首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abdominal aortic banding in mice induces upregulation of angiotensin II (Ang II) type 2 (AT2) receptors in the pressure-overloaded thoracic aorta. To clarify mechanisms underlying the vascular AT2 receptor-dependent NO production, we measured aortic levels of endothelial NO synthase (eNOS), eNOS phosphorylated at Ser633 and Ser1177, protein kinase B (Akt), and Akt phosphorylated at Ser473 in thoracic aortas of mice after banding. Total eNOS, both forms of phosphorylated eNOS, Akt, and phosphorylated Akt levels, as well as cGMP contents, were significantly increased 4 days after banding. The administration of PD123319 (an AT2 receptor antagonist) or icatibant (a bradykinin B2 receptor antagonist) abolished the banding-induced upregulation of both forms of phosphorylated eNOS, as well as elevation of cGMP, but did not affect the upregulation of eNOS, Akt, and phosphorylated Akt. In the in vitro experiments using aortic rings prepared from banded mice, Ang II produced significant increases in both forms of phosphorylated eNOS, as well as cGMP, and these effects were blocked by PD123319 and icatibant. Ang II-induced eNOS phosphorylation and cGMP elevation in aortic rings were inhibited by protein kinase A (PKA) inhibitors H89 and KT5720 but not by phosphatidylinositol 3-kinase inhibitors wortmannin and LY24002. The contractile response to Ang II was attenuated in aortic rings from banded mice via AT2 receptor, and this attenuation was blocked by PKA inhibitors. These results suggest that the activation of AT2 receptor by Ang II induces phosphorylation of eNOS at Ser633 and Ser1177 via a PKA-mediated signaling pathway, resulting in sustained activation of eNOS.  相似文献   

2.
Enhanced angiotensin II (AngII) action has been implicated in endothelial dysfunction that is characterized as decreased nitric oxide availability. Although endothelial cells have been reported to express AngII type 1 (AT1) receptors, the exact role of AT1 in regulating endothelial NO synthase (eNOS) activity remains unclear. We investigated the possible regulation of eNOS through AT1 in bovine aortic endothelial cells (BAECs) and its functional significance in rat aortic vascular smooth muscle cells (VSMCs). In BAECs infected with adenovirus encoding AT1 and in VSMCs infected with adenovirus encoding eNOS, AngII rapidly stimulated phosphorylation of eNOS at Ser1179. This was accompanied with increased cGMP production. These effects were blocked by an AT1 antagonist. The cGMP production was abolished by a NOS inhibitor as well. To explore the importance of eNOS phosphorylation, VSMCs were also infected with adenovirus encoding S1179A-eNOS. AngII did not stimulate cGMP production in VSMCs expressing S1179A. However, S1179A was able to enhance basal NO production as confirmed with cGMP production and enhanced vasodilator-stimulated phosphoprotein phosphorylation. Interestingly, S1179A prevented the hypertrophic response similar to wild type in VSMCs. From these data, we conclude that the AngII/AT1 system positively couples to eNOS via Ser1179 phosphorylation in ECs and VSMCs if eNOS and AT1 coexist. However, basal level NO production may be sufficient for prevention of AngII-induced hypertrophy by eNOS expression. These data demonstrate a novel molecular mechanism of eNOS regulation and function and thus provide useful information for eNOS gene therapy under endothelial dysfunction.  相似文献   

