首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
A potential application of embryonic and inducible pluripotent stem cells for the therapy of degenerative diseases involves pure somatic cells, free of tumorigenic undifferentiated embryonic and inducible pluripotent stem cells. In complex collections of chemicals with pharmacological potential we expect to find molecules able to induce specific pluripotent stem cell death, which could be used in some cell therapy settings to eliminate undifferentiated cells. Therefore, we have screened a chemical library of 1120 small chemicals to identify compounds that induce specifically apoptotic cell death in undifferentiated mouse embryonic stem cells (ESCs). Interestingly, three compounds currently used as clinically approved drugs, nortriptyline, benzethonium chloride and methylbenzethonium chloride, induced differential effects in cell viability in ESCs versus mouse embryonic fibroblasts (MEFs). Nortriptyline induced apoptotic cell death in MEFs but not in ESCs, whereas benzethonium and methylbenzethonium chloride showed the opposite effect. Nortriptyline, a tricyclic antidepressant, has also been described as a potent inhibitor of mitochondrial permeability transition, one of two major mechanisms involved in mitochondrial membrane permeabilization during apoptosis. Benzethonium chloride and methylbenzethonium chloride are quaternary ammonium salts used as antimicrobial agents with broad spectrum and have also been described as anticancer agents. A similar effect of benzethonium chloride was observed in human induced pluripotent stem cells (hiPSCs) when compared to both primary human skin fibroblasts and an established human fibroblast cell line. Human fibroblasts and hiPSCs were similarly resistant to nortriptyline, although with a different behavior. Our results indicate differential sensitivity of ESCs, hiPSCs and fibroblasts to certain chemical compounds, which might have important applications in the stem cell-based therapy by eliminating undifferentiated pluripotent stem cells from stem cell-derived somatic cells to prevent tumor formation after transplantation for therapy of degenerative diseases.  相似文献   

2.
3.
Δ40p53 is a transactivation-deficient isoform of the tumor suppressor p53. We discovered that Δ40p53, in addition to being highly expressed in embryonic stem cells (ESCs), is the major p53 isoform during early stages of embryogenesis in the mouse. By altering the dose of Δ40p53 in ESCs, we identified a critical role for this isoform in maintaining the ESC state. Haploinsufficiency for Δ40p53 causes a loss of pluripotency in ESCs and acquisition of a somatic cell cycle, while increased dosage of Δ40p53 prolongs pluripotency and inhibits progression to a more differentiated state. Δ40p53 controls the switch from pluripotent ESCs to differentiated somatic cells by controlling the activity of full-length p53 at critical targets such as Nanog and the IGF-1 receptor (IGF-1R). The IGF axis plays a central role in the switch between pluripotency and differentiation in ESCs-and Δ40p53, by controlling the level of the IGF-1R, acts as a master regulator of this switch. We propose that this is the primary function of Δ40p53 in cells of the early embryo and stem cells, which are the only normal cells in which this isoform is expressed.  相似文献   

4.
5.
The proper differentiation and threat of cancer rising from the application of induced pluripotent stem (iPS) cells are major bottlenecks in the field and are thought to be inherently linked to the pluripotent nature of iPS cells. To address this question, we have compared iPS cells to embryonic stem cells (ESCs), the gold standard of ground state pluripotency, in search for proteins that may improve pluripotency of iPS cells. We have found that when reprogramming somatic cells toward pluripotency, 1%-5% of proteins of 5 important cell functions are not set to the correct expression levels compared to ESCs, including mainly cell cycle proteins. We have shown that resetting cyclin A(1) protein expression of early-passage iPS cells closer to the ground state pluripotent state of mouse ESCs improves the pluripotency and reduces the threat of cancer of iPS cells. This work is a proof of principle that reveals that setting expression of certain proteins correctly during reprogramming is essential for achieving ESC-state pluripotency. This finding would be of immediate help to those researchers in different fields of iPS cell work that specializes in cell cycle, apoptosis, cell adhesion, cell signaling, and cytoskeleton.  相似文献   

