首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Li Y  Zhang S  Xiao C  Su Z  Zhao Y  Chen W  Zhang G 《Human mutation》2002,20(5):404-405
Studies on mutations of BRCA1 gene in Oriental populations, especially in Chinese are sparse. To evaluate the contribution of BRCA1 mutations to sporadic breast cancer in Chinese, mutations in exon 11 from nucleotide positions 3533 to 3682(U14680), a highly variable region of BRCA1 gene, were screened by single-strand conformation polymorphism (SSCP) and DNA sequencing in 329 genomic DNAs from 95 Chinese women with sporadic breast cancer, 29 with benign breast disease and 50 controls. As results, 6 single nucleotide changes were found, and 5 of them (3545A>G, 3551G>T, 3607C>T, 3646T>A and 3661T>C) were newly discovered. The 3545A>G and 3607C>T were germline variations, and the other 3 were somatic variations. In addition, four new haplotypes were defined. Since these newly discovered nucleotide changes were only detected in patients, our results suggest that BRCA1 may also play a role in the development of sporadic breast cancer in Chinese populations.  相似文献   

4.
Cystinuria is a rare autosomal inherited disorder characterized by impaired transport of cystine and dibasic aminoacids in the proximal renal tubule. Classically, cystinuria is classified as type I (silent heterozygotes) and non-type I (heterozygotes with urinary hyperexcretion of cystine). Molecularly, cystinuria is classified as type A (mutations on SLC3A1 gene) and type B (mutations on SLC7A9 gene). The goal of this study is to provide a comprehensive clinical, biochemical and molecular characterization of a cohort of 12 Portuguese patients affected with cystinuria in order to provide insight into genotype-phenotype correlations. We describe seven type I and five non-type I patients. Regarding the molecular classification, seven patients were type A and five were type B. In SLC3A1 gene, two large genomic rearrangements and 13 sequence variants, including four new variants c.611-2A>C; c.1136+44G>A; c.1597T (p.Y533N); c.*70A>G, were found. One large genomic rearrangement was found in SLC7A9 gene as well as 24 sequence variants including 3 novel variants: c.216C>T (p.C72C), c.1119G>A (p.S373S) and c.*82C>T. In our cohort the most frequent pathogenic mutations were: large rearrangements (33.3% of mutant alleles) and a missense mutation c.1400T>C (p.M467T) (11.1%). This report expands the spectrum of SLC3A1 and SLC7A9 mutations and provides guidance in the clinical implementation of molecular assays in routine genetic counseling of Portuguese patients affected with cystinuria.  相似文献   

5.
Gaucher disease, the most prevalent sphingolipidosis, is caused by the deficient activity of acid beta-glucosidase, mainly due to mutations in the GBA gene. Over 200 mutations have been identified worldwide, more than 25 of which were in Spanish patients. In order to demonstrate causality for Gaucher disease, some of them: c.662C>T (p.P182L), c.680A>G (p.N188S), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1093G>A (p.E326K), c.1289C>T (p.P391L), c.1292A>T (p.N392I), c.1322T>C (p.I402T), and the double mutants [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), were expressed in Sf9 cells using a baculovirus expression system. Other well-established Gaucher disease mutations, namely c.1226A>G (p.N370S), c.1342G>C (p.D409H), and c.1448T>C (p.L444P), were also expressed for comparison. The levels of residual acid beta-glucosidase activity of the mutant enzymes produced by the cDNAs carrying alleles c.662C>T (p.P182L), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1289C>T (p.P391L), and c.1292A>T (p.N392I) were negligible. The c.1226A>G (p.N370S), c.1322T>C (p.I402T), c.1342G>C (p.D409H), c.1448T>C (p.L444P), and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]) alleles produced enzymes with levels ranging from 6 to 14% of the wild-type. The three remaining alleles, c.680A>G (p.N188S), c.1093G>A (p.E326K), and [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]), showed higher activity (66.6, 42.7, and 23.2%, respectively). Expression studies revealed that the c.1093G>A (p.E326K) change, which was never found alone in a Gaucher disease-causing allele, when found in a double mutant such as [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), decreases activity compared to the activity found for the other mutation alone. These results suggest that c.1093G>A (p.E326K) should be considered a "modifier variant" rather than a neutral polymorphism, as previously considered. Mutation c.680A>G (p.N188S), which produces a mutant enzyme with the highest level of activity, is probably a very mild mutation or another "modifier variant."  相似文献   

