首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pinkas J  Leder P 《Cancer research》2002,62(16):4781-4790
Activation of the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-mitogen-activated protein kinase (MAPK) pathway is a frequent event in tumorigenesis, and analysis of human breast carcinomas demonstrates that 25-50% of these tumors express elevated levels of activated MAPK1/2. However, a direct role for MEK1 in regulating the invasive and metastatic potential of mammary epithelial cells remains to be established. To directly address the role of constitutive MEK1 signaling in transformation, we have selected the murine mammary epithelial cell line, EpH4, as a model system. EpH4 cells expressing constitutively activated MEK1 display invasive growth in 3-dimensional collagen gels and enhanced motility, and metastatic potential in modified Boyden chamber assays. Furthermore, analysis of markers of normal epithelial morphology by immunofluorescence revealed reorganization of the actin cytoskeleton, and mislocalization of beta-catenin and ZO-1 away from sites of cell-cell contact. However, in contrast to expectations, these changes occurred independently of an epithelial to mesenchymal transition, a change seen frequently in transformed epithelial cells. Moreover, transplantation of EpH4 cells expressing constitutively activated MEK1 into the cleared mammary fat pads of immune-competent hosts rapidly produced tumors that were highly invasive, well vascularized, and readily metastasized to distant organs. Gene expression profiling was performed to identify the downstream targets of MEK1 signaling. Constitutive MEK1 induced the expression of genes involved in proliferation and of matrix metalloproteinases, which regulate invasion and metastasis. These results demonstrate that constitutively activated MEK1 brings about robust tumorigenic changes in murine mammary epithelial cells, and mediates their invasiveness and metastasis in vivo without a requirement for epithelial to mesenchymal transition.  相似文献   

3.
Erk/MAPK and TGFbeta signaling cause epithelial to mesenchymal transition (EMT) and metastasis in mouse mammary epithelial cells (EpH4) transformed with oncogenic Ras (EpRas). In trials to unravel underlying mechanisms, expression profiling for EMT-specific genes identified a secreted interleukin-related protein (ILEI), upregulated exclusively at the translational level. Stable overexpression of ILEI in EpH4 and EpRas cells caused EMT, tumor growth, and metastasis, independent of TGFbeta-R signaling and enhanced by Bcl2. RNAi-mediated knockdown of ILEI in EpRas cells before and after EMT (EpRasXT) prevented and reverted TGFbeta-dependent EMT, also abrogating metastasis formation. ILEI is overexpressed and/or altered in intracellular localization in multiple human tumors, an event strongly correlated to invasion/EMT, metastasis formation, and survival in human colon and breast cancer.  相似文献   

4.
Janda E  Litos G  Grünert S  Downward J  Beug H 《Oncogene》2002,21(33):5148-5159
Carcinogenesis by oncogenic Ras and Her-2 involves enhanced proliferation of epithelial cells in vivo. However, hyperproliferation induced by these oncogenes, or their downstream pathways in vitro has mainly been studied in cultured, fibroblastic cell lines. Here, we demonstrate that oncogenic Ha-Ras or constitutively active Her-2 cause increased proliferation and cyclin D1 upregulation in fully polarized, mammary epithelial cells (EpH4), if cultivated as organotypic structures in three-dimensional collagen/matrigel matrices. Under standard culture conditions, however, these oncogenes failed to induce hyperproliferation. Using both specific low molecular weight inhibitors and Ras-effector-specific mutants, we dissected signaling pathways downstream of oncogenic Ras (PI3K, Mek1/MAPK) with respect to (i) hyperproliferation in collagen gels and tumorigenesis in mice and (ii) epithelial/mesenchymal transition (EMT). We show that the Ras-activated PI3K pathway is required to induce rapid tumor growth and enhanced proliferation of EpH4 cells in collagen gels, but fails to cause EMT in vitro and in vivo. On the other hand, Ras-dependent activation of the Mek1/MAPK pathway in EpH4 cells (previously shown to cause EMT and metastasis) did not induce hyperproliferation in collagen gels and caused only slow tumor growth. Our data thus indicate that Ras-dependent signaling through the PI3K- and MAPK pathways fulfil distinct, but complementary functions during carcinogenesis.  相似文献   