3.
OBJECTIVE: The Ca2+ antagonist amlodipine increases the generation of nitric oxide (NO) from native and cultured endothelial cells. The aim of this investigation was to determine whether or not the activation of the endothelial NO synthase (eNOS) by this Ca2+ antagonist is related to alterations in eNOS phosphorylation. METHODS AND RESULTS: In isolated, pre-contracted, endothelium-intact porcine coronary arteries, amlodipine elicited an NO-mediated relaxation and a leftward shift in the concentration-relaxation curve to bradykinin. Moreover, the Ca2+ antagonist increased the generation of NO from native endothelial cells, as detected by electron spin resonance spectroscopy and stimulated an 8-fold increase in cyclic GMP levels in cultured endothelial cells. In unstimulated endothelial cells, eNOS was not phosphorylated on Ser1177 but was phosphorylated on Thr495. Amlodipine elicited the phosphorylation of Ser1177 and attenuated Thr495 phosphorylation, with a time course similar to that of eNOS activation. The amlodipine-induced relaxation of porcine coronary arteries was attenuated by the B2 kinin receptor antagonist, icatibant, but this antagonist did not affect amlodipine-induced changes in eNOS phosphorylation in cultured endothelial cells. Moreover, amlodipine elicited the NO-mediated relaxation of rat aortic rings which do not express the B2 receptor. Amlodipine time-dependently attenuated the phosphorylation of protein kinase C (PKC) in endothelial cells, with a time course similar to the changes in eNOS phosphorylation, and prevented the phorbol-12-myristate-13-acetate-induced activation of PKC. The PKC inhibitor, Ro 31-8220, also elicited the phosphorylation of Ser1177 and the dephosphorylation of Thr495 in cultured cells and induced a leftward shift in the concentration-relaxation curve to bradykinin in rings of porcine coronary artery. CONCLUSION: The Ca2+ antagonist, amlodipine, enhances endothelial NO generation by inducing changes in the phosphorylation of eNOS. Although the activation of eNOS was related to the activation of the B2 kinin receptor in the porcine coronary artery, a B2 receptor-independent mechanism involving the inhibition of PKC appears to account for the effects observed in the rat aorta as well as in cultured endothelial cells.  相似文献   

4.
Angiotensin-(1-7) [Ang-(1-7)] causes endothelial-dependent vasodilation mediated, in part, by NO release. However, the molecular mechanisms involved in endothelial NO synthase (eNOS) activation by Ang-(1-7) remain unknown. Using Chinese hamster ovary cells stably transfected with Mas cDNA (Chinese hamster ovary-Mas), we evaluated the underlying mechanisms related to receptor Mas-mediated posttranslational eNOS activation and NO release. We further examined the Ang-(1-7) profile of eNOS activation in human aortic endothelial cells, which constitutively express the Mas receptor. Chinese hamster ovary-Mas cells and human aortic endothelial cell were stimulated with Ang-(1-7; 10(-7) mol/L; 1 to 30 minutes) in the absence or presence of A-779 (10(-6) mol/L). Additional experiments were performed in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin (10(-6) mol/L). Changes in eNOS (at Ser1177/Thr495 residues) and Akt phosphorylation were evaluated by Western blotting. NO release was measured using both the fluorochrome 2,3-diaminonaphthalene and an NO analyzer. Ang-(1-7) significantly stimulated eNOS activation (reciprocal phosphorylation/dephosphorylation at Ser1177/Thr495) and induced a sustained Akt phosphorylation (P<0.05). Concomitantly, a significant increase in NO release was observed (2-fold increase in relation to control). These effects were blocked by A-779. Wortmannin suppressed eNOS activation in both Chinese hamster ovary-Mas and human aortic endothelial cells. Our findings demonstrate that Ang-(1-7), through Mas, stimulates eNOS activation and NO production via Akt-dependent pathways. These novel data highlight the importance of the Ang-(1-7)/Mas axis as a putative regulator of endothelial function.  相似文献   

5.
The balance between endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) and reactive oxygen species (ROS) production determines endothelial-mediated vascular homeostasis. Activation of protein kinase C (PKC) has been linked to imbalance of the eNOS/ROS system, which leads to endothelial dysfunction. We previously found that selective inhibition of delta PKC (δPKC) or selective activation of epsilon PKC (?PKC) reduces oxidative damage in the heart following myocardial infarction. In this study we determined the effect of these PKC isozymes in the survival of coronary endothelial cells (CVEC). We demonstrate here that serum deprivation of CVEC increased eNOS-mediated ROS levels, activated caspase-3, reduced Akt phosphorylation and cell number. Treatment with either the δPKC inhibitor, δV1-1, or the ?PKC activator, ψ?RACK, inhibited these effects, restoring cell survival through inhibition of eNOS activity. The decrease in eNOS activity coincided with specific de-phosphorylation of eNOS at Ser1179, and eNOS phosphorylation at Thr497 and Ser116. Furthermore, δV1-1 or ψ?RACK induced physical association of eNOS with caveolin-1, an additional marker of eNOS inhibition, and restored Akt activation by inhibiting its nitration. Together our data demonstrate that (1) in endothelial dysfunction, ROS and reactive nitrogen species (RNS) formation result from uncontrolled eNOS activity mediated by activation of δPKC or inhibition of ?PKC; (2) inhibition of δPKC or activation of ?PKC corrects the perturbed phosphorylation state of eNOS, thus increasing cell survival. Since endothelial health ensures better tissue perfusion and oxygenation, treatment with a δPKC inhibitor and/or an ?PKC activator in diseases of endothelial dysfunction should be considered.  相似文献   