6.
7.
Restriction fragment length polymorphism in the NAT1 gene was assayed to reveal 7 mutations (97C>T; 190C>T; 350,351G>C; 402T>C; 752A>T; D(1105); D(1025)) in 74 Europeans from West Siberia. New methods for detecting mutations 350,351G>C, 402T>C, 752A>T, D(1105), and D(1025) were proposed.  相似文献   

8.
Germline mutations of the RET proto-oncogene have been found in familial and sporadic forms of Hirschsprung disease (HSCR), but also in the autosomal dominantly inherited multiple endocrine neoplasia type 2 (MEN2) syndromes, which comprise the medullary thyroid carcinoma (MTC) as an obligatory feature. Besides mutations various polymorphisms of the RET proto-oncogene are associated with the HSCR. In this study, we have characterized seven intronic RET polymorphisms (IVS2+9G>A, IVS4+48A>G, IVS12+47C>T, IVS14-24G>A, IVS19+47T>C, IVS20+96C>T, 3'UTR+124A>G) and investigated these variants by DNA sequencing in populations of 76 HSCR patients and 40 sporadic MTC patients as well as in a control population. Variants of four of these seven polymorphisms have a strong association with the HSCR phenotype. In contrast, none of the investigated polymorphisms show a significant difference in the genotype distribution and the allele frequencies in patients with sporadic MTC when compared to controls. These findings support the hypothesis that specific RET haplotypes cause or modify the HSCR phenotype.  相似文献   

9.
Polymorphisms in genes encoding CD28, ICOS, and CTLA-4 were demonstrated to be associated with susceptibility to malignancies. To the best of our knowledge, no study on this association has been performed in a Caucasian population for non-small-cell lung cancer (NSCLC). In the present work, we investigated the polymorphisms CTLA-4c.49A>G (rs231775), CTLA-4g.319C>T (rs5742909), CTLA-4g.*642AT(8_33), CTLA-4g.*6230G>A (CT60) (rs3087243), CTLA-4g.*10223G>T (Jo31) (rs11571302), CD28c.17+3T>C (rs3116496), and ICOSc.1554+4GT(8_15) in 208 NSCLC patients and 326 controls. The distributions of the allele and genotype were similar in both groups for CTLA-4, CD28, and ICOS gene polymorphisms. However, we noted a tendency toward overrepresentation of individuals possessing the CTLA-4c.49A>G[A] allele in NSCLC patients compared with controls (0.84 vs 0.79, p = 0.09). The association became significant compared with controls in women for the CTLA-4c.49A>G[A] allele and CTLA-4c.49A>G[AA] genotype (0.67 vs 0.54, p = 0.01, and 0.47 vs 0.30, p = 0.02; respectively). Moreover, the constellation of alleles CTLA-4c.49A>G[A]/CT60[G]/CD28c.17+3T>C[T]/ICOSc.1554+4GT(8_15)[>10] increased the risk of NSCLC about 2-fold (p = 0.002). The same constellation of alleles combined with smoking, CTLA-4g.319C>T[T], and ICOSc.1554+4GT(8_15)[>10] was associated with a decreased overall survival rate. In conclusion, the constellation of specific alleles in CTLA-4, CD28, and ICOS genes contributes to the susceptibility and clinical course of NSCLC.  相似文献   

10.
Mutations in the gene encoding dysferlin (DYSF) cause the allelic autosomal recessive disorders limb girdle muscular dystrophy 2B and Miyoshi myopathy. It encompasses 55 exons spanning 150 kb of genomic DNA. Dysferlin is involved in membrane repair in skeletal muscle. We identified three families with novel sequence variants in DYSF. All affected family members showed limb girdle weakness and had reduced or absent dysferlin protein on immunohistochemistry. All exons of DYSF were screened by genomic sequencing. Five novel variants in DYSF were found: two missense mutations (c.895G>A and c.4022T>C), one 5' donor splice-site variant (c.855+1delG), one nonsense mutation (c.1448C>A), and a variant in the 3'UTR of DYSF (c.*107T>A). All alterations were confirmed by restriction enzyme analysis and not found in 400 control alleles. Nonsense mediated RNA decay or changes in the three-dimensional protein structure resulting in intracellular dysferlin aggregates and finally the lack of dysferlin protein were identified as consequences of the novel DYSF variants.  相似文献   

