首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We present an evaluation of the precision and accuracy of image-based radiochromic film (RCF) dosimetry performed using a commercial RCF product (Gafchromic MD-55-2, Nuclear Associates, Inc.) and a commercial high-spatial resolution (100 microm pixel size) He-Ne scanning-laser film-digitizer (Personal Densitometer, Molecular Dynamics, Inc.) as an optical density (OD) imaging system. The precision and accuracy of this dosimetry system are evaluated by performing RCF imaging dosimetry in well characterized conformal external beam and brachytherapy high dose-rate (HDR) radiation fields. Benchmarking of image-based RCF dosimetry is necessary due to many potential errors inherent to RCF dosimetry including: a temperature-dependent time evolution of RCF dose response; nonuniform response of RCF; and optical-polarization artifacts. In addition, laser-densitometer imaging artifacts can produce systematic OD measurement errors as large as 35% in the presence of high OD gradients. We present a RCF exposure and readout protocol that was developed for the accurate dosimetry of high dose rate (HDR) radiation sources. This protocol follows and expands upon the guidelines set forth by the American Association of Physicists in Medicine (AAPM) Task Group 55 report. Particular attention is focused on the OD imaging system, a scanning-laser film digitizer, modified to eliminate OD artifacts that were not addressed in the AAPM Task Group 55 report. RCF precision using this technique was evaluated with films given uniform 6 MV x-ray doses between 1 and 200 Gy. RCF absolute dose accuracy using this technique was evaluated by comparing RCF measurements to small volume ionization chamber measurements for conformal external-beam sources and an experimentally validated Monte Carlo photon-transport simulation code for a 192Ir brachytherapy source. Pixel-to-pixel standard deviations of uniformly irradiated films were less than 1% for doses between 10 and 150 Gy; between 1% and 5% for lower doses down to 1 Gy and 1% and 1.5% for higher doses up to 200 Gy. Pixel averaging to form 200-800 microm pixels reduces these standard deviations by a factor of 2 to 5. Comparisons of absolute dose show agreement within 1.5%-4% of dose benchmarks, consistent with a highly accurate dosimeter limited by its observed precision and the precision of the dose standards to which it is compared. These results provide a comprehensive benchmarking of RCF, enabling its use in the commissioning of novel HDR therapy sources.  相似文献   

2.
In this study, we present three significant artifacts that have the potential to negatively impact the accuracy and precision of film dosimetry measurements made using GAFCHROMIC EBT radiochromic film when read out with CCD flatbed scanners. Films were scanned using three commonly employed instruments: a Macbeth TD932 spot densitometer, an Epson Expression 1680 CCD array scanner, and a Microtek ScanMaker i900 CCD array scanner. For the two scanners we assessed the variation in optical density (OD) of GAFCHROMIC EBT film with scanning bed position, angular rotation of the film with respect to the scan line direction, and temperature inside the scanner due to repeated scanning. Scanning uniform radiochromic films demonstrated a distinct bowing effect in profiles in the direction of the CCD array with a nonuniformity of up to 17%. Profiles along a direction orthogonal to the CCD array demonstrated a 7% variation. A strong angular dependence was found in measurements made with the flatbed scanners; the effect could not be reproduced with the spot densitometer. An IMRT quality assurance film was scanned twice rotating the film 90' between the scans. For films scanned on the Epson scanner, up to 12% variation was observed in unirradiated EBT films rotated between 0 degrees and 90 degrees, which decreased to approximately 8% for EBT films irradiated to 300 cGy. Variations of up to 80% were observed for films scanned with the Microtek scanner. The scanners were found to significantly increase the film temperature with repeated scanning. Film temperature between 18 and 33 degrees C caused OD changes of approximately 7%. Considering these effects, we recommend adherence to a strict scanning protocol that includes: maintaining the orientation of films scanned on flatbed scanners, limiting scanning to the central portion of the scanner bed, and limiting the number of consecutive scans to minimize changes in OD caused by film heating.  相似文献   

