首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An innate immune response to bacterial components is speculated to be involved in the pathogenesis of primary biliary cirrhosis (PBC). Recently, CD4-positive T helper type 17 (Th17) cells, characterized by the secretion of interleukin (IL)-17, have been implicated in the pathogenesis of autoimmune diseases. Human Th17 cells are generated from Th0 cells by IL-6 and IL-1β and maintained by IL-23. In this study, the role of IL-17 in PBC and its association with biliary innate immunity were examined. Using cultured human biliary epithelial cells (BECs), the expression of Th17-related cytokines and chemokines and changes therein on treatment with pathogen-associated molecular patterns (PAMPs) and IL-17 were examined. Immunohistochemistry for IL-17 and Th17-related cytokines was performed using tissue samples of human liver. Consequently, the expression of IL-6, IL-1β, IL-23p19 and IL-23/IL-12p40 mRNAs, and their up-regulation by PAMPs, were found in BECs. Moreover, BECs possessed IL-17-receptors and stimulation with IL-17 induced production of IL-6, IL-1β, IL-23p19 and chemokines. Several IL-17-positive cells had infiltrated damaged bile ducts and the expression of IL-6 and IL-1β was enhanced in the bile ducts of PBC patients. In conclusion, IL-17-positive cells are associated with the chronic inflammation of bile ducts in PBC which is associated causally with the biliary innate immune responses to PAMPs.  相似文献   

3.
Helper CD4+ T-cell subsets have improved our understanding of adaptive immunity in humans and in animal models of disease. These include T helper type 1 (Th1), Th2 and the interleukin-17 (IL-17) -producing population ‘Th17’. Th2 cells have been described as orchestrating the immune response in allergic disease based on studies with patient samples and animal models. The cytokine IL-9 has largely been regarded as a Th2 cytokine that makes multifocal contributions to allergic disease. Recent data suggest that under certain conditions relevant to chronic disease (IL-4 and transforming growth factor-β), a distinct population of IL-9-producing ‘Th9’ helper T cells can exist. The contribution of Th9 cells in allergic disease is currently unknown, and this review will propose a model for how these cells may regulate chronic allergic inflammation.  相似文献   

4.
The emerging role of interleukin (IL)-17 as a hallmark proinflammatory cytokine of the adaptive immune system, produced primarily by a new T helper cell subset termed ‘Th17’, has received considerable attention. Differentiation of Th17 cells is driven by the simultaneous presence of transforming growth factor-β and certain inflammatory cytokines (e.g. IL-6, IL-21), and recent studies have shown that inflammation instigated by IL-17-producing cells is central to the development and pathogenesis of several human autoimmune diseases and animal models of autoimmunity. In this review, we focus on the information regarding IL-17 and systemic lupus erythematosus (SLE), a chronic autoimmune disease. The work that has explored the development and behaviour of IL-17-producing cells in SLE is discussed, and different mechanisms by which IL-17 could potentially augment inflammation and autoantibody production in the context of SLE are proposed.  相似文献   

5.
Interleukin-17 (IL-17)-producing cells play a critical role in mucosal immunity including the respiratory tract. This review will highlight recent advances in our understanding of these cells in mucosal immunity in the lung as well as their potential pathogenic roles in respiratory diseases. The IL-17-producing cells include γδ T cells, natural killer cells, group 3 innate lymphoid cells, and T helper type 17 (Th17) cells. There have been recent advances in our understanding of these cell populations in the lung as well as emerging data on how these cells are regulated in the lung. Moreover, Th17 cells may be a key component of tissue-resident memory cells that may be acquired over time or elicited by mucosal immunization that provides the host with enhanced immunity against certain pathogens.  相似文献   