6.
Embryonic stem cells (ESCs) are promising donor sources in cell therapies for various diseases. Although low levels of reactive oxygen species (ROS) are necessary for the maintenance of stem cells, increased ROS levels initiate differentiation and cell damage. We and others have previously demonstrated that heme oxygenase (HO)-1, a stress response protein with antioxidative and anti-inflammatory properties, plays critical protective functions in cardiovascular and other diseases. However, the functions of HO-1 in ESCs remain to be elucidated. Our goal was to investigate the roles of HO-1 in ESC survival and differentiation. Due to the lack of HO-1-deficient ESCs, we used Oct3/4, Sox2, c-Myc, and Klf4 retroviruses to reprogram mouse embryonic fibroblasts into induced pluripotent stem (iPS) cells of different HO-1 genotypes. These iPS-HO-1 cells exhibited characteristics of mouse ESCs (mESCs) and formed teratomas that were composed of cell types of all 3 germ layers after injected into severe combined immunodeficiency mice. In response to oxidant stress, iPS-HO-1(-/-) cells accumulated higher levels of intracellular ROS compared with D3 mESCs or iPS-HO-1(+/+) cells and were more prone to oxidant-induced cell death. Spontaneous differentiation experiments revealed that Oct4 levels were significantly lower in iPS-HO-1(-/-) cells after leukemia inhibitory factor withdrawal and removal of feeders. Further, during the course of spontaneous differentiation, iPS-HO-1(-/-) cells had enhanced Erk1/2 phosphorylation, which has been linked to ESC differentiation. By the loss-of-function approach using iPS-HO-1(-/-) cells, our results demonstrate that a lack of HO-1 renders iPS cells more prone to oxidative stress-induced cell death and differentiation.  相似文献   

7.
Spermatogonial stem cells (SSCs) isolated from the adult mouse testis and cultured have been shown to respond to culture conditions and become pluripotent, so called multipotent adult germline stem cells (maGSCs). microRNAs (miRNAs) belonging to the 290 and 302 miRNA clusters have been previously classified as embryonic stem cell (ESC) specific. Here, we show that these miRNAs generally characterize pluripotent cells. They are expressed not only in ESCs but also in maGSCs as well as in the F9 embryonic carcinoma cell (ECC) line. In addition, we tested the time-dependent influence of different factors that promote loss of pluripotency on levels of these miRNAs in all three pluripotent cell types. Despite the differences regarding time and extent of differentiation observed between ESCs and maGSCs, expression profiles of both miRNA families showed similarities between these two cell types, suggesting similar underlying mechanisms in maintenance of pluripotency and differentiation. Our results indicate that the 290-miRNA family is connected with Oct-4 and maintenance of the pluripotent state. In contrast, members of the 302-miRNA family are induced during first stages of in vitro differentiation in all cell types tested. Therefore, detection of miRNAs of miR-302 family in pluripotent cells can be attributed to the proportion of spontaneously differentiating cells in cultures of pluripotent cells. These results are consistent with ESC-like nature of maGSCs and their potential as an alternative source of pluripotent cells from non-embryonic tissues.  相似文献   

8.
9.
IgM cross-linking induces NF-kappaB inactivation, c-Myc down-regulation, and cyclin kinase inhibitor p27(Kip1) accumulation in WEHI-231 murine B lymphoma cells. p27(Kip1) up-regulation leads to a decreased cyclin-dependent kinase 2 activity, retinoblastoma protein hypophosphorylation, G1 arrest and apoptosis. Similar to membrane (m) IgM cross-linking in B lymphoma cells, steroids and retinoids down-regulate c-Myc (via NF-kappaB inactivation) and induce apoptosis in T cell hybridomas and thymocytes. In this study, we determined if steroids and retinoids have similar effects in WEHI-231 cells. Our results show that steroids and retinoids induce NF-kappaB inactivation, c-Myc down-regulation, p27(Kip1) up-regulation, G1 arrest, and apoptosis. Importantly, these hormones enhance anti-IgM-induced apoptosis in WEHI-231 cells. Similar to mIgM signaling, all these effects are prevented by treatment with CD40 ligand. Caspase inhibition, on the other hand, rescues cells from steroid/retinoid-induced apoptosis, but has no effect on growth arrest, p27(Kip1), and c-Myc. Together, these findings suggest that steroids/retinoids and mIgM cross-linking share a common signal transduction pathway leading to G1 arrest and cell death.  相似文献   

10.
11.
We previously showed that in quiescent cells p300/CBP negatively regulates the cell cycle G1-S transition by keeping c-Myc in a repressed state and that adenovirus E1A induces c-Myc by binding to p300/CBP. Studies have shown that p300/CBP binding to simian virus 40 large T is indirect and mediated by p53. By using a series of large T mutants that fail to bind to various cellular proteins including p53 as well as cells where p300 is overexpressed or p53 is knocked down, we show that the association of large T with p300 contributes to the induction of c-Myc and the cell cycle. The induction of c-Myc by this mechanism is likely to be important in large T mediated cell cycle induction and cell transformation.  相似文献   