3.
A recently introduced radiographic film scanner from Howtek is evaluated and compared to two other commercially available densitometry systems for its use in radiochromic (RC) film dosimetry in the clinical dose range 0-100 Gy. It has a high-intensity red LED light-source centered at 662 nm (near the major absorption peak for RC film), and is coupled to a CCD linear array detector. This new densitometry system is directly compared to two high-resolution film scanners commonly employed in RC film dosimetry, namely the Lumiscan 75 digitizer (He-Ne laser light source) and the Vidar VXR-16 digitizer (fluorescent light source). A spot densitometer (Nuclear Associates Radiochromic Densitometer) with a filtered 671 nm laser-diode light source is also included as a reference for comparison. The response of the spot densitometer and three high-resolution digitizers is characterized by the dose required to reach a net optical density of 1 (DNOD1), and is 16.0, 37.3, and 46.4 Gy for the Nuclear Associates Radiochromic Densitometer, Howtek MultiRAD 460 and Lumiscan 75 digitizer, respectively. The Vidar VXR-16 does not reach a net optical density of 1. The minimum usable dose at which a 2% level of uncertainty can be achieved (MUD2%) on the three digitizers are 2.6, 6.0, and 38.5 Gy for the Howtek MultiRAD 460, Lumiscan 75, and Vidar VXR-16, respectively. The Howtek MultiRAD 460 shows the greatest sensitivity, lowest MUD2% and best signal-to-noise ratio in the clinical dose range 0-100 Gy. Furthermore, it has no apparent interference (moiré) artifacts that severely limit the low optical density region of the He-Ne laser digitizer. For high-resolution radiochromic dosimetry in the clinical dose range 0-100 Gy, the high-intensity red LED light-source digitizer proves to be the superior modality.  相似文献   

4.
Evaluation of GAFCHROMIC EBT film for Cyberknife dosimetry   总被引:1,自引:0,他引:1  
External beam therapy (EBT) GAFCHROMIC film is evaluated for dosimetry and characterization of the CyberKnife radiation beams. Percentage depth doses, lateral beam profiles, and output factors are measured in solid water using EBT GAFCHROMIC film (International Specialty Products, Wayne, NJ) for the 6 MV radiation beams of diameter 5 to 60 mm produced by the CyberKnife (Accuray, Sunnyvale, CA). The data are compared to those measured with the PTW 60008 diode and the Wellhofer CC01 ion chamber in water. For the small radiation field sizes used in stereotactic radiosurgery, lateral electronic disequilibrium and steep dose gradients exist in a large portion of these fields, requiring the use of high-resolution measurement techniques. For small beams, the detector size approaches the dimensions of the beam and adversely affects measurement accuracy in regions where the gradient varies across the detector. When film is the detector, the scanning system is usually the resolution-limiting component. Radiographic films based upon silver halide (AgH) emulsions are widely used for relative dosimetry of external radiation treatment beams in the megavoltage energy range, because of their good spatial resolution and capability to provide integrated dosimetry over two dimensions. Film dosimetry, however, has drawbacks due to its steep energy dependence at low photon energies as well as film processor and densitometer artifacts. EBT radiochromic film, introduced in 2004 specifically for IMRT dosimetry, may be a detector of choice for the characterization of small radiosurgical beams, because of its near-tissue equivalence, radiation beam energy independence, high spatial resolution, and self developing properties. For radiation beam sizes greater than 10 mm, the film measurements were identical to those of the diode and ion chamber. For the smaller beam diameters of 7.5 and 5 mm, however, there were differences in the data measured with the different detectors, which are attributed to their different spatial resolution and non-water-equivalence.  相似文献   

5.
In this article we compare the accuracy of a diode laser densitometer emitting 675.2 nm to that of a commercial He-Ne laser densitometer emitting 632.8 nm for GafChromic MD-55 film readout. A Leksell gamma unit (AB Elekta Stockholm, Sweden) Model B with a 14 and 8 mm collimator at the same isocenter (combined 11 mm collimator) was used to irradiate GafChromic MD-55 films. Dose response curves, dose cross profile and FWHM were measured with a custom-designed diode laser scanning device, emitting light at 675.2 nm. The same data were recorded with a commercial He-Ne laser densitometer (PTW FIPS Plus, Freiburg, Germany), emitting light at 632.8 nm. Both measurements were compared to dose cross profiles of a radiosurgery dose planning program (GammaPlan 5.12, Elekta, Sweden). Compared to the commercial He-Ne laser densitometer, the custom-designed diode laser scanning device showed better agreement with the calculated dose cross profile. For two axes, the full width half maxima (FWHM) of the diode laser scanning device was within 0.1 mm deviation compared to the data calculated by the dose planning program. The FWHM of the commercial He-Ne laser densitometer was less accurate (1.6 and 2.1 mm deviation). Our data show that a diode laser scanning device using a light source emitting 675.2 nm increases the accuracy of a GafChromic MD-55 film readout. This greater accuracy may be related to the diode laser measuring the optical density close to maximum absorption of the GafChromic film MD-55 (671-675 nm).  相似文献   