5.
Maschler S  Grunert S  Danielopol A  Beug H  Wirl G 《Oncogene》2004,23(20):3622-3633
Overexpression of tenascin-C (TN-C) in breast carcinomas has been associated with a migratory or even invasive tumor cell phenotype. The mechanisms regulating expression and matrix deposition of TN-C in normal and cancerous breast tissues are, however, little understood. Here, we demonstrate that mouse mammary epithelial cells (EpH4) transformed by oncogenic Ha-Ras (EpRas) overexpress TN-C, which accumulates in the cytoplasm. When EpRas cells undergo epithelial-mesenchymal transition (EMT) in response to TGFbeta1, they secrete TN-C into the culture medium. In EpRas cells undergoing TGFbeta1-induced EMT in three-dimensional (3D)-collagen gel cultures, TN-C was deposited into an extracellular matrix (ECM) already containing fibronectin and perlecan. Under less physiological 2D plastic cultures, EpRas cells undergoing EMT failed to deposit TN-C into an (apparently incomplete) ECM. Ras-downstream signaling was dissected by pharmacological inhibitors and effector-specific Ras mutants (V12S35, V12C40), specifically inhibiting or activating ERK/MAPK or PI3K signaling, respectively. We showed that TN-C overexpression required a hyperactive ERK/MAPK-signaling pathway, while elevated PI3K signaling did not enhance TN-C expression. Similarly, tumors induced by cells exhibiting hyperactive ERK/MAPK signaling showed expression of TN-C in the tumor cells themselves, while only endothelial cells expressed TN-C in tumors caused by the V12C40 mutant (incapable of EMT in vivo). Taken together, our data indicate that hyperactive ERK/MAPK signaling causes enhanced expression of TN-C, while its secretion is induced by TGFbeta1 and both signals cooperate in TN-C matrix deposition. Importantly, both signals also cooperate to induce EMT in vitro and tumor progression/metastasis in vivo.  相似文献   

6.
7.
8.
Qiu C  Shan L  Yu M  Snyderwine EG 《Carcinogenesis》2005,26(4):763-769
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a mammary gland carcinogen present in the human diet. Herein, the expression of estrogen receptor alpha (ERalpha), estrogen receptor beta (ER beta) and progesterone receptor (PR) was examined in mammary gland carcinomas induced by PhIP in female Sprague-Dawley rats. Quantitative real-time polymerase chain reaction demonstrated that ER alpha, ER beta and PR were statistically elevated by 3-, 4- and 8-fold in carcinomas compared with normal mammary glands. By immunohistochemistry, carcinomas showed statistically higher nuclear expression of all three steroid receptors with the majority of carcinomas showing at least 10% of epithelial cells stained for ER alpha (49/55, 89%), ER beta (41/55, 75%) and PR (48/55, 87%). Furthermore, the level of expression of the three steroid hormone receptors was positively correlated with each other across the bank of carcinomas (Spearman analysis, P < 0.05). The expression of ER alpha in carcinomas was associated with tumor grade, extent of nuclear pleomorphism and cellular proliferation as measured by proliferating cell nuclear antigen (PCNA) and phospho-Rb immunostaining (Spearman analysis, P < 0.05). Confocal microscopy was used to measure the percentage of epithelial cells showing nuclear colocalization of receptors, PCNA, and cyclin D1. Colocalization of the receptors, and the colocalization of the receptors with PCNA and cyclin D1 was strikingly higher in carcinomas than in the normal mammary gland. In carcinoma cells, 37% of ER alpha positive epithelial cells were colocalized with PCNA in contrast to just 0.25% of cells in the normal mammary gland. The findings from this study indicate that ER alpha, ER beta and PR were co-upregulated and nuclear localized in epithelial cells from rat mammary carcinomas compared with normal mammary glands, and that the co-upregulation was positively correlated with proliferation and cell cycle progression in carcinomas.  相似文献   

