首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

PURPOSE

Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts.

MATERIALS AND METHODS

The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (α=.05).

RESULTS

Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group.

CONCLUSION

Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes.  相似文献   

2.

Objectives:

To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days).

Material and Methods:

Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey''s test (α= 0.05).

Results:

The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001). All eight experimental means (MPa) were compared by the Tukey''s test (p<0.05) and the following results were obtained: Tyrian-One Step Plus/C&B/24 h (22.4±7.3); Tyrian-One Step Plus/Variolink II/24 h (39.4±11.6); Xeno III/C&B/24 h (40.3±12.9); Xeno III/Variolink II/24 h (25.8±10.5); Tyrian-One Step Plus/C&B/90 d (22.1±12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2); Xeno III/C&B/90 d (27.0±13.5); Xeno III/Variolink II/ 90 d (33.0±8.9).

Conclusions:

Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.  相似文献   

3.

Objective:

This in vitro study evaluated the influence of luting agents on ultrasonic vibration time for intraradicular cast post removal.

Material and Methods:

After endodontic treatment, 30 roots of extracted human canines were embedded in resin cylinders. The post-holes were prepared at 10 mm depth and their impressions were taken using autopolymerizing acrylic resin. After casting procedures using a nickel-chromium alloy, the posts were randomly distributed into 3 groups (n=10) according to the luting material: G1- zinc phosphate (SS White) (control group), G2 - glass ionomer cement (Vidrion C; SS White), and G3- resin cement (C&B; Bisco). In G3, the adhesive procedure was performed before post cementation. After 24 h, the cement line was removed at the post/tooth interface using a fine diamond bur, and the ST-09 tip of an Enac ultrasound unit was applied at maximum power on all surfaces surrounding the posts. The application time was recorded with a chronometer until the post was completely dislodged and data were analyzed by ANOVA and Tukey''s test (p<0.05).

Results:

The roots were removed from the acrylic resin and inspected to detect cracks and/or fractures. The means for G1, G2, and G3 were 168.5, 59.5, and 285 s, respectively, with statistically significant differences among them. Two G3 posts resisted removal, one of which developed a vertical fracture line.

Conclusions:

Therefore, the cement type had a direct influence on the time required for ultrasonic post removal. Compared to the zinc phosphate and glass ionomer cements, the resin cement required a longer ultrasonic vibration time.  相似文献   

4.

PURPOSE

The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement.

MATERIALS AND METHODS

Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 µm, storage: thermocycled or not). They were cut into microbeams and stored in 37℃ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe''s post hoc tests were used for statistical analysis (α=95%).

RESULTS

All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group.

CONCLUSION

When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength.  相似文献   

5.

PURPOSE

This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique.

MATERIALS AND METHODS

Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% H3PO4 + ED Primer) or two-step self-etch adhesive resin (Clearfil SE Bond). Specimens were subjected to shear bond strength test using the universal testing machine (0.5 mm/min). The failure types were analyzed using a stereomicroscope and quality of hybrid layer was observed under a scanning electron microscope. The data (MPa) were analyzed using two-way ANOVA and Tukey''s tests (α=.05).

RESULTS

Overall, PAN adhesive cement showed significantly higher mean bond strength (12.5 ± 2.3 - 14.1 ± 2.4 MPa) than CSA cement (9.3 ± 1.4 - 13.9 ± 1.9 MPa) (P<.001). Adhesive failures were more frequent in CSA cement groups when used in conjunction with two-step self-adhesive (68%) or no adhesive at all (66%). Hybrid layer quality was inferior in CSA compared to PAN cement in all conditions.

CONCLUSION

In clinical situations where bonding to dentin substrate is crucial, both conventional and self-adhesive resin cements based on 10-MDP can benefit from etch-and-rinse technique to achieve better quality of adhesion in the early clinical period.  相似文献   

6.

PURPOSE

Among the surface treatment methods suggested to enhance the adhesion of resin cement to fiber-reinforced composite posts, conflicting results have been obtained with silanization. In this study, the effects of silanization, heat activation after silanization, on the bond strength between fiber-reinforced composite post and resin cement were determined.