6.
The purpose of this study is to explore the use of GafChromic MD-55 (RC) film for 67.5 MeV clinical proton beam dosimetry at the Crocker Nuclear Laboratory, University of California, Davis. Several strips of RC film 6 cm x 6 cm in dimension were irradiated at a depth of 18.2 mm corresponding to the middle of a 24 mm spread-out Bragg peak (SOBP). The films were irradiated to a proton dose in the range of 0.5 Gy to 100 Gy. The beam profiles were also measured at the middle of the 24 mm SOBP. The Bragg peak was measured by using a wedge shaped phantom made of Lucite. The Bragg peak measured with RC film was compared with diode and ionization chamber measurements. After background subtraction, the calibration of the dose response of RC film showed, to a maximum deviation of 10%, a linear increase of optical density (OD) with dose from 0.5 to 100 Gy. The uniformity of OD over a single sheet of film showed a variation of +/-6%. The distal-fall off between 90% and 20% measured with GafChromic film for the Bragg peak was 1.3 mm as compared to 1.1 mm for a diode measurement and 1.4 mm for an ionization chamber measurement. The FWHM of the Bragg peak was 7.5 mm when measured with GafChromic film, 5.3 mm when measured with a diode and 8.1 mm as measured by an ionization chamber. The peak/plateau ratio with GafChromic film was 3.3 as compared to 3.7 with a diode and 3.2 with an ionization chamber. In conclusion, GafChromic MD-55 film may be a useful and convenient detector for dose measurement and quality assurance programmes of proton beams.  相似文献   

7.
Intensity-modulated radiotherapy (IMRT) treatment plan verification is often done using Kodak EDR2 film and a Vidar Dosimetry PRO film digitizer. However, since many hospitals are moving towards a filmless environment, access to a film processor may not be available. Therefore, we have investigated a newly available Gafchromic EBT film for IMRT dosimetry. Planar IMRT dose distributions are delivered to both EBT and EDR2 film and scanned with the Vidar VXR-16 as well as an Epson Expression 1680 flatbed scanner. The measured dose distributions are then compared to those calculated with a Pinnacle treatment planning system. The IMRT treatments consisted of 7-9 6 MV beams for treatment of prostate, head and neck, and a few other sites. The films were analyzed using FilmQATM (3cognition LLC) software. Comparisons between measured and calculated dose distributions are reported as dose difference (DD) (pixels within +/-5%), distance to agreement (DTA) (3 mm), as well as gamma values (y) (dose= +/-3%, dist. =2 mm). Using EDR2 with the Vidar scanner is an established technique and agreement between calculated and measured dose distributions was better than 90% in all indices (DD, DTA, and gamma). However, agreement with calculations deteriorated reaching the lower 80% for EBT film scans with the Vidar scanner in logarithmic mode. The EBT Vidar scans obtained in linear mode showed an improved agreement to the upper 80% range, but artifacts were still observed across the scan. These artifacts were very distinct in all EBT scans and can be attributed to the way the film is transported through the scanner. In the Epson scanner both films are rigidly immobilized and the light source scans over the film. It was found that the Epson scanner performed equally well with both types of film giving agreement to better than 90% in all indices.  相似文献   