6.
Transcriptional Regulation of T Helper 17 Cell Differentiation   总被引:1,自引:0,他引:1  
  相似文献   

7.
In order to clarify the probiotic features of immunomodulation, cytokine production by murine spleen and Peyer’s patch (PP) cells was examined in response to probiotic and pathogenic bacteria. In spleen cells, probiotic Lactobacillus casei induced interleukin (IL)-12 production by CD11b+ cells more strongly than pathogenic Gram-positive and Gram-negative bacteria and effectively promoted the development of T helper (Th) type 1 cells followed by high levels of secretion of interferon (IFN)-γ. Although the levels of IL-12 secreted by PP cells in response to L. casei were lower in comparison with spleen cells, Th1 cells developed as a result of this low-level induction of IL-12. However, IFN-γ secretion by the L. casei-induced Th1 cells stimulated with a specific antigen was down-regulated in PP cells. Development of IL-17-producing Th17 cells was efficiently induced in PP cells by antigen stimulation. Lactobacillus casei slightly, but significantly, inhibited the antigen-induced secretion of IL-17 without a decrease in the proportion of Th17 cells. No bacteria tested induced the development of IL-10-producing, transforming growth factor-β-producing or Foxp3-expressing regulatory T cells, thus suggesting that certain probiotics might regulate proinflammatory responses through as yet unidentified mechanisms in PP cells. These data show probiotic L. casei to have considerable potential to induce IL-12 production and promote Th1 cell development, but the secretion of proinflammatory cytokines such as IL-12 and IL-17 may be well controlled in PP cells.  相似文献   

8.
Ouyang W  Kolls JK  Zheng Y 《Immunity》2008,28(4):454-467
T helper 17 (Th17) cells belong to a recently identified T helper subset, in addition to the traditional Th1 and Th2 subsets. These cells are characterized as preferential producers of interleukin-17A (IL-17A), IL-17F, IL-21, and IL-22. Th17 cells and their effector cytokines mediate host defensive mechanisms to various infections, especially extracellular bacteria infections, and are involved in the pathogenesis of many autoimmune diseases. The receptors for IL-17 and IL-22 are broadly expressed on various epithelial tissues. The effector cytokines of Th17 cells, therefore, mediate the crucial crosstalk between immune system and tissues, and play indispensable roles in tissue immunity.  相似文献   

9.
T helper 17 (Th17) cells are a newly identified subset of T helper cells that play important roles in host defense against extracellular bacteria as well as in the pathogenesis of autoimmune disease. The functions of Th17 cells are mediated via the production of several cytokines including interleukin (IL)-17 and IL-22. Recent studies show that the frequency of IL-17+ cells is significantly elevated in a variety of chronic liver diseases including alcoholic liver disease, viral hepatitis and hepatocellular carcinoma. IL-17 receptor is expressed virtually on all types of liver cells, while IL-22 receptor expression is restricted to epithelial cells including hepatocytes in the liver. IL-17 seems to play an important role in inducing liver inflammation via stimulating multiple types of liver nonparenchymal cells to produce proinflammatory cytokines and chemokines, while IL-22 appears to be an important factor in promoting hepatocyte survival and proliferation.  相似文献   

10.
γδ T cells play important roles in innate immunity as the first-line of defense against infectious diseases. Human immunodeficiency virus (HIV) infection disrupts the balance between Vδ1 T cells and Vδ2 T cells and causes dysfunction among γδ T cells. However, the biological mechanisms and clinical consequences of this disruption require further investigation. In this study, we performed a comprehensive analysis of phenotype and function of memory γδ T cells in cohorts of Chinese individuals with HIV infection. We found a dynamic change in memory Vδ2 γδ T cells, skewed toward an activated and terminally differentiated effector memory phenotype TEMRA2 γδ T cell, which may account for the dysfunction of Vδ2 γδ T cells in HIV disease. In addition, we found that IL-17-producing γδ T cells were significantly increased in HIV-infected patients with fast disease progression and positively correlated with HLA-DR+ γδ T cells and CD38+HLA-DR+ γδ T cells. This suggests the IL-17 signaling pathway is involved in γδ T-cell activation and HIV pathogenesis. Our findings provide novel insights into the role of Vδ2 T cells during HIV pathogenesis and represent a sound basis on which to consider immune therapies with these cells.  相似文献   