MATERIALS AND METHODS

Six groups (n=7) were established to evaluate two types of fiber post (FRC Postec Plus, D.T. Light Post) and three surface treatments (no treatment; air drying; drying at 38℃). Every specimen were bonded with dual-curing resin cement (Variolink N) and stored in distilled water for 24 hours at 37℃. Shear-bond strength (MPa) between the fiber post and the resin cement were measured using universal testing device. The data were analyzed with 1-way ANOVA and by multiple comparisons according to Tukey''s HSD (α=0.05). The effect of surface treatment, fiber post type, and the interactions between these two factors were analyzed using 2-way ANOVA and independent sample T-tests.

RESULTS

Silanization of the FRC Postec Plus significantly increased bond strength compared with the respective non-treated control, whereas no effect was determined for the D.T. Light Post. Heat drying the silane coupling agent on to the fiber-reinforced post did not significantly improve bond strength compared to air-syringe drying.

CONCLUSION

The bond strength between the fiber-reinforced post and the resin cement was significantly increased with silanization in regards to the FRC Postec Plus post. Bond strength was not significantly improved by heat activation of the silane coupling agent.  相似文献   

7.

PURPOSE

Post surface conditioning is necessary to expose the glass fibers to enable bonding between fiber post and resin cement. The purpose of the present study was to evaluate the effect of different surface conditioning on tensile bond strength (TBS) of a glass fiber reinforced post to resin cement.

MATERIALS AND METHODS

In this in vitro study, 40 extracted single canal central incisors were endodontically treated and post spaces were prepared. The teeth were divided into four groups according to the methods of post surface treatment (n=10): 1) Silanization after etching with 20% H2O2, 2) Silanization after airborne-particle abrasion, 3) Silanization, and 4) No conditioning (Control). Adhesive resin cement (Panavia F 2.0) was used for cementation of the fiber posts to the root canal dentin. Three slices of 3 mm thick were obtained from each root. A universal testing machine was used with a cross-head speed of 1 mm/minute for performing the push-out tests. Two-way ANOVA and Tukey post hoc tests were used for analyzing data (α=0.05).

RESULTS

It is revealed that different surface treatments and root dentin regions had significant effects on TBS, but the interaction between surface treatments and root canal regions had no significant effect on TBS. There was significant difference among H2O2 + Silane Group and other three groups.

CONCLUSION

There were significant differences among the mean TBS values of different surface treatments. Application of hydrogen peroxide before silanization increased the bond strength between resin cements and fiber posts. The mean TBS mean values was significantly greater in the coronal region of root canal than the middle and apical thirds.  相似文献   

8.

Objective

This study determined the effects of various surface treatment modalities on the bond strength of composite resins to glass-ionomer cements.

Material and Methods

Conventional (KetacTM Molar Quick ApplicapTM) or resin-modified (PhotacTM Fil Quick AplicapTM) glass-ionomer cements were prepared. Two-step etch-rinse & bond adhesive (AdperTM Single Bond 2) or single-step self-etching adhesive (AdperTM PromptTM L-PopTM) was applied to the set cements. In the etch-rinse & bond group, the sample surfaces were pre-treated as follows: (1) no etching, (2) 15 s of etching with 35% phosphoric acid, (3) 30 s of etching, and (4) 60 s of etching. Following the placement of the composite resin (FiltekTM Z250), the bond strength was measured in a universal testing machine and the data obtained were analyzed with the two-way analysis of variance (ANOVA) followed by the Tukey''s HSD post hoc analysis (p=0.05). Then, the fractured surfaces were examined by scanning electron microscopy.

Results

The bond strength of the composite resin to the conventional glass-ionomer cement was significantly lower than that to the resin-modified glass-ionomer cement (p<0.001). No significant differences were determined between the self-etching and etch-rinse & bond adhesives at any etching time (p>0.05). However, a greater bond strength was obtained with 30 s of phosphoric acid application.

Conclusions

The resin-modified glass-ionomer cement improved the bond strength of the composite resin to the glass-ionomer cement. Both etch-rinse & bond and self-etching adhesives may be used effectively in the lamination of glass-ionomer cements. However, an etching time of at least 30 s appears to be optimal.  相似文献   

9.

Objective

The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM.

Material and Methods

Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student''s t-test. The failure modes of all groups were also evaluated.

Results

The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure.

Conclusion

The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.  相似文献   

10.
One of the clinically relevant problems dentists face when restoring endodontically treated teeth is the mismatch between fiber post and post space diameters, which results in an excessively thick resin cement layer. Fiber post relining appears as a solution for this problem.

Objectives:

The aim of this study was to evaluate the effect of fiber post relining with composite resin on push-out bond strength.