12.
The p55CDC (cell division cycle) protein is a key regulator of the cell cycle. p55CDC is related to both the CDC20 and the CDH1 proteins in yeast. p55CDC has been shown to activate the ubiquitin ligase anaphase promoting complex (APC), which is involved in degradation of proteins that control mitosis. To define the role of p55CDC during the mammalian cell cycle, we overexpressed this protein in the murine myeloid cell line 32Dcl3. 32Dcl3 cells are an ideal model system because these cells can be induced to proliferate, differentiate, or activate cellular programs leading to apoptosis. Our work suggests that p55CDC participates in cell growth, maturation, and death. Thus, p55CDC may play a more diverse role in modulating cellular functions in addition to controlling the cell cycle.  相似文献   

13.
14.
ObjectivesProteins p27 and c-Myc are both key players in the cell cycle. While p27, a tumor suppressor, inhibits progression from G1 to S phase, c-Myc, a proto-oncogene, plays a key role in cell cycle regulation and apoptosis. The objective of our study was to determine the association between expression of c-Myc and the loss of p27 by immunohistochemistry (IHC) in the four major subtypes of breast cancer (BC) (Luminal A, Luminal B, HER2, and Triple Negative) and with other clinicopathological factors in a population of 202 African-American (AA) women.Materials and methodsTissue microarrays (TMAs) were constructed from FFPE tumor blocks from primary ductal breast carcinomas in 202 AA women. Five micrometer sections were stained with a mouse monoclonal antibody against p27 and a rabbit monoclonal antibody against c-Myc. The sections were evaluated for intensity of nuclear reactivity (1–3) and percentage of reactive cells; an H-score was derived from the product of these measurements.ResultsLoss of p27 expression and c-Myc overexpression showed statistical significance with ER negative (p < 0.0001), PR negative (p < 0.0001), triple negative (TN) (p < 0.0001), grade 3 (p = 0.038), and overall survival (p = 0.047). There was no statistical significant association between c-Myc expression/p27 loss and luminal A/B and Her2 overexpressing subtypes.ConclusionIn our study, a statistically significant association between c-Myc expression and p27 loss and the triple negative breast cancers (TNBC) was found in AA women. A recent study found that constitutive c-Myc expression is associated with inactivation of the axin 1 tumor suppressor gene. p27 inhibits cyclin dependent kinase2/cyclin A/E complex formation. Axin 1 and CDK inhibitors may represent possible therapeutic targets for TNBC.  相似文献   

15.
Activation of nuclear factor kappa B (NF-??B) is accomplished by a specific kinase complex (IKK-complex), phosphorylating inhibitors of NF-??B (I??B). In embryonic stem cells (ESCs), NF-??B signaling causes loss of pluripotency and promotes differentiation towards a mesodermal phenotype. Here we show that NF-??B signaling is involved in cell fate determination during retinoic acid (RA) mediated differentiation of ESCs. Knockdown of IKK1 and IKK2 promotes differentiation of ESCs into neuroectoderm at the expense of neural crest derived myofibroblasts. Our data indicate that RA is not only able to induce neuronal differentiation in vitro but also drives ESCs into a neural crest cell lineage represented by differentiation towards peripheral neurons and myofibroblasts. The NC is a transiently existing, highly multipotent embryonic cell population generating a wide range of different cell types. During embryonic development the NC gives rise to distinct precursor lineages along the anterior-posterior axis determining differentiation towards specific derivates. Retinoic acid (RA) signaling provides essential instructive cues for patterning the neuroectoderm along the anterior-posterior axis. The demonstration of RA as a sufficient instructive signal for the differentiation of pluripotent cells towards NC and the involvement of NF-??B during this process provides useful information for the generation of specific NC-lineages, which are valuable for studying NC development or disease modeling.  相似文献   