11.
The specific function of human skin-resident dendritic cell (DC) subsets in the regulation of immunity or tolerance is still a matter of debate. Langerhans cells (LC) induce anti-viral immune responses but, conversely to dermal DC, maintain tolerance to bacteria. However, the definite function of epidermal LC and cutaneous DC appears even more complex under inflammatory conditions. Here we investigated the immune responses of human immature monocyte-derived DC (MoDC) and LC-like cells (MoLC) upon stimulation with different Toll-like receptor ligands in the presence or absence of pro-inflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In MoDC, bacterial antigens selectively up-regulated CD83 and CD86 expression and induced the release of T helper type 1 (Th1) and Th17 cytokines and led to a higher CCR7-dependent migratory capacity compared with a low responsiveness of MoLC. Importantly, MoLC activation with lipopolysaccharide under inflammatory conditions strongly enhanced a phenotypically mature state, increased IL-12p70, IL-23 and IL-6 production and Th1 cytokine secretion by CD4+ T cells. Treatment with poly(I:C) specifically up-regulated surface expression of co-stimulatory molecules and increased release of IL-12p70 in MoLC and co-stimulation with TNF-α and IL-1β further elevated Th1 and Th17 cytokine production. Poly(I:C)-induced up-regulation of type I interferon mRNA levels in MoLC and MoDC was Toll-like receptor 3-dependent but not, or only weakly, modulated by pro-inflammatory cytokines. Our results indicate that inflammatory conditions greatly facilitate recognition of bacteria by MoLC. Furthermore, we suggest a critical involvement of both subsets in innate defence against viruses, whereas inflammatory skin environments additionally favour MoLC as potent inducers of Th1 and Th17 cytokines.  相似文献   

12.
People living in Plasmodium falciparum-endemic areas frequently have elevated levels of total as well as P. falciparum-specific serum IgE. This study aimed at investigating whether the elevated serum IgE levels reflect a shift in the balance between CD4+ T helper 1 (Th1) and T helper 2 (Th2) cells in individuals naturally exposed to the P. falciparum parasite. To investigate the role of Th1 and Th2 cells in the human P. falciparum system we used the ELISPOT assay to determine the ratio of IFN-γ- and IL-4-producing cells after specific antigen or mitogen activation in vitro. The donors were individuals who had acquired immunity through natural exposure to the parasite. In response to the specific malaria antigens, very few IL-4-producing cells were seen. However, in the response of individual donors to the polyclonal T cell activator, leucoagglutinin (La), the anti-malarial IgE levels in plasma were correlated with an increased ratio of IL-4/IFN-γ producing cells. Thus, donors with ratios of IL-4/IFN-γ > 1 exhibited mean plasma anti-malarial IgE levels significantly greater than those with ratios < 1. In individuals not living in P. falciparum-endemic areas the ratio of IL-4/IFN-γ was always < 1. Taken together, our data suggest a shift in the balance between Th1 and Th2 cells in naturally P. falciparum-primed individuals, associated with elevated anti-P. falciparum plasma IgE levels. The role and biological significance of IgE (Th2-type immune response) for protection against P. falciparum and/or pathogenesis of malaria require further study.  相似文献   

13.
《Mucosal immunology》2013,6(5):900-910
Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1−/− mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4−CD8− cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts.  相似文献   

14.
A long standing paradigm is that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate the characteristic features of atopic allergy. The discovery of a role for IL-17-producing (Th17) and IL-22-producing (Th22) T helper cells in inflammatory diseases has added an additional layer of complexity to the understanding of the pathogenesis of allergic diseases. Here we re-evaluate the role of T helper cells, with special focus on the Th17 and Th22 subsets in allergic asthma and atopic dermatitis. Whereas sparse data point to a protective role of the increasing amounts of Th22 cells that are found in chronic stages of both allergies, the data on Th17 cells paint different pictures for the contribution of Th17 cells during subsequent stages of these two forms of allergy.  相似文献   