6.
17beta-Estradiol (E(2)) is a rapid activator of endothelial nitric oxide synthase (eNOS). The product of this activation event, NO, is a fundamental determinant of cardiovascular homeostasis. We previously demonstrated that E(2)-stimulated endothelial NO release can occur without an increase in cytosolic Ca(2+). Here we demonstrate for the first time, to our knowledge, that E(2) rapidly induces phosphorylation and activation of eNOS through the phosphatidylinositol 3 (PI3)-kinase-Akt pathway. E(2) treatment (10 ng/mL) of the human endothelial cell line, EA.hy926, resulted in increased NO production, which was abrogated by the PI3-kinase inhibitor, LY294002, and the estrogen receptor antagonist ICI 182, 780. E(2) stimulated rapid Akt phosphorylation on serine 473. As has been shown for vascular endothelial growth factor, eNOS is an E(2)-activated Akt substrate, demonstrated by rapid eNOS phosphorylation on serine 1177, a critical residue for eNOS activation and enhanced sensitivity to resting cellular Ca(2+) levels. Adenoviral-mediated EA.hy926 transduction confirmed functional involvement of Akt, because a kinase-deficient, dominant-negative Akt abolished E(2)-stimulated NO release. The membrane-impermeant E(2)BSA conjugate, shown to bind endothelial cell membrane sites, also induced rapid Akt and consequent eNOS phosphorylation. Thus, engagement of membrane estrogen receptors results in rapid endothelial NO release through a PI3-kinase-Akt-dependent pathway. This explains, in part, the reduced requirement for cytosolic Ca(2+) fluxes and describes an important pathway relevant to cardiovascular pathophysiology.  相似文献   

7.
We investigated the effect of cilostazol on nitric oxide (NO) production in human aortic endothelial cells (HAEC). Cilostazol increased NO production in a concentration-dependent manner, and NO production was also increased by other cyclic-AMP (cAMP)-elevating agents (forskolin, cilostamide, and rolipram). Cilostazol increased intracellular cAMP level, and that effect was enhanced in the presence of forskolin. In Western blot analysis, cilostazol increased phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser(1177) and of Akt at Ser(473) and dephosphorylation of eNOS at Thr(495). Cilostazol's regulation of eNOS phosphorylation was reversed by protein kinase A inhibitor peptide (PKAI) and by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Moreover, the cilostazol-induced increase in NO production was inhibited by PKAI, LY294002, and N(G)-nitro-l-arginine methyl ester hydrochloride (l-NAME), a NOS inhibitor. In an in vitro model of angiogenesis, cilostazol-enhanced endothelial tube formation, an effect that was completely attenuated by inhibitors of PKA, PI3K, and NOS. These results suggest that cilostazol induces NO production by eNOS activation via a cAMP/PKA- and PI3K/Akt-dependent mechanism and that this effect is involved in capillary-like tube formation in HAEC.  相似文献   

8.
It has been suggested that serine (Ser) phosphorylation of insulin receptor substrate-1 (IRS-1) decreases the ability of IRS-1 to be phosphorylated on tyrosine, thereby attenuating insulin signaling. There is evidence that angiotensin II (AII) may impair insulin signaling to the IRS-1/phosphatydilinositol 3-kinase (PI 3-kinase) pathway by enhancing Ser phosphorylation. Insulin stimulates NO production by a pathway involving IRS-1/PI3-kinase/Akt/endothelial NO synthase (eNOS). We addressed the question of whether AII affects insulin signaling involved in NO production in human umbilical vein endothelial cells and tested the hypothesis that the inhibitory effect of AII on insulin signaling was caused by increased site-specific Ser phosphorylation in IRS-1. Exposure of human umbilical vein endothelial cells to AII resulted in inhibition of insulin-stimulated production of NO. This event was associated with impaired IRS-1 phosphorylation at Tyr612 and Tyr632, two sites essential for engaging the p85 subunit of PI3-kinase, resulting in defective activation of PI 3-kinase, Akt, and eNOS. This inhibitory effect of AII was reversed by the type 1 receptor antagonist losartan. AII increased c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 activity, which was associated with a concomitant increase in IRS-1 phosphorylation at Ser312 and Ser616, respectively. Inhibition of JNK and ERK1/2 activity reversed the negative effects of AII on insulin-stimulated NO production. Our data suggest that AII, acting via the type 1 receptor, increases IRS-1 phosphorylation at Ser312 and Ser616 via JNK and ERK1/2, respectively, thus impairing the vasodilator effects of insulin mediated by the IRS-1/PI 3-kinase/Akt/eNOS pathway.  相似文献   