8.
Le Y  Ali I  Dempsey JF  Williamson JF 《Medical physics》2006,33(12):4622-4634
Radiochromic film (RCF) has been shown to be a precise and accurate two-dimensional dosimeter for acute exposure radiation fields. However, "temporal history" mismatch between calibration and brachytherapy films due to RCF dose-rate effects could introduce potentially large uncertainties in low dose-rate (LDR) brachytherapy absolute dose measurement. This article presents a quantitative evaluation of the precision and accuracy of a laser scanner-based RCF-dosimetry system and the effect of the temporal history mismatch in LDR absolute dose measurement. MD-55-2 RCF was used to measure absolute dose for a low dose-rate 137Cs brachytherapy source using both single- and double-exposure techniques. Dose-measurement accuracy was evaluated by comparing RCF to Monte Carlo photon-transport simulation. The temporal history mismatch effect was investigated by examining dependence of RCF accuracy on irradiation-to-densitometry time interval. The predictions of the empirical cumulative dose superposition model (CDSM) were compared with measurements. For the double-exposure technique, the agreement between measurement and Monte Carlo simulation was better than 4% in the 3-60 Gy dose range with measurement precisions (coverage factor k = 1) of <2% and <6% for the doses greater or less than 3 Gy, respectively. The overall uncertainty (k = 1) of dose rate/air-kerma strength measurements achievable by this dosimetry system for a spatial resolution of 0.1 mm is less than 4% for doses greater than 5 Gy. The measured temporal history mismatch systematic error is about 1.8% for a 48 h postexposure time when using the double exposure technique and agrees with CDSM's prediction qualitatively. This work demonstrates that the model MD-55-2 RCF detector has the potential to support quantitative dose measurements about LDR brachytherapy sources with precision and accuracy better than that of previously described dosimeters. The impacts of this work on the future use of new type of RCF were also discussed.  相似文献   

9.
Devic S  Wang YZ  Tomic N  Podgorsak EB 《Medical physics》2006,33(11):3993-3996
Film dosimetry is commonly performed by using linear CCD array transmission optical densitometers. However, these devices suffer from a variation in response along the detector array. If not properly corrected for, this nonuniformity may lead to significant overestimations of the measured dose as one approaches regions close to the edges of the scanning region. In this note, we present measurements of the spatial response of an AGFA Arcus II document scanner used for radiochromic film dosimetry. Results and methods presented in this work can be generalized to other CCD based transmission scanners used for film dosimetry employing either radiochromic or radiographic films.  相似文献   

10.
The purpose of this study was to investigate the value of a commercially available flatbed scanner for film dosimetry with radiochromic film for external radiotherapy. The EPSON Pro 1680 Expression scanner was examined as a densitometer for two-dimensional film dosimetry with Gafchromic EBT film. An accurate and efficient scanning procedure was established. Possible drift and warm-up effects of the scanner were studied and the direct physical influence of the scanner light on the radiochromic film was assessed. Next, we investigated the scan field uniformity. Also, we examined if the accuracy of radiochromic film was improved by subtracting the optical density of the unirradiated blank film from the optical density of the irradiated film. To assess the accuracy of Gafchromic EBT film when the EPSON scanner was used as a densitometer, the depth dose of a 2 x 15 cm(2) field and the in-plane and cross-plane profiles of a 15 x 15 cm(2) field were measured and compared with diamond detector measurements. When taking consecutive scans, we found that the optical density taken from the first scan was about 1% higher than the optical density taken from subsequent scans. We attribute this to the warming up of the lamp of the scanner. Longer-term drift of the scanner was found to be absent. We found that the use of a correction matrix was necessary to correct for the non-uniform scanner response over the scan field. Subtracting the optical density of the unirradiated blank film from the irradiated film improves the precision of the Gafchromic EBT film. Depth dose and profile measurements with Gafchromic EBT film and the diamond detector are in agreement within 2.5%. The EPSON Pro 1680 Expression scanner is an excellent tool for accurate two-dimensional film dosimetry with Gafchromic EBT film provided that some precautions and corrections are taken into account.  相似文献   

11.
The Gafchromic EBT was recently introduced in film dosimetry for external beam therapy (EBT). The high spatial resolution, weak energy dependence, and near-tissue equivalence of EBT films make them suitable for measurement of dose distributions in radiotherapy, especially intensity-modulated radiation therapy (IMRT). Starting with a sensitometric curve and dose uncertainty relative to the flatbed scanner, the goal of this study was to find an efficient method of correcting for light scattering, and to compare dose distribution supplied by Gafchromic EBT with the distribution obtained with a 2D ion-chamber detector system. Light scattering was analyzed for different levels of dose, and was found to depend on the red-scale value as well as the position of the pixel on the scanner. Many "uniform" films were exposed at different levels of dose to create a two-dimensional matrix correction to take this effect into account. The dose distribution obtained for three clinical beams (10 x 10, 15 x 15 cm open fields and 12 x 12 cm wedge 60 degrees field) were in agreement with those supplied by the 2D array. Gamma index <1 (using 5 mm distance and 5% dose as constraints) for the three fields considered was reached in an average of 98% of the points.  相似文献   