11.
Kim LH  Shin HD  Park BL  Jung JH  Kim JY  Kim YJ  Lee HS 《Human mutation》2003,21(6):652-653
Human nuclear factor of kappa light chain gene enhancer in B cells inhibitor, alpha (NFKBIA) inhibits the action of NF-kappaB by forming a heterodimer with NF-kappaB, and preventing its translocation to the nucleus. We have sequenced a human NFKBIA full gene including -1000bp promoter region to identify its gene polymorphisms as a potential candidate gene for host genetic study of Hepatocellular Carcinoma (HCC). Nine novel single nucleotide polymorphisms (SNPs) and one GAA deletion were identified; two in promoter region (c.-673A>T, c.-642C>T), two in exon 1 (c.78G>A (Leu26Leu), c.81C>T (Asp27Asp)), three in introns (c.284T>A, c.1952A>G and c.2444C>T) and three in 3'UTR (c.2710-2712delGAA, c.2758G>A and c.3053G>A). Among ten identified variants, six were selected for larger scale genotyping (n=1,750) for association study based on frequencies and location. Haplotypes, their frequencies and linkage disequilibrium coefficients (/D'/) between SNP pairs were estimated. Allele frequencies of each SNPs and haplotypes were compared between patients with HCC and patients without HCC among HbsAg positives by logistic regression. As a conclusion, we could not find any significant association of NFKBIA variants with development of HCC among chronic hepatitis B patients.  相似文献   

12.
To better characterize Niemann-Pick type C (NPC) in Spain and improve genetic counselling, molecular analyses were carried out in 40 unrelated Spanish patients. The search identified 70/80 alleles (88%) involving 38 different NPC1 mutations, 26 of which are described for the first time. No patient with NPC2 mutations was identified. The novel NPC1 mutations include 14 amino acid substitutions [R372W (c.1114C>T), P434L (c.1301C>T), C479Y (c.1436G>A), K576R (c.1727G>A), V727F (c.2179G>T), M754K (c.2261T>A), S865L (c.2594C>T), A926T (c.2776G>A), D948H (c.2842G>C), V959E (c.2876T>A), T1036K (c.3107C>A), T1066N (c.3197C>A), N1156I (c.3467A>T) and F1224L (c.3672C>G)], four stop codon [W260X (c.780G>A), S425X (c.1274C>A), C645X (c.1935T>A) and R1059X (c.3175C>T)], two donor splice-site mutations [IVS7+1G>A (g.31432G>A) and IVS21+2insG (g.51871insG)], one in-frame mutation [N961_F966delinsS (c.2882del16bpins1bp)] and five frameshift mutations [V299fsX8 (c.895insT), A558fsX11 (c.1673insG), C778fsX10 (c.2334insT), G993fsX3 (c.2973_78delG) and F1221fsX20 (c.3662delT)]. We also identified three novel changes [V562V (c.1686G>A), A580A (c.1740C>G) and A1187A (c.3561G>T)] in three independent NPC patients and five polymorphisms that have been described previously. The combination of these polymorphisms gave rise to the establishment of different haplotypes. Linkage disequilibrium was detected between mutations C177Y and G993fsX3 and specific haplotypes, suggesting a unique origin for these mutations. In contrast, I1061T mutation showed at least two different origins. The most prevalent mutations in Spanish patients were I1061T, Q775P, C177Y and P1007A (10, 7, 7 and 5% of alleles, respectively). Our data in homozygous patients indicate that the Q775P mutation correlates with a severe infantile neurological form and the C177Y mutation with a late infantile clinical phenotype.  相似文献   