9.
Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid that binds to S1P1 (EDG-1) receptors and activates the endothelial isoform of NO synthase (eNOS). S1P and the polypeptide growth factor vascular endothelial growth factor (VEGF) act independently to modulate angiogenesis and activate eNOS. In these studies, we explored the cross-talk between S1P and VEGF signaling pathways. When cultured bovine aortic endothelial cells were treated with VEGF (10 ng/ml), the expression of S1P1 protein and mRNA increased by approximately 4-fold. S1P1 up-regulation by VEGF was seen within 30 min of VEGF addition and reached a maximum after 1.5 h. By contrast, expression of neither bradykinin B2 receptors nor the scaffolding protein caveolin-1 was altered by VEGF treatment. The EC50 for VEGF-promoted induction of S1P1 expression was approximately 2 ng/ml, within its physiological concentration range. S1P1 induction by VEGF was attenuated by the tyrosine kinase inhibitor genistein and by the PKC inhibitor calphostin C. Preincubation of bovine aortic endothelial cells with VEGF (10 ng/ml for 90 min) markedly enhanced subsequent S1P-dependent eNOS activation. VEGF pretreatment of cultured endothelial cells also markedly potentiated S1P-promoted eNOS phosphorylation at Ser-1179, as well as S1P-mediated activation of kinase Akt. In isolated rat arteries, VEGF pretreatment markedly potentiated S1P-mediated vasorelaxation and eNOS Ser-1179 phosphorylation. Taken together, these data indicate that VEGF specifically induces expression of S1P1 receptors, associated with enhanced intracellular signaling responses to S1P and the potentiation of S1P-mediated vasorelaxation. We suggest that VEGF acts to sensitize the vascular endothelium to the effects of lipid mediators by promoting the induction of S1P1 receptors, representing a potentially important point of cross-talk between receptor-regulated eNOS signaling pathways in the vasculature.  相似文献   

10.
Endothelial nitric oxide synthase (eNOS) plays an important role in control of vascular tone and angiogenesis among other functions. Its regulation is complex and has not been fully established. Several studies have emphasized the importance of phosphorylation in the regulation of eNOS activity. Although it is commonly accepted that protein kinase C (PKC) signaling inhibits eNOS activity by phosphorylating Thr497 and dephosphorylating Ser1179, the distinct role of different PKC isoforms has not been studied so far. The PKC family comprises roughly 12 different isozymes that activate distinct downstream pathways. The present study was designed to investigate the role of PKCalpha isoform in regulation of eNOS activity. Overexpression of PKCalpha in primary endothelial cells was associated with increased eNOS-Ser1179 phosphorylation and increased NO production. Inhibition of PKCalpha activity either by siRNA transfection or by overexpression of a dominant negative mutant resulted in a marked decrease in FGF2-induced Ser1179 phosphorylation and NO production. In vivo, PKCalpha transduction in rat femoral arteries resulted in a significant increase in the resting blood flow that was suppressed by treatment with L-NAME, an eNOS inhibitor. In conclusion, these data demonstrate for the first time that PKCalpha stimulates NO production in endothelial cells and plays a role in regulation of blood flow in vivo.  相似文献   