12.
The recent emergence of radiochromic dosimeters with low inherent light-scattering presents the possibility of fast 3D dosimetry using broad-beam optical computed tomography (optical-CT). Current broad beam scanners typically employ either a single or a planar array of light-emitting diodes (LED) for the light source. The spectrum of light from LED sources is polychromatic and this, in combination with the non-uniform spectral absorption of the dosimeter, can introduce spectral artifacts arising from preferential absorption of photons at the peak absorption wavelengths in the dosimeter. Spectral artifacts can lead to large errors in the reconstructed attenuation coefficients, and hence dose measurement. This work presents an analytic method for correcting for spectral artifacts which can be applied if the spectral characteristics of the light source, absorbing dosimeter, and imaging detector are known or can be measured. The method is implemented here for a PRESAGE? dosimeter scanned with the DLOS telecentric scanner (Duke Large field-of-view Optical-CT Scanner). Emission and absorption profiles were measured with a commercial spectrometer and spectrophotometer, respectively. Simulations are presented that show spectral changes can introduce errors of 8% for moderately attenuating samples where spectral artifacts are less pronounced. The correction is evaluated by application to a 16 cm diameter PRESAGE? cylindrical dosimeter irradiated along the axis with two partially overlapping 6 × 6 cm fields of different doses. The resulting stepped dose distribution facilitates evaluation of the correction as each step had different spectral contributions. The spectral artifact correction was found to accurately correct the reconstructed coefficients to within ~1.5%, improved from ~7.5%, for normalized dose distributions. In conclusion, for situations where spectral artifacts cannot be removed by physical filters, the method shown here is an effective correction. Physical filters may be less viable if they introduce strong sensitivity to Schlieren bands in the dosimeters.  相似文献   

13.
Film dosimetry is an attractive tool for dose distribution verification in intensity modulated radiotherapy (IMRT). A critical aspect of radiochromic film dosimetry is the scanner used for the readout of the film: the output needs to be calibrated in dose response and corrected for pixel value and spatial dependent nonuniformity caused by light scattering; these procedures can take a long time. A method for a fast and accurate calibration and uniformity correction for radiochromic film dosimetry is presented: a single film exposure is used to do both calibration and correction. Gafchromic EBT films were read with two flatbed charge coupled device scanners (Epson V750 and 1680Pro). The accuracy of the method is investigated with specific dose patterns and an IMRT beam. The comparisons with a two-dimensional array of ionization chambers using a 18 x 18 cm2 open field and an inverse pyramid dose pattern show an increment in the percentage of points which pass the gamma analysis (tolerance parameters of 3% and 3 mm), passing from 55% and 64% for the 1680Pro and V750 scanners, respectively, to 94% for both scanners for the 18 x 18 open field, and from 76% and 75% to 91% for the inverse pyramid pattern. Application to an IMRT beam also shows better gamma index results, passing from 88% and 86% for the two scanners, respectively, to 94% for both. The number of points and dose range considered for correction and calibration appears to be appropriate for use in IMRT verification. The method showed to be fast and to correct properly the nonuniformity and has been adopted for routine clinical IMRT dose verification.  相似文献   

14.
The Fletcher Suit Delclos (FSD) ovoids employed in intracavitary brachytherapy (ICB) for cervical cancer contain shields to reduce dose to the bladder and rectum. Many treatment planning systems (TPS) do not include the shields and other ovoid structures in the dose calculation. Instead, TPSs calculate dose by summing the dose contributions from the individual sources and ignoring ovoid structures such as the shields. The goal of this work was to calculate the dose distribution with Monte Carlo around a Selectron FSD ovoid and compare these calculations with radiochromic film (RCF) and normoxic polymer gel dosimetry. Monte Carlo calculations were performed with MCNPX 2.5.c for a single Selectron FSD ovoid with and without shields. RCF measurements were performed in a plane parallel to and displaced laterally 1.25 cm from the long axis of the ovoid. MAGIC gel measurements were performed in a polymethylmethacrylate phantom. RCF and MAGIC gel were irradiated with four 33 microGy m2 h(-1) Cs-137 pellets for a period of 24 h. Results indicated that MCNPX calculated dose to within +/- 2% or 2 mm for 98% of points compared with RCF measurements and to within +/- 3% or 3 mm for 98% of points compared with MAGIC gel measurements. It is concluded that MCNPX 2.5.c can calculate dose accurately in the presence of the ovoid shields, that RCF and MAGIC gel can demonstrate the effect of ovoid shields on the dose distribution and the ovoid shields reduce the dose by as much as 50%.  相似文献   

