (reactive oxygen and nitrogen species), cytokines, and lipid metabolites. The majority of these glia-derived factors are proinflammatory and neurotoxic and are particularly deleterious to oxidative damage-vulnerable nigral DA neurons. As a proof of concept, various immunologic stimuli have been employed to directly induce glial activation to model DA neurodegeneration in PD. The bacterial endotoxin, lipopolysaccharide (LPS), has been the most extensively utilized glial activator for the induction of inflammatory DA neurodegeneration. In this review, we will summarize the various in vitro and in vivo LPS PD models. Furthermore, we will highlight the contribution of the LPS PD models to the mechanistic studies of PD pathogenesis and the search for neuroprotective agents for the treatment of PD.  相似文献   

8.
烟草成份保护多巴胺神经元作用的研究   总被引:2,自引:0,他引:2  
目的:探讨烟草成份保护多巴胺神经元对抗6-羟基多巴胺(6-OHDA)的神经毒性作用。方法:采用大鼠脑内立体注射6-OHDA建立帕金森病模型,连续观察术前4周开始分别给予被动吸烟和腹腔注射尼古丁(每次0.1mg/kg或0.4mg/kg,bid,持续6周)对阿朴吗啡诱发的旋转行为,纹状体多巴胺(dopamine,DA)的含量和黑质酪氨酸羟化酶(Tyrosine Hydroxylase,TH)阳性神经细胞数目的影响。结果:被动吸烟和腹腔注射尼古丁的大鼠旋转行为明显减少,受损侧纹状体DA含量和黑质TH阳性神经元的数目较对照组增高(P<0.01),高剂量尼古丁作为更为显著。结论:烟草成份可减轻6-OHDA对黑质DA神经元的损伤。  相似文献   

9.
帕金森病的炎症及抗炎药物的研究进展   总被引:1,自引:0,他引:1  
帕金森病是人类最常见的神经退行性运动障碍性疾病之一,其特征是中脑黑质致密部多巴胺能神经元变性丢失,纹状体内多巴胺水平降低,进而引起震颤、肌肉僵直、运动迟缓和姿势步态失调的症状。帕金森病的病理机制复杂,病因目前仍不清楚。但近年来,炎症反应在帕金森病中的作用引起人们的广泛关注,小胶质细胞的激活以及炎性因子的高表达参与帕金森病的发生、发展过程。应用抗炎药物延缓或阻止帕金森病的发生、发展已成为该领域新的研究热点。本文就帕金森病中的炎症机制以及抗炎药物的进展进行综述。  相似文献   

10.
Evidence from several studies suggests that the progressive degeneration of dopaminergic (DA) neurones of the substantia nigra pars compacta (SNc) in Parkinson's disease (PD) may in part be due to excessive release of glutamate from subthalamic projections onto nigral DA neurones. Previous in vitro studies have demonstrated that selective activation of Group III metabotropic glutamate receptors (mGluR) negatively modulates excitatory transmission in the SNc and is neuroprotective against glutamate-mediated toxicity. Consistent with this, we have reported preliminary data indicating that the selective group III mGluR agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4) can also protect the nigrostriatal system against 6-hydroxydopamine (6-OHDA) toxicity in vivo. We have now extended these preliminary studies in this model and report here that both acute and subchronic intranigral injections of l-AP4 provide significant protection of the nigrostriatal system against 6-OHDA toxicity. This neuroprotection displays a bell-shaped profile with a clear concentration-dependent relationship. In contrast, when administered to animals 7 days post-6-OHDA lesioning, l-AP4 significantly protects the functionality but not the integrity of the nigrostriatal system. We further demonstrate that neuroprotection by l-AP4 in vivo is reversed by coadministration of the selective Group III mGluR antagonist (RS)-alpha-methylserine-O-phosphate, confirming a receptor-mediated mechanism of action. These data provide further compelling evidence that selective activation of Group III mGluR is neuroprotective in an in vivo experimental model of PD, a finding that may have important implications for the future treatment of this disease.  相似文献   

11.
To elucidate effective and long-lasting neuroprotective strategies, we analysed a combination of mitochondrial protection and neurotrophic support in two well-defined animal models of neurodegeneration, traumatic lesion of optic nerve and complete 6-hydroxydopamine (6-OHDA) lesion of nigrostriatal pathway. Neuroprotection by BclX(L), Glial cell line-derived neurotrophic factor (GDNF) or BclX(L) plus GDNF co-expression were studied at 2 weeks and at 6-8 weeks after lesions. In both lesion paradigms, the efficacy of this combination approach significantly differed depending on post-lesion time. We show that BclX(L) expression is more important for neuronal survival in the early phase after lesions, whereas GDNF-mediated neuroprotection becomes more prominent in the advanced state of neurodegeneration. BclX(L) expression was not sufficient to finally inhibit degeneration of deafferentiated central nervous system neurons. Long-lasting GDNF-mediated neuroprotection depended on BclX(L) co-expression in the traumatic lesion paradigm, but was independent of BclX(L) in the 6-OHDA lesion model. The results demonstrate that neuroprotection studies in animal models of neurodegenerative diseases should generally be performed over extended periods of time in order to reveal the actual potency of a therapeutic approach.  相似文献   