11.
Fluid shear stress enhances NO production in endothelial cells by a mechanism involving the activation of the phosphatidylinositol 3-kinase and the phosphorylation of the endothelial NO synthase (eNOS). We investigated the role of the scaffolding protein Gab1 and the tyrosine phosphatase SHP2 in this signal transduction cascade in cultured and native endothelial cells. Fluid shear stress elicited the phosphorylation and activation of Akt and eNOS as well as the tyrosine phosphorylation of Gab1 and its association with the p85 subunit of phosphatidylinositol 3-kinase and SHP2. Overexpression of a Gab1 mutant lacking the pleckstrin homology domain abrogated the shear stress-induced phosphorylation of Akt but failed to affect the phosphorylation or activity of eNOS. The latter response, however, was sensitive to a protein kinase A (PKA) inhibitor. Mutation of Gab1 Tyr627 to phenylalanine (YF-Gab1) to prevent the binding of SHP2 completely prevented the shear stress-induced phosphorylation of eNOS, leaving the Akt response intact. A dominant-negative SHP2 mutant prevented the activation of PKA and phosphorylation of eNOS without affecting that of Akt. Moreover, shear stress elicited the formation of a signalosome complex including eNOS, Gab1, SHP2 and the catalytic subunit of PKA. In isolated murine carotid arteries, flow-induced vasodilatation was prevented by a PKA inhibitor as well as by overexpression of either the YF-Gab1 or the dominant-negative SHP2 mutant. Thus, the shear stress-induced activation of eNOS depends on Gab1 and SHP2, which, in turn, regulate the phosphorylation and activity of eNOS by a PKA-dependent but Akt-independent mechanism.  相似文献   

12.
Hyperglycemic impairment of nitric oxide (NO) production by endothelial cells is implicated in the effect of diabetes to increase cardiovascular disease risk, but the molecular basis for this effect is unknown. In skeletal muscle, diabetes induces activation of inhibitor kappaB kinase (IKKbeta), a key cellular mediator of the response to inflammatory stimuli, and this impairs insulin signal transduction via the insulin receptor substrate-phosphatidylinositol 3-OH kinase (IRS-1/PI3-kinase) pathway. Since activation of endothelial nitric oxide synthase (eNOS) is dependent on IRS-1/PI3-kinase signaling, we hypothesized that activation of IKKbeta may contribute to the effect of glucose to impair NO production. Here, we show that exposure of bovine aortic endothelial cells to high glucose (25 mM) for 24 h impaired insulin-mediated tyrosine phosphorylation of IRS-1, serine phosphorylation of Akt, activation of eNOS, and production of NO. High glucose treatment also activated IKKbeta, and pretreatment with aspirin, a pharmacological inhibitor of IKKbeta, prevented both glucose-induced IKKbeta activation and the effect of high glucose to impair insulin-mediated NO production. These adverse responses to glucose were also blocked by selective inhibition of IKKbeta signaling via overexpression of a kinase-inactive form of the enzyme. Conversely, overexpression of wild-type IKKbeta recapitulated the deleterious effect of high glucose on insulin-mediated activation of eNOS. These data demonstrate that activation of IKKbeta plays a critical and novel role to mediate the deleterious effects of high glucose on endothelial cell function.  相似文献   

13.
In the penis, nitric oxide (NO) can be formed by both neuronal NO synthase and endothelial NOS (eNOS). eNOS is activated by viscous drag/shear stress in blood vessels to produce NO continuously, a process mediated by the phosphatidylinositol 3-kinase (PI3kinase)/Akt pathway. Here we show that PI3-kinase/Akt physiologically mediates erection. Both electrical stimulation of the cavernous nerve and direct intracavernosal injection of the vasorelaxant drug papaverine cause rapid increases in phosphorylated (activated) Akt and eNOS. Phosphorylation is diminished by wortmannin and LY294002, inhibitors of PI3-kinase, the upstream activator of Akt. The two drugs also reduce erection. Penile erection elicited by papaverine is reduced profoundly in mice with targeted deletion of eNOS. Our findings support a model in which rapid, brief activation of neuronal NOS initiates the erectile process, whereas PI3-kinase/Akt-dependent phosphorylation and activation of eNOS leads to sustained NO production and maximal erection.  相似文献   

14.
The p66shc adaptor protein mediates age-associated oxidative stress. We examined the role of p66shc in endothelial nitric oxide synthase (eNOS) signaling. Overexpression of p66shc inhibited eNOS-dependent NO production. RNAi-mediated down-regulation of endogenous p66shc led to activation of the proto-oncogene ras, and Akt kinase, with a corresponding increase in phosphorylation of eNOS at S1177 (S1179 on bovine eNOS). In rat aortic rings, down-regulation of p66shc suppressed the vasoconstrictor response to phenyephrine that was abrogated by treatment with the NOS inhibitor l-NAME, and enhanced vasodilation induced by sub-maximal doses of acetylcholine. These findings highlight a pivotal role for p66shc in inhibiting endothelial NO production, and endothelium-dependent vasorelaxation, that may provide important mechanistic information about endothelial dysfunction seen with aging.  相似文献   