13.
Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the eccrine sweat glands, hair, and teeth. The X-linked form of the disease, caused by mutations in the ED1 gene, represents the majority of HED cases. Autosomal-dominant and -recessive forms occur occasionally and result from mutations in at least two genes: EDAR and EDARADD. These different forms are phenotypically indistinguishable. To better assess the implication of the EDAR gene in HED, we screened for mutations in 37 unrelated HED families or sporadic cases with no detected mutations in the ED1 gene. We identified 11 different mutations, nine of which are novel variants, in two familial and seven sporadic cases. Seven of the 11 are recessive mutations (c.140G>A (p.Cys47Tyr), c.266G>A (p.Arg89His), c.329A>C (p.Asp110Ala), c.442T>C (p.Cys148Arg), c.1208C>T (p.Thr403Met), c.1302G>T (p.Trp434Cys) and c.528+1G>A), and the other four are probably dominant (c.1129C>T (p.Leu377Phe), c.1237A>C (p.Thr413Pro), c.1253T>C (p.Ile418Thr), and c.1259G>A (p.Arg420Gln)). Our study demonstrates that EDAR is implicated in about 25% of non-ED1 HED, and may account for both autosomal-dominant and -recessive forms. The correlation between the nature and location of EDAR mutations and their mode of inheritance is discussed. A genotype-phenotype relationship was evaluated, since such data could be helpful for genetic counseling.  相似文献   

14.
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the Bruton tyrosine kinase (BTK) gene. Twenty Australian patients with an XLA phenotype, from 15 unrelated families, were found to have 14 mutations. Five of the mutations were previously described c.83G>A (p.R28H), c.862C>T (p.R288W), c.904G>A (p.R302G), c.1535T>C (p.L512P), c.700C>T (p.Q234X), while nine novel mutations were identified: four missense c.82C>A (p.R28S), c.494G>A (p.C165Y), c.464G>A (p.C155Y), c.1750G>A (p.G584E), one deletion c.142_144delAGAAGA (p.R48_G50del), and four splice site mutations c.241-2A>G, c.839+4A>G, c.1350-2A>G, c.1566+1G>A. Carrier analysis was performed in 10 mothers and 11 female relatives. The results of this study further support the notion that molecular genetic testing represents an important tool for definitive and early diagnosis of XLA and may allow accurate carrier status and prenatal diagnosis.  相似文献   

15.
Maroteaux-Lamy syndrome, or mucopolysaccharidosis VI (MPS VI), is an autosomal recessive lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-4-sulfatase or arylsulfatase B (ARSB). We aimed to analyze the spectrum of mutations responsible for the disorder in Spanish and Argentinian patients, not previously studied. We identified all the ARSB mutant alleles, nine of them novel, in 12 Spanish and 4 Argentinian patients. The new changes were as follows: six missense mutations: c.245T>G [p.L82R], c.413A>G [p.Y138C], c.719C>T [p.S240F], c.922G>A [p.G308R], c.1340G>T [p.C447F] and c.1415T>C [p.L472P]; one nonsense mutation: c.966G>A [p.W322X]; and two intronic changes involving splice sites: c.1142+2T>A, in the donor splice site of intron 5, which promotes skipping of exon 5, and c.1143-1G>C, which disrupts the acceptor site of intron 5, resulting in skipping of exon 6. We also report 10 previously described mutations as well as several non-pathogenic polymorphisms. Haplotype analysis indicated a common origin for most of the mutations found more than once. Most of the patients were compound heterozygotes, whereas only four of them were homozygous. These observations confirm the broad allelic heterogeneity of the disease, with 19 different mutations in 16 patients. However, the two most frequent mutations, c.1143-1G>C and c.1143-8T>G, present in both populations, accounted for one-third of the mutant alleles in this group of patients.  相似文献   

16.
Mutations in the vitelliform macular dystrophy 2 (VMD2) gene encoding besrtophin are responsible for Best macular dystrophy (BMD), a juvenile-onset autosomal dominant disorder of the central retina. Here, we report ten novel VMD2 mutations identified in clinically diagnosed BMD patients. The heterozygous alterations include nine missense mutations (c.32A>T, c.76G>C, c.85T>C, c.122T>C, c.122T>C, c.310G>C, c.722C>A, c.880C>G, c.893T>C) resulting in amino acid changes (respectively: Asn11Ile, Gly26Arg, Tyr29His, Leu41Pro, Trp102Arg, Asp104His, Thr241Asn, Leu294Val and Phe298Ser) located within four previously defined hotspot regions of the gene. In addition, a silent exonic mutation (c.624G>A) was identified in a two generation BMD pedigree. To determine a possible pathogenic effect of this variant, the consequences on splicing behaviour and potential exonic splice enhancer (ESE) motifs were analyzed. Finally, a 1-bp deletion (c.779delC) resulting in a frameshift mutation (Pro260fsX288) was found in exon 7, representing the first case of a potential frameshift mutation that affects the N-terminal half of the VMD2 protein. Besides a dominant negative effect which is likely attributable to the identified missense mutations, the deletion mutation suggests haploinsufficiency as an infrequent disease-causing mechanism in BMD.  相似文献   