12.
13.
Neurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinson's disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA). Striatal PTN overexpression led to significant neuroprotection of tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) and THir neurite density in the striatum, with long-term PTN overexpression producing recovery from 6-OHDA-induced deficits in contralateral forelimb use. Transduced striatal PTN levels were increased threefold compared to adult striatal PTN expression and approximated peak endogenous developmental levels (P1). rAAV2/1 vector exclusively transduced neurons within the striatum and SNpc with approximately half the total striatal volume routinely transduced using our injection parameters. Our results indicate that striatal PTN overexpression can provide neuroprotection for the 6-OHDA lesioned nigrostriatal system based upon morphological and functional measures and that striatal PTN levels similar in magnitude to those expressed in the striatum during development are sufficient to provide neuroprotection from Parkinsonian insult.  相似文献   

14.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is characterized by degeneration and loss of dopaminergic neurons of the substantia nigra. Increasing evidence has indicated that oxidative stress plays a pivotal role in the pathogenesis of Parkinson’s disease (PD). Therapeutic options that target the antioxidant machinery may have potential in the treatment of PD. Cordycepin, a nucleoside isolated from Cordyceps species displayed potent antioxidant, anti-inflammatory and anticancer properties. However, its neuroprotective effect against 6-OHDA neurotoxicity as well as underlying mechanisms is still unclear. In this present study, we investigated the protective effect of cordycepin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity and its underlying mechanism. We observed that cordycepin effectively inhibited 6-OHDA-induced cell death, apoptosis and mitochondrial dysfunction. Cordycepin also inhibited cell apoptosis induced by 6-OHDA as observed in the reduction of cytochrome c release from the mitochondrial as well as the inhibition of caspase-3. In addition cordycepin markedly reduced cellular malondialdehyde (MDA) content and intracellular reactive oxygen species (ROS) level. Cordycepin also significantly increased the antioxidant enzymes; superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in 6-OHDA-treated cells. The results obtained unambiguously demonstrated that cordycepin protects PC12 cells against 6-OHDA-induced neurotoxicity through its potent antioxidant activity.  相似文献   

15.
目的比较 6- OHDA毁损黑质 , 黑质 + 内侧前脑束 , 纹状体而制作 PD模型的异同及可靠性 . 方法在脑立体定位技术下 , 将 20 μ g 6- OHDA分两点注入大鼠上述脑区 , 术后不同时间用阿扑吗啡诱发大鼠异常旋转行为 , 并进行检测比较 . 结果 6- OHDA毁损黑质及黑质 + 内侧前脑束 , PD鼠于术后一周即出现稳定旋转行为 , 两部位模型成功率均为 50% ; 纹状体毁损后一周 PD鼠可出现轻微旋转 , 逐渐增强 , 模型成功率可达 80% . 结论 6- OHDA毁损大鼠黑质 , 黑质 + 内侧前脑束 , 纹状体均可制作成功的 PD模型 .  相似文献   

16.
A proteomic approach in the study of an animal model of Parkinson's disease   总被引:10,自引:0,他引:10  
BACKGROUND: The aetiology of Parkinson's disease (PD), an age-related disorder characterized by a progressive degeneration of dopaminergic neurons of the substantia nigra (SN) pars compacta, remains unclear. Current treatments, such as administration of L-DOPA, are only symptomatic and do not stop or delay the progressive loss of neurons. In fact, it has been suggested that the dopamine precursor L-DOPA, increases generation of reactive oxygen species (ROS) leading to further neuronal damage. A similar loss in nigrostriatal dopaminergic neurons is produced on intracerebral administration of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA). In an animal model of PD, termed 'the hemiparkinsonian rat', unilateral injection of 6-OHDA into the nigrostriatal pathway results in extensive loss of dopaminergic cells in the ipsolateral SN. In an attempt to identify some of the proteins that are involved in dopaminergic neuronal death, we used the proteomic methods to analyze this animal model of PD. METHODS: Five hemiparkinsonian rats were obtained by intranigral stereotaxic injection of 6-OHDA.The right 6-OHDA-lesioned substantia nigra and striatum tissues along with the left, unlesioned controlateral tissues, were excised and homogenized, using urea-based buffer, to extract the tissues protein. The separation of the protein mixtures and the visualization of the protein patterns obtained were performed using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Protein profiles of control and treated tissues were compare by the PDQuest 2D-gel analysis software (BIO-Rad laboratory). The protein spots showing differential expression were analysed by matrix assisted laser desorption/ionizing time of flight (MALDI-TOF) mass spectrometry. RESULTS: The brain protein extraction and solubilization protocol was validated obtaining a satisfactory protein profile. In comparison to the normal rats, hemiparkinsonian animals exhibited a different expression in alpha-enolase and beta-actin in substantia nigra and striatum, respectively. CONCLUSION: The proteomic study of 6-OHDA-induced lesions in the nigrostriatial pathway allowed us to identify two proteins, alpha-enolase and beta-actin, showing increased levels in the 6-OHDA-lesioned brain tissues compared to control. Previous studies described the same proteins as oxidized and proteins in Alzheimer's disease (AD) brain. Our preliminary data could mirror those results pointing out a common mechanism of neurodegenerative diseases.  相似文献   