15.
Hepatocyte growth factor (HGF) has recently been the focus of attention due to its angiogenic effects, which are similar to those of vascular endothelial growth factor (VEGF); because of these effects, HGF is considered to be a novel therapeutic agent against vascular disorders, including atherosclerotic angiopathies. Although nitric oxide (NO), which is derived from vascular endothelial cells (ECs), is also involved in angiogenesis, little is known regarding the interactions between HGF and NO. We therefore examined the effects of HGF on NO production as well as endothelial NO synthase (eNOS) phosphorylation, and investigated their mechanisms. In bovine aortic ECs, HGF induced a rapid (5 min) increase of NO production measured by diaminofluorescein-2 diacetate. Moreover, HGF rapidly (2.5 min) stimulated eNOS phosphorylation (Ser-1179) as determined by Western immunoblot analyses. Both of these effects were almost completely suppressed by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and were partially suppressed by the mitogen-activated protein kinase (MAPK) kinase 1/2 inhibitor U0126. HGF also stimulated Akt phosphorylation (Ser-473), which was completely suppressed by LY294002 and was partially suppressed by U0126. Moreover, HGF stimulated extracellular signal-regulated kinase 1/2 phosphorylation (Thr-202/Tyr-204), which was completely suppressed by U0126 and was partially suppressed by LY294002. Taken together, these results indicate that HGF not only phosphorylates eNOS through the PI3K/Akt pathway, but also partially through the MAPK pathway, and that these two pathways may interact. Compared with VEGF, HGF was more potent in both NO production and eNOS phosphorylation. Our study thus demonstrates a novel activity of HGF-the stimulation of NO production-which occurs via eNOS phosphorylation that may in turn be mediated by cross-talk between the PI3K/Akt and MAPK pathways.  相似文献   

16.
Endothelial cells express negligible amounts of tissue factor (TF) that can be induced by thrombin, which is important for acute coronary syndromes. Recent research suggests that endothelial TF expression is positively regulated by RhoA and p38mapk, but negatively by Akt/endothelial nitric oxide synthase (eNOS) pathway. High-density lipoprotein (HDL) is atheroprotective and exerts antiatherothrombotic effect. This study investigated the effect of a reconstituted HDL (rHDL) on endothelial TF expression induced by thrombin and the underlying mechanisms. In cultured human umbilical vein and aortic endothelial cells, thrombin (4 U/mL, 4 hours) increased TF protein level, which was reduced by rHDL (0.1 mg/mL, 43% inhibition, n=3 to 7, P<0.01). Activation of RhoA but not p38mapk by thrombin was prevented by rHDL. rHDL stimulated Akt/eNOS pathway. The phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin or LY294002 abolished the activation of Akt/eNOS and reversed the inhibitory effect of rHDL on TF expression. Adenoviral expression of the active PI3K mutant (p110) reduced TF expression stimulated by thrombin without inhibiting RhoA activation, whereas expression of the active Akt mutant (m/p) further facilitated TF upregulation by thrombin. Moreover, a dominant-negative Akt mutant (KA) reduced thrombin's effect and did not reverse the rHDL's inhibitory effect on TF expression. Inhibition of eNOS by N(omega)-nitro-L-arginine methyl ester (100 micromol/L) did not affect the rHDL's effect. In conclusion, rHDL inhibits thrombin-induced human endothelial TF expression through inhibition of RhoA and activation of PI3K but not Akt/eNOS. These findings implicate a novel mechanism of antiatherothrombotic effects of HDL.  相似文献   