Material and Methods:

Twenty bovine incisors were selected to assess post retention. The crowns were removed below the cementoenamel junction and the root canals were treated endodontically and flared with diamond burs. The roots were allocated into two groups (n=10): G1: fiber posts without relining and G2: fiber posts relined with composite resin. The posts were cemented with a dual-cured resin cement and the specimens were sectioned transversally. Three 1.5-mm thick slabs were obtained per root and identified as cervical, medium and apical thirds. The push-out test was performed at a crosshead speed of 0.5 mm/min until post dislodgement occurred. The failure mode of fractured specimens was analyzed under scanning electron microscopy. Data were analyzed by split-plot ANOVA and post-hoc Tukey''s test at a pre-set alpha of 0.05.

Results:

Relined fiber posts presented higher retention values than non-relined post in all thirds. No statistically significant differences (p>0.05) were found among thirds for relined posts. All failures occurred at the interface between resin cement and root dentin.

Conclusions:

Relining with composite resin seems to be an effective method to improve the retention of fiber posts to flared root canals.  相似文献   

11.

PURPOSE

Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core.

MATERIALS AND METHODS

Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 µm aluminum oxide particles (Al2O3), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 µm Al2O3 + Al coating and air particle abrasion with 50 µm Al2O3 + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (α=.05).

RESULTS

The highest bond strengths were obtained by air abrasion with 50 µm Al2O3, the lowest bond strengths were obtained in polishing + Al coating group (P<.05).

CONCLUSION

Al and AlN coatings using the reactive magnetron sputtering technique were found to be ineffective to increase the bond strength of adhesive resin cement to zirconia core.  相似文献   

12.

Objective

This study evaluated the effect of two different eugenol-based root canal sealers on the retention of prefabricated metal posts luted with adhesive resin cement.

Materials and methods

Thirty prefabricated ParaPosts randomly divided among three groups of 10 each were luted into extracted single-rooted teeth with adhesive resin cement. Two of the groups had been obturated with Gutta–Percha and one of two eugenol-based root canal sealers (Endofil and Tubli-Seal), respectively. The third group was not obturated and served as the control. The forces required for dislodgment of posts from their prepared post spaces were recorded using a universal testing machine. Data were statistically analyzed using one-way ANOVA and Tukey’s multiple range test was used to determine the mean differences.

Results

Endofil and Tubli-Seal groups demonstrated significantly reduced retention compared to the unobturated (control) group (P < 0.05).

Conclusion

Eugenol-based sealers significantly reduced the retention of prefabricated posts luted with adhesive resin cement.  相似文献   

13.

PURPOSE

The aim of this study was to evaluate whether the push-out bond strength varies between oval and circular fiber posts, and to examine the effect on the resin cement thicknesses around the posts.

MATERIALS AND METHODS

Eighteen mandibular premolar roots were separated into two groups for oval and circular fiber posts systems. Post spaces were prepared and fiber posts were luted to the post spaces. Roots were cut horizontally to produce 1-mm-thick specimens. Resin cement thicknesses were determined with a metallographic optical microscope and push-out tests were done.

RESULTS

No significant differences were observed in terms of push-out bond strength between the oval and circular fiber posts (P>.05) The resin cement thicknesses of the oval posts were greater than those of the circular posts group in the coronal, middle and apical specimens (P<.05).

CONCLUSION

In the light of these results, it can be stated that resin cement thickness does not affect the push-out bond strength.  相似文献   

14.

Objective

This study evaluated the performance of different adhesive systems in fiber post placement aiming to clarify the influence of different hydrophobic experimental blend adhesives, and of one commercially available adhesive on the frictional retention during a luting procedure.

Material and Methods

One luting agent (70 Wt% BisGMA, 28.5% TEGDMA; 1.5% p-tolyldiethanolamine) to cement fiber posts into root canals was applied with 4 different adhesive combinations: Group 1: The etched roots were rinsed with water for 30 s to remove the phosphoric acid, then rinsed with 99.6% ethanol for 30 s, and blotdried. A trial adhesive (base to catalyst on a 1:1 ratio) was used with an experimental luting agent (35% Bis-GMA, 14.37% TeGDMA, 0.5% eDMAB, 0.13% CQ); Group 2: A trial adhesive (base to catalyst on a 1:2 ratio) was luted as in Group 1; Group 3: One-Step Plus (OSP, Bisco Inc.) following the ethanol bonding technique in combination with the luting agent as in Group 1; Group 4: OSP strictly following the manufacturer''s instructions using the luting agent as in Group 1. The groups were challenged with push-out tests. Posted root slices were loaded until post segment extrusion in the apical-coronal direction. Failure modes were analyzed under scanning electron microscopy.