15.
A very high resolution positron emission tomography (PET) scanner for small animal imaging based on the idea of inserting a ring of high-granularity solid-state detectors into a conventional PET scanner is under investigation. A particularly interesting configuration of this concept, which takes the form of a degenerate Compton camera, is shown capable of providing sub-millimeter resolution with good sensitivity. We present a Compton PET system and estimate its performance using a proof-of-concept prototype. A prototype single-slice imaging instrument was constructed with two silicon detectors 1 mm thick, each having 512 1.4 mm x 1.4 mm pads arranged in a 32 x 16 array. The silicon detectors were located edgewise on opposite sides and flanked by two non-position sensitive BGO detectors. The scanner performance was measured for its sensitivity, energy, timing, spatial resolution and resolution uniformity. Using the experimental scanner, energy resolution for the silicon detectors is 1%. However, system energy resolution is dominated by the 23% FWHM BGO resolution. Timing resolution for silicon is 82.1 ns FWHM due to time-walk in trigger devices. Using the scattered photons, time resolution between the BGO detectors is 19.4 ns FWHM. Image resolution of 980 microm FWHM at the center of the field-of-view (FOV) is obtained from a 1D profile of a 0.254 mm diameter (18)F line source image reconstructed using the conventional 2D filtered back-projection (FBP). The 0.4 mm gap between two line sources is resolved in the image reconstructed with both FBP and the maximum likelihood expectation maximization (ML-EM) algorithm. The experimental instrument demonstrates sub-millimeter resolution. A prototype having sensitivity high enough for initial small animal images can be used for in vivo studies of small animal models of metabolism, molecular mechanism and the development of new radiotracers.  相似文献   

16.
Laser-based scanners provide a sensitive means for measuring optical density (OD) of Gafchromic films. Such instruments were reviewed in a recent AAPM report (task group 55) which provided recommendations and information on OD measurements (effect of wavelength, temperature, etc.). The present article reports that variable rate scanners and spot densitometers using laser diodes (671 nm) and HeNe lasers (633 nm) can cause polymerization of Gafchromic film. The light induced polymerization depends on light power, wavelength, beam spot size, dwell time, and prior radiation dose of the film. Measurements were made with a custom built scanner that provided accurate control of light power, light polarization, dwell time, and film position in relation to the beam focus. The results demonstrate that lasers operating with powers of 0.1, 0.5, 1.0, and 1.5 mW produce a nonlinear increase in OD of Gafchromic film. The measured change in OD after 1 min of exposure ranges from 0.150 to 0.244 for a laser diode operating at 0.5 and 1.5 mW, respectively. Tables are included that tabulate the increase in OD for laser power, dwell time, and prior dose. Laser light induced polymerization can have a significant impact on dosimetry measurements acquired using these laser-based systems.  相似文献   

17.
The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly a factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.  相似文献   

18.
There is a growing interest in Gafchromic films for patient dosimetry in radiotherapy and in radiology. A new model (XR-QA) with high sensitivity to low dose was tested in this study. The response of the film to different x-ray beam energies (range 28-145 kVp with various filtrations, dose range 0-100 mGy) and to visible light was investigated, together with the after exposure darkening properties. Exposed films were digitized with a commercially available, optical flatbed scanner. A single functional form for dose versus net pixel value variation has been determined for all the obtained calibration curves, with a unique fit parameter different for each of the used x-ray beams. The film response was dependent on beam energy, with higher colour variations for the beams in the range 80-140 kVp. Different sources of uncertainties in dose measurements, governed by the digitalization process, the film response uniformity and the calibration curve fit procedure, have been considered. The overall one-sigma dose measurement uncertainty depended on the beam energy and decreased with increasing absorbed dose. For doses above 10 mGy and beam energies in the range 80-140 kVp the total uncertainty was less than 5%, whereas for the 28 kVp beam the total uncertainty at 10 mGy was about 10%. The post-exposure colour variation was not negligible in the first 24 h after the exposure, with a consequent increase in the calculated dose of about 10%. Results of the analysis of the sensitivity to visible light indicated that a short exposure of this film to ambient and scanner light during the measurements will not have a significant impact on the radiation dosimetry.  相似文献   