17.
To evaluate the role of vascular angiotensin II (Ang II) type 2 (AT2) receptor in renovascular hypertension, we investigated expressions of AT2 receptor and endothelial nitric oxide synthase (eNOS) in thoracic aortas of mice with 2-kidney, 1-clip (2K1C) hypertension. The mRNA levels of AT2 receptor in aortas, but not those of AT1 and bradykinin B2 receptors, increased 14 days but not 42 days after clipping. The contractile response to Ang II (>0.1 micromol/L) was attenuated in aortic rings excised 14 days after clipping and was restored to that of rings from sham mice by antagonists of AT2 receptor (PD123319) and B2 receptor (icatibant). The aortic levels of total eNOS, phosphorylated eNOS at Ser1177 (p-eNOS), total Akt, and phosphorylated Akt at Ser473 (p-Akt) were increased in 2K1C mice on day 14, whereas only eNOS levels were increased on day 42. The aortic cGMP levels were 20-fold greater in 2K1C mice on day 14 compared with sham mice. Administration of nicardipine for 4 days before the excision of aortas 14 days after clipping not only reduced blood pressure but also decreased the aortic levels of eNOS, p-eNOS, Akt, p-Akt, and cGMP to sham levels, whereas the administration of PD123319 or icatibant to 2K1C mice decreased p-eNOS and cGMP to sham levels without affecting blood pressure and the levels of eNOS, Akt and p-Akt. These results suggest that vascular NO production is enhanced by increased eNOS phosphorylation via the activation of AT2 receptors in the course of 2K1C hypertension.  相似文献   

18.
The activity of the endothelial nitric oxide synthase (eNOS) can be regulated independently of an increase in Ca(2+) by the phosphorylation of Ser(1177) but results only in a low nitric oxide (NO) output. In the present study, we assessed whether the agonist-induced (Ca(2+)-dependent, high-output) activation of eNOS is associated with changes in the phosphorylation of Thr(495) in the calmodulin (CaM)-binding domain. eNOS Thr(495) was constitutively phosphorylated in porcine aortic endothelial cells and was rapidly dephosphorylated after bradykinin stimulation. In the same cells, bradykinin enhanced the phosphorylation of Ser(1177), which was maximal after 5 minutes, and abolished by the CaM-dependent kinase II (CaMKII) inhibitor KN-93. Bradykinin also enhanced the association of CaMKII with eNOS. Phosphorylation of Thr(495) was attenuated by the protein kinase C (PKC) inhibitor Ro 31-8220 and after PKC downregulation using phorbol 12-myristate 13-acetate. The agonist-induced dephosphorylation of Thr(495) was completely Ca(2+)-dependent and inhibited by the PP1 inhibitor calyculin A. Little CaM was bound to eNOS immunoprecipitated from unstimulated cells, but the agonist-induced dephosphorylation of Thr(495) enhanced the association of CaM. Mutation of Thr(495) to alanine increased CaM binding to eNOS in the absence of cell stimulation, whereas the corresponding Asp(495) mutant bound almost no CaM. Accordingly, NO production by the Ala(495) mutant was more sensitive to Ca(2+)/CaM than the aspartate mutant. These results suggest that the dual phosphorylation of Ser(1177) and Thr(495) determines the activity of eNOS in agonist-stimulated endothelial cells. Moreover, the dephosphorylation of Thr(495) by PP1 precedes the phosphorylation of Ser(1177) by CaMKII. The full text of this article is available at http://www.circresaha.org.  相似文献   

19.
20.
The phosphatidylinositol 3-kinase (PI3-K) pathway, which activates serine/threonine protein kinase Akt, enhances endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production. We investigated the involvement of the PI3-K/Akt pathway in the relaxation responses to acetylcholine (ACh) and clonidine in a new type 2 diabetic model (streptozotocin plus nicotinamide-induced diabetic mice). Plasma glucose and insulin levels were significantly elevated in our model, and intravenous glucose tolerance tests revealed clear abnormalities in glucose tolerance and insulin responsiveness. Although in our model the ACh-induced relaxation and NOx- (NO2-+NO3-)/cGMP production were unchanged, the clonidine-induced and insulin-induced relaxations and NOx-/cGMP production were all greatly attenuated. In control mice, the clonidine-induced and insulin-induced relaxations were each abolished by LY294002 and by Wortmannin (inhibitors of PI3-K), and also by Akt-inhibitor treatment. The ACh-induced relaxation was unaffected by such treatments in either group of mice. The expression level of total Akt protein was significantly decreased in the diabetic mice aorta, but those for the p85 and p110gamma subunits of PI3-K were not. The clonidine-induced Ser-473 phosphorylation of Akt through PI3-K was significantly decreased in our model; however, that induced by ACh was not. These results suggest that relaxation responses and NO production mediated via the PI3-K/Akt pathway are decreased in this type 2 diabetic model. This may be a major cause of endothelial dysfunction (and the resulting hypertension) in type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号