Results

Push-out strength was not significantly influenced by the luting agent (p>0.05). No statistically significant differences among the tested groups were found as Group 1 (exp 1 - ethanol-wet bonding technique)=Group 2 (exp 2 - ethanol-wet bonding technique)=Group 3 (OSP - ethanol-wet bonding technique)=Group 4 (control, OSP - water-wet bonding technique) (p>0.05). The dominating failure modes in all the groups were cohesive/adhesive failures, which were predominantly observed on the post/luting agent interface.

Conclusions

The results of this study support the hypothesis that the proposal to replace water with ethanol to bond fiber posts to the root canal using highly hydrophobic resin is plausible, but this seems to be more the proof of a concept than a clinically applicable procedure.  相似文献   

15.

Objectives

Because fibre post restorations are influenced by multiple factors such as the types of bonding materials, the dentine region and the time under moist exposure, this study sought to determine the bond strength of endodontic restorations and its relation to the degree of conversion of the cement layer and the molecular structure of the dentine-bonded joints.

Methods

The performance of 2 etch-and-rinse (All-Bond 2 and One-Step Plus) and 2 self-etch (Clearfil SE Bond and Xeno III) adhesives at post spaces regions, after 7 d or 4 m, was evaluated. FRC Postec Plus posts were cemented to the root canal with a dual-cure resin cement (Duo-Link). Transverse sections of the tooth were subjected to push-out testing, to degree-of-conversion measurements and to hybrid layer evaluation through μ-Raman spectroscopy.

Results

Coronal bonding was higher than cervical and middle bonding. The hybrid layer was thicker for the etch-and-rinse systems, with thicknesses decreasing towards the middle region. The degree of conversion measured for the 3-step etch-and-rinse group after 4 m was significantly higher than that for the self-etching groups.

Conclusions

Although not totally stable at the adhesive–dentine interface, the 3-step etch-and-rinse adhesive in the coronal dentine provided the best bond strength, degree of conversion of the cement and hybrid layer thickness in post restorations, in both short- and long-term analyses.  相似文献   

16.

Objectives

The aim of this study was to investigate the bond strength of ceramic restorations luted using a self-adhesive resin cement (RelyX Unicem, 3M ESPE) under different dentin conditions.

Material and Methods

In the experimental groups, ceramic restorations were luted to bovine incisors with RelyX Unicem under the following conditions: [Dry dentin]: surface was dried using air stream for 15 s; [Moist dentin]: excess dentin moisture was removed with absorbent paper; [Bonding agent]: Clearfil SE Bond (Kuraray) self-etching adhesive system was previously applied to dentin. In the Control group, cementation was done using an etch-and-rinse adhesive (Excite DSC) and Variolink II resin cement (Ivoclar Vivadent). Photoactivation of the resin cements was performed with UltraLume LED 5 unit (Ultradent). The restorations (n=5 per group) were sectioned into beams and microtensile testing was carried out. Data were subjected to ANOVA and Tukey''s test (p<0.05). Failure modes were classified under Scanning Electron Microscopic (SEM) (×120 magnification).

Results

The bond strength was dependent on the moisture status of the dentin. Bond strength in the "dry dentin group" was significantly lower than that of all other groups, which showed similar results. A predominance of mixed failures was detected for the control group, while a predominance of adhesive failures was observed for the "bonding agent" and "dry dentin" groups. The "moist dentin" group presented predominantly cohesive failures within the luting material. The previous application of a self-etching adhesive showed no significant effect.

Conclusions

Only excess dentin moisture should be removed for the cementation of ceramic restorations with self-adhesive resin cements.  相似文献   

17.

Introduction:

Disinfection of dentin surfaces is desirable so long as it does not interfere with subsequent bonding of adhesive resins.

Objective:

To test the null hypothesis that bond strengths to dentin are not affected by previous application of an iodine disinfecting solution.