17.
Homocystinuria due to cystathionine beta-synthase (CBS) deficiency is an inherited disorder of homocysteine transsulfuration, which manifests by neurological, vascular and connective tissue involvement. So far, 130 pathogenic mutations have been recognized in the CBS gene. We examined 10 independent alleles in Polish patients suffering from CBS deficiency, and we detected four already described mutations (c.1224-2A>C, c.684C>A, c.833T>C, and c.442G>A) and two novel mutations (c.429C>G and c.1039+1G>T). The pathogenicity of the novel mutations was demonstrated by expression in E.coli. This is the first published communication on mutations leading to CBS deficiency in Poland.  相似文献   

18.
Mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome, is a lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-4-sulfatase (ARSB). Seven MPS VI patients were chosen for the initial clinical trial of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Nine substitutions (c.289C>T [p.Q97X], c.629A>G [p.Y210C], c.707T>C [p.L236P], c.936G>T [p.W312C], c.944G>A [p.R315Q], c.962T>C [p.L321P], c.979C>T [p.R327X], c.1151G>A [p.S384N], and c.1450A>G [p.R484G]), two deletions (c.356_358delTAC [p.Y86del] and c.427delG), and one intronic mutation (c.1336+2T>G) were identified. A total of 7 out of the 12 mutations identified were novel (p.Y86del, p.Q97X, p.W312C, p.R327X, c.427delG, p.R484G, and c.1336+2T>G). Two of these novel mutations (p.Y86del and p.W312C) were expressed in Chinese hamster ovary cells and analyzed for residual ARSB activity and mutant ARSB protein. The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified among the patients, along with the silent mutation c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient, and, together with genotype information, were used to predict the expected clinical severity of each MPS VI patient.  相似文献   

19.
Methylenetetrahydrofolate reductase (MTHFR) synthesizes 5-methyltetrahydrofolate, a major methyl donor for homocysteine remethylation to methionine. Severe MTHFR deficiency results in marked hyperhomocysteinemia and homocystinuria. Patients display developmental delay and a variety of neurological and vascular symptoms. Cloning of the human cDNA and gene has enabled the identification of 29 rare mutations in homocystinuric patients and two common variants [677C>T (A222V) and 1298A>C (E429A)] with mild enzymatic deficiency. Homozygosity for 677C>T or combined heterozygosity for both polymorphisms is associated with mild hyperhomocysteinemia. In this communication, we describe four novel mutations in patients with homocystinuria: two missense mutations (471C>G, I153M; 1025T>C, M338T), a nonsense mutation (1274G>A, W421X), and a 2-bp deletion (1553delAG). We expressed the 1025T>C mutation as well as two previously reported amino acid substitutions [983A>G (N324S) and 1027T>G (W339G)] and observed decreased enzyme activity at 10%, 36%, and 21% of control levels, respectively, with little or no effect on affinity for 5-methyltetrahydrofolate. One of these mutations, 983A>G (N324S), showed flavin adenine dinucleotide (FAD) responsiveness in vitro. Expression of these mutations in cis with the 677C>T polymorphism, as observed in the patients, resulted in an additional 50% decrease in enzyme activity. This report brings the total to 33 severe mutations identified in patients with severe MTHFR deficiency.  相似文献   

20.
Hereditary fructose intolerance (HFI) is a recessively inherited disorder of carbohydrate metabolism caused by impaired functioning of human liver aldolase (B isoform; ALDOB). To-date, 29 enzyme-impairing mutations have been identified in the aldolase B gene. Here we report six novel HFI single nucleotide changes identified by sequence analysis in the aldolase B gene. Three of these are missense mutations (g.6846T>C, g.10236G>T, g.10258T>C), one is a nonsense mutation (g.8187C>T) and two affect splicing sites (g.8180G>C and g.10196A>G). We have expressed in bacterial cells the recombinant proteins corresponding to the g.6846T>C (p.I74T), g.10236G>T (p.V222F), and g.10258T>C (p.L229P) natural mutants to study their effect on aldolase B function and structure. All the new variants were insoluble; molecular graphics data suggest this is due to impaired folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号