15.
16.
With the identification of T helper (Th)17 cells, a specific subset of CD4 T cells expressing interleukin (IL)-17 and IL-22, research on the function of these cytokines initially largely focused on traditional adaptive immune responses. However, IL-17 and IL-22 enhance basic innate barrier defenses at mucosal surfaces, such as antimicrobial peptide production and neutrophil recruitment; both events that occur rapidly and precede adaptive phase immunity. At the intestinal mucosal surface, it is now clear that innate lymphoid cells are also important sources of IL-17 and IL-22 during early phases of infection. Here, we discuss the function of innate IL-17- and IL-22-producing lymphocytes during enteric bacterial infection and their regulation by the intestinal microbiota, Toll-like receptors (TLRs) and Nod-like receptors (NLRs).  相似文献   

17.
Disease due to the gastric pathogen Helicobacter pylori varies in severity from asymptomatic to peptic ulcer disease and cancer. Accumulating evidence suggests that one source of this variation is an abnormal host response. The goal of this study was to use a mouse model of H. pylori gastritis to investigate the roles of regulatory T cells (Treg) as well as proinflammatory T cells (Th1 and Th17) in gastritis, gastric T cell engraftment, and gastric cytokine production. Our results support published data indicating that severe gastritis in T cell recipient mice is due to failure of Treg engraftment, that Treg ameliorate gastritis, and that the proinflammatory response is attributable to interactions between several cell subsets and cytokines. We confirmed that gamma interferon (IFN-γ) is essential for induction of gastritis but showed that IFN-γ-producing CD4 T cells are not necessary. Interleukin 17A (IL-17A) also contributed to gastritis, but to a lesser extent than IFN-γ. Tumor necrosis factor alpha (TNF-α) and IL-17F were also elevated in association with disease. These results indicate that while H. pylori-specific CD4+ T cells and IFN-γ are both essential for induction of gastritis due to H. pylori, IFN-γ production by T cells is not essential. It is likely that other proinflammatory cytokines, such as IL-17F and TNF-α, shown to be elevated in this model, also contribute to the induction of disease. We suggest that gastritis due to H. pylori is associated with loss of immunoregulation and alteration of several cytokines and cell subsets and cannot be attributed to a single immune pathway.  相似文献   

18.
19.
Th17细胞已被划分为一个不同于Th1、Th2和Treg的新的T细胞亚群,以分泌IL-17为主要特征。Th17在防御胞外细菌感染、介导慢性炎症和自身免疫性疾病的发病机制中发挥重要作用。炎症性肠病属于自身免疫性疾病的一种,免疫调节紊乱是其发病的关键因素。免疫学和基因学的发现表明Th17及Th17效应因子在炎症性肠病发病机理中起重要作用。对Th17的进一步深入研究可以加深我们对相关疾病发病机制的认识并指导临床治疗。  相似文献   

20.
Innate responses combine with adaptive immunity to generate the most effective form of anti-Aspergillus immune resistance. Whereas the pivotal role of dendritic cells in determining the balance between immunopathology and protective immunity to the fungus is well established, we determined that epithelial cells (ECs) also contributes to this balance. Mechanistically, EC-mediated protection occurred through a Toll-like receptor 3/Toll/IL-1 receptor domain-containing adaptor-inducing interferon (TLR3/TRIF)-dependent pathway converging on indoleamine 2,3-dioxygenase (IDO) via non-canonical nuclear factor-κB activation. Consistent with the high susceptibility of TRIF-deficient mice to pulmonary aspergillosis, bone marrow chimeric mice with TRIF unresponsive ECs exhibited higher fungal burdens and inflammatory pathology than control mice, underexpressed the IDO-dependent T helper 1/regulatory T cell (Th1/Treg) pathway and overexpressed the Th17 pathway with massive neutrophilic inflammation in the lungs. Further studies with interferon (IFN)-γ, IDO or IL-17R unresponsive cells confirmed the dependency of immune tolerance to the fungus on the IFN-γ/IDO/Treg pathway and of immune resistance on the MyD88 pathway controlling the fungal growth. Thus, distinct immune pathways contribute to resistance and tolerance to the fungus, to which the hematopoietic/non-hematopoietic compartments contribute through distinct, yet complementary, roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号