16.
Ye D  Wang G  Liu Y  Huang W  Wu M  Zhu S  Jia W  Deng AM  Liu H  Kang J 《Stem cells (Dayton, Ohio)》2012,30(8):1645-1654
Induced pluripotent stem (iPS) cells, especially those reprogrammed from patient somatic cells, have a great potential usage in regenerative medicine. The expression of p53 has been proven as a key barrier limiting iPS cell generation, but how p53 is regulated during cell reprogramming remains unclear. In this study, we found that the ectopic expression of miR-138 significantly improved the efficiency of iPS cell generation via Oct4, Sox2, and Klf4, with or without c-Myc (named as OSKM or OSK, respectively), without sacrificing the pluripotent characteristics of the generated iPS cells. Exploration of the mechanism showed that miR-138 directly targeted the 3' untranslated region (UTR) of p53, significantly decreasing the expression of p53 and its downstream genes. Furthermore, the ectopic expression of p53 having a mutant 3'-UTR, which cannot be bound by miR-138, seriously impaired the effect of miR-138 on p53 signaling and OSKM-initiated somatic cell reprogramming. Combined with the fact that miR-138 is endogenously expressed in fibroblasts, iPS cells, and embryonic stem cells, our study demonstrated that regulation of the p53 signaling pathway and promotion of iPS cell generation represent an unrevealed important function of miR-138.  相似文献   

17.
18.
p38 MAP kinase alpha (p38alpha) regulates various cellular processes in adult cells, but little is known about its function in stem cells. We investigated the potential of wild type and p38alpha deficient mouse embryonic stem cells (ESCs) to differentiate into endothelial cells (ECs), smooth muscle cells (SMCs), and neurons. Our differentiation methods allowed simultaneous development of all these cell types. ECs formed monolayers similar to mature ECs and could assemble into vessel-like structures. SMCs had well-organized actin filaments with morphology similar to adult SMCs. Neurons exhibited well-developed cell bodies and elongated axons. Deletion of the p38alpha gene did not significantly compromise ESC differentiation since p38alpha-/- cells could express cell-specific markers and displayed similar overall morphology to the cells differentiated from p38alpha+/+ ESCs. Although p38alpha regulates various cellular activities of adult SMCs, ECs, and neurons, our data demonstrate that p38alpha is not essential for ESC differentiation to these cell types.  相似文献   

19.
A molecular basis for human embryonic stem cell pluripotency   总被引:1,自引:0,他引:1  
Embryonic stem cells (ESCs) are able to generate a wide array of differentiated cell fates while maintaining self-renewal. Understanding the biology of these choices may be central to the use of human embryonic stem cells (HESCs), both as a model for early human development as well as a resource for cell based therapies. Efforts to dissect the molecular mechanisms that mediate stem cell identity are underway, and in this review we summarize recent progress in defining the markers and pathways involved in these decisions. We discuss recent efforts to assess the molecular signature of pluripotent HESCs and highlight work demonstrating a set of genes, including representatives from the FGF, TGFβ, and Wnt signaling pathways, that consistently mark the undifferentiated state. In addition, we describe experiments in which signaling of HESCs is augmented by chemical probing with small molecule compounds. Using these compounds, we have demonstrated an important role for Wnt signaling in HESC pluripotency and shown a requirement for TGFβ signaling in the maintenance of the undifferentiated state. These experiments have revealed some molecular aspects of the pluripotent state and demonstrated clear differences between mouse and human ESCs in the maintenance of this identity.  相似文献   

20.
Despite the enormous medical potential of ESCs, the molecular mechanisms conferring the ability to differentiate into all cell types of the embryo remain elusive. We used an in silico approach to identify genes expressed exclusively in mouse preimplantation embryos and pluripotent cell lines. Two of these genes were developmental pluripotency-associated gene 2 (Dppa2) and Dppa4, which we show are closely linked genes encoding putative nuclear SAP domain proteins expressed in human and mouse pluripotent stem cells and germ cell tumor-derived embryonal carcinoma cells. In the mouse, these genes are transcribed in germinal vesicle-stage oocytes and throughout the cleavage stages of embryogenesis. They then become restricted to the pluripotent inner cell mass of blastocysts and are subsequently downregulated. After gastrulation, Dppa2 and Dppa4 are expressed only in the developing germ line, showing that these genes mark cells of the pluripotent cycle. In the germ line, both genes are downregulated as the germ cells commit to the oogenic pathway or soon after commitment to the spermatogenic pathway. We have observed similar germ line expression profiles for other pluripotent markers, and these results are consistent with the hypothesis that pluripotent markers must be downregulated during fetal germ line development, a process that may be required to facilitate appropriate germ line differentiation. The study of expression and function of pluripotent markers such as Dppa2 and Dppa4 is likely to unveil new aspects of the regulation of pluripotency and germ line development in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号