Materials and Methods:

Twenty-four extracted non-carious molars were selected. Occlusal enamel was removed producing a flat dentin substrate. Test teeth were all treated with 2% Iodine disclosing/disinfecting solution (I2DDS) for 20 sec and rinsed for 20 sec followed by the application of self- or total- etching bonding systems, generating five adhesive groups (n=3): Single Bond;; Prime & Bond NT; Clearfil SE Bond; Opti-Bond Plus. The control groups (n=3 per adhesive) had no disclosing/disinfectant application prior to adhesive application. A 4-mm thick resin restoration was built up on each tooth for microtensile testing. Statistical analyses between experimental and control groups were performed by student''s t-test (α = 0.05).

Results:

In general, experimental groups (previously treated with I2DDS) showed significantly lower bond strength values when compared with their respective controls (p<0.05), except for group Prime &Bond I2 that did not significantly differ from its control (p>0.05).

Conclusion:

Acetone-base adhesive systems seem not to be affected by the application of I2DDS prior to etching and bonding procedures.  相似文献   

18.

Objective

To evaluate the shear bond strength of one-step self-etch adhesives with different co-solvent ingredients to dry or moist dentin.

Materials and methods

A total of 60 extracted teeth were used in this study, and were divided according to the adhesive systems and dentin conditions into 6 groups of 10 teeth each [Xeno III – dry dentin, Xeno III – moist dentin, Adper Prompot L-Pop – dry dentin, Adper Prompot L-Pop – moist dentin, iBond – dry dentin, and iBond – moist dentin]. Resin composite cylinder was built up on each specimen, and then thermocycled. A shear load was applied to the specimens using universal testing (Instron machine) at a cross-head speed of 0.5 mm/min until failure occurred. Data were statistically analyzed by one-way ANOVA and Bonferroni multiple comparison test at 95% confidence level.

Results and conclusion

Based on the findings of this study: The highest mean shear bond strength to dry dentin was seen when Xeno III containing ethanol co-solvent ingredient was used. The highest mean shear bond strength to moist dentin was seen when iBond which contains acetone co-solvent ingredient was used. In the absence of a co-solvent ingredient in self-etch adhesive (Adper Prompot L-Pop), the mean shear bond strengths to dry and moist dentin were low with no significant difference between them.  相似文献   

19.

Objective

This study investigated the effects of different surface treatments on the tensile bond strength of an autopolymerizing silicone denture liner to a denture base material after thermocycling.

Material and Methods

Fifty rectangular heat-polymerized acrylic resin (QC-20) specimens consisting of a set of 2 acrylic blocks were used in the tensile test. Specimens were divided into 5 test groups (n=10) according to the bonding surface treatment as follows: Group A, adhesive treatment (Ufi Gel P adhesive) (control); Group S, sandblasting using 50-µm Al2O3; Group SCSIL, silica coating using 30-µm Al2O3 modified by silica and silanized with silane agent (CoJet System); Group SCA, silica coating and adhesive application; Group SCSILA, silica coating, silane and adhesive treatment. The 2 PMMA blocks were placed into molds and the soft lining materials (Ufi Gel P) were packed into the space and polymerized. All specimens were thermocycled (5,000 cycles) before the tensile test. Bond strength data were analyzed using 1-way ANOVA and Duncan tests. Fracture surfaces were observed by scanning electron microscopy. X-ray photoelectron spectrometer (XPS) and Fourier Transform Infrared spectrometer (FTIR) analysis were used for the chemical analysis and a profilometer was used for the roughness of the sample surfaces.

Results

The highest bond strength test value was observed for Group A (1.35±0.13); the lowest value was for Group S (0.28±0.07) and Group SCSIL (0.34±0.03). Mixed and cohesive type failures were seen in Group A, SCA and SCSILA. Group S and SCSIL showed the least silicone integrations and the roughest surfaces.

Conclusion

Sandblasting, silica coating and silane surface treatments of the denture base resin did not increase the bond strength of the silicone based soft liner. However, in this study, the chemical analysis and surface profilometer provided interesting insights about the bonding mechanism between the denture base resin and silicone soft liner.  相似文献   

20.

Objectives

The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin).

Methods

Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results were analyzed by one-way ANOVA and t-test. Statistically significant differences were defined at the α = 0.05 level. Bond failures were categorized as adhesive, cohesive, or mixed.

Results

The SBS values ranged from 3.76 to 6.81 MPa for cements bonded to enamel and from 4.48 to 5.94 MPa for cements bonded to dentin (p > 0.05 between surfaces). There were no statistically significant differences between the SBS values to enamel versus dentin for any given cement type. All cements exhibited adhesive failure at the resin/tooth interface.

Conclusions

Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号