19.
We have developed a prototype 256-slice CT-scanner for four-dimensional (4D) imaging that employs continuous rotations of a cone-beam. Since a cone-beam scan along a circular orbit does not collect a complete set of data to make an exact reconstruction of a volume [three-dimensional (3D) image], it might cause disadvantages or artifacts. To examine effects of the cone-beam data collection on image quality, we have evaluated physical performance of the prototype 256-slice CT-scanner with 0.5 mm slices and compared it to that of a 16-slice CT-scanner with 0.75 mm slices. As a result, we found that image noise, uniformity, and high contrast detectability were independent of z coordinate. A Feldkamp artifact was observed in distortion measurements. Full width at half maximum (FWHM) of slice sensitivity profiles (SSP) increased with z coordinate though it seemed to be caused by other reasons than incompleteness of data. With regard to low contrast detectability, smaller objects were detected more clearly at the midplane (z = 0 mm) than at z = 40 mm, though circular-band like artifacts affected detection. The comparison between the 16-slice and the 256-slice scanners showed better performance for the 16-slice scanner regarding the SSP, low contrast detectability, and distortion. The inferiorities of the 256-slice scanner in other than distortion measurement (Feldkamp artifact) seemed to be partly caused by the prototype nature of the scanner and should be improved in the future scanner. The image noise, uniformity, and high contrast detectability were almost identical for both CTs. The 256-slice scanner was superior to the 16-slice scanner regarding the PSF, though it was caused by the smaller transverse beam width of the 256-slice scanner. In order to compare both scanners comprehensively in terms of exposure dose, noise, slice thickness, and transverse spatial resolution, K=Dsigma2ha3 was calculated, where D was exposure dose (CT dose index), sigma was magnitude of noise, h was slice thickness (FWHM of SSP), and a was transverse spatial resolution (FWHM of PSF). The results showed that the K value was 25% larger for the 16-slice scanner, and that the 256-slice scanner was 1.25 times more effective than the 16-slice scanner at the midplane. The superiority in K value for the 256-slice scanner might be partly caused by decrease of wasted exposure with a wide-angle cone-beam scan. In spite of the several problems of the 256-slice scanner, it took a volume data approximately 1.0 mm (transverse) x 1.3 mm (longitudinal) resolution for a wide field of view (approximately 100 mm long) along the zeta axis in a 1 s scan if resolution was defined by the FWHM of the PSF or the SSP, which should be very useful to take dynamic 3D (4D) images of moving organs.  相似文献   

20.
The evaluation of the agreement between measured and calculated dose plays an essential role in the quality assurance (QA) procedures for intensity modulated radiation therapy (IMRT). Film dosimetry has been widely adopted for this purpose due to excellent film characteristics in terms of spatial resolution; unfortunately, it is a time-consuming procedure and requires great care if film has to be used as an absolute dosimeter. If this is not the case, then an independent ionimetric measurement is mandatory to assess the absolute dose agreement. Arrays of detectors are now replacing films for routine IMRT QA, since they permit very simple verification procedures. They show excellent characteristics in terms of linearity, repeatability, and independence of the response from the dose rate, but at the same time present a poor spatial resolution, due to the limited number of detectors available. In our institution, a diode matrix (MapCHECK, provided by Sun Nuclear) is adopted for routine QA. The aim of this work is to compare the performances of absolute film dosimetry with this matrix in QA procedures and to investigate the origin of possible discrepancies between the two methods. The results we present show a very good agreement between the two detectors when used to assess the mean dose deviation between calculated and measured doses (in both cases 0.2%). If the y matrix method is adopted, MapCHECK response shows a slightly better agreement with computed dose distribution than film dosimetry (mean percentage of points satisfying the constraint y < or = 1: 96% versus 94%). This difference is shown not to depend on the different field sampling, but on the detectors' capabilities. Moreover, we show that the diode matrix is able to identify eventual delivery errors as well as film. Our conclusion is that the diode matrix may effectively replace both film dosimetry and ionimetric measurements in routine IMRT QA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号