17.
Parkinson's disease (PD) is a progressive, chronic disease characterized by dyskinesia, rigidity, instability, and tremors. The disease is defined by the presence of Lewy bodies, which primarily consist of aggregated α-synuclein protein, and is accompanied by the loss of monoaminergic neurons. Current therapeutic strategies only give symptomatic relief of motor impairment and do not address the underlying neurodegeneration. Hence, we have identified Cu(II)(atsm) as a potential therapeutic for PD. Drug administration to four different animal models of PD resulted in improved motor and cognition function, rescued nigral cell loss, and improved dopamine metabolism. In vitro, this compound is able to inhibit the effects of peroxynitrite-driven toxicity, including the formation of nitrated α-synuclein oligomers. Our results show that Cu(II)(atsm) is effective in reversing parkinsonian defects in animal models and has the potential to be a successful treatment of PD.  相似文献   

18.
We elucidated the effects of parkinsonian degeneration on trafficking of AAV2-GDNF in the nigro-striatum (nigro-ST) of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. Vector infused into striatum (ST) was transported to substantia nigra (SN), both pars compacta (SNc), and pars reticulata (SNr). In the lesioned hemisphere, glial cell line–derived neurotrophic factor (GDNF) immunoreactivity was only found in SNr consistent with elimination of SNc dopaminergic (DA) neurons by 6-OHDA. Further analysis showed that striatal delivery of AAV2-GDNF resulted in GDNF expression in globus pallidus (GP), entopeduncular nucleus (EPN), and subthalamic nucleus (STN) in both lesioned and unlesioned hemispheres. Injection of vector into SN, covering both SNc and SNr, resulted in striatal expression of GDNF in the unlesioned hemisphere but not in the lesioned hemisphere. No expression was seen in GP or EPN. We conclude that adeno-associated virus serotype 2 (AAV2) is transported throughout the nigro-ST exclusively by anterograde transport. This transport phenomenon directs GDNF expression throughout the basal ganglia in regions that are adversely affected in Parkinson''s disease (PD) in addition to SNc. Delivery of vector to SN, however, does not direct expression of GDNF in ST, EPN, or GP. On this basis, we believe that striatal delivery of AAV2-GDNF is the preferred course of action for trophic rescue of DA function.  相似文献   

19.
Mechanism of specific dopaminergic neuronal death in Parkinson's disease   总被引:2,自引:0,他引:2  
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic (DAergic) neurons of the nigrostriatal system, with resulting reduction in striatal dopamine (DA) concentration. Various mechanisms have been implicated in the pathogenesis and progression of PD. Among them, mitochondrial dysfunction, inflammation and oxidative stress had been accepted as the most plausible mechanism of disease progression. The free radicals/oxidative stress produced by MPTP, 6-hydroxydopamine, rotenone, activated microglias, and disturbances in mitochondrial respiratory enzymes provide a common pathway for the progression of all kinds of neurons. On the other hand, numerous studies on DA-induced neurotoxicity have been reported recently, and DA itself exerts cytotoxicity in DAergic neurons mainly due to the generation of highly reactive DA -quinones which are DAergic neuron-specific cytotoxic molecules. DA quinones may irreversibly alter protein function through the formation 5-cysteinyl-dopamine on the protein. For example, the formation of DA quinone-alpha-synuclein complex consequently increases cytotoxic protofibrils and covalent modification of functional enzymes. Thus, DA quinones play an important role in 'specific' DAergic neuro-degeneration of PD.  相似文献   

20.
Purpose In the 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease (PD), it is important to determine lesion severity. This evaluation can be performed in vivo, through evaluation of dopamine (DA)-dependent motor function or with small animal positron emission tomography (microPET), or at postmortem, by examining markers for DA neurons.Procedures Rats were given mild or severe unilateral 6-OHDA lesions, scanned with the tracer [11C](±)dihydrotetrabenazine ([11C]DTBZ), and tested on a tapered/ledged beam-walking task. At postmortem, autoradiography was performed with [11C]DTBZ.Results Autoradiography was significantly correlated with microPET and behavioral scores, whereas the microPET and behavioral data were not significantly correlated.Conclusions This study shows that behavioral analysis, microPET, and autoradiography are all good tools for measuring the integrity of the DA system, and demonstrates the utility of the tapered/ledged beam-walking test to screen for lesion severity, as well as the importance of including postmortem analysis after in vivo imaging studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号