9.
Tenascin-C is an adhesion-modulating extracellular matrix molecule that is highly expressed in tumor stroma and stimulates tumor cell proliferation. Adhesion of T98G glioblastoma cells to a fibronectin substratum is inhibited by tenascin-C. To address the mechanism of action, we performed a RNA expression analysis of T89G cells grown in the presence or absence of tenascin-C and found that tenascin-C down-regulates tropomyosin-1. Upon overexpression of tropomyosin-1, cell spreading on a fibronectin/tenascin-C substratum was restored, indicating that tenascin-C destabilizes actin stress fibers through down-regulation of tropomyosin-1. Tenascin-C also increased the expression of the endothelin receptor type A and stimulated the corresponding mitogen-activated protein kinase signaling pathway, which triggers extracellular signal-regulated kinase 1/2 phosphorylation and c-Fos expression. Tenascin-C additionally caused down-regulation of the Wnt inhibitor Dickkopf 1. In consequence, Wnt signaling was enhanced through stabilization of beta-catenin and stimulated the expression of the beta-catenin target Id2. Finally, our in vivo data derived from astrocytoma tissue arrays link increased tenascin-C and Id2 expression with high malignancy. Because increased endothelin and Wnt signaling, as well as reduced tropomyosin-1 expression, are closely linked to transformation and tumorigenesis, we suggest that tenascin-C specifically modulates these signaling pathways to enhance proliferation of glioma cells.  相似文献   

10.
11.
Tumor metastasis is associated with integrin-mediated adhesion and hyaluronan receptor expression. Accumulating evidence suggests that phytoestrogens, which are naturally occurring, plant-derived phytochemicals, could inhibit tumorigenesis during the development of breast cancer. Less is known, however, about the regulation of adhesion receptors by phytoestrogens and, particularly, their potency to influence proliferation of primary human breast cells in comparison with the steroid hormone 17beta-estradiol. Throughout the proliferation experiments, we used primary human mammary epithelial cells from normal tissue that was derived from plastic surgery. For receptor expression (beta1, alpha2, alpha3, CD44), we used the cell line MCF-7. Both investigations were carried out by flow cytometry. The phenotype of primary human mammary epithelial cells was microscopically characterized by analyzing the distribution of ZO-1, cytokeratin and the estrogen receptors alpha and beta. The integrins and the hyaluronan receptor were significantly up-regulated with 17beta-estradiol in human MCF-7 cells. In contrast, genistein and daidzein did not affect the expression at a concentration of 100 micromol/l. In all proliferation experiments with a significant stimulation of the primary human mammary epithelial cell growth due to 17beta-estradiol, in general, genistein and daidzein did not influence S-phase and G2/M-phase cells. Additionally, the stimulative effect of 17beta-estradiol could be inhibited. As the phytoestrogens do not up-regulate adhesion receptors in human breast cells and, regarding proliferation, are able to abolish the stimulatory effect of 17beta-estradiol, we suggest that phytoestrogens could have beneficial effects for the prevention or inhibition of carcinogenesis in hormone-dependent malignancies.  相似文献   

12.
13.
Despite the role of vitamin D3 endocrine system in prevention of mammary gland transformation in animal models, use of 1,25(OH)2D3 in clinical settings is precluded due to its toxicity in vivo. Therefore much effort has been placed in developing relatively non-toxic vitamin D analogs. Recently, with the discovery of the expression of 25-hydroxy vitamin D3 1α-hydroxylase (CYP27B1) in multiple extrarenal organs, the functional role of prohormone, 25-hydroxyvitamin D3 [25(OH)D3], has been redefined. Since 25(OH)D3 does not cause hypercalcemia and maintains relative high concentration in serum, it is possible that the prohormone can be converted to active hormone in mammary epithelial cells to provide chemopreventive effects. In the present study, we evaluated its functional significance using mouse mammary organ culture (MMOC) system. We first showed that 25(OH)D3 1α-hydroxylase is extensively expressed in mammary ductal epithelial cells at both protein and mRNA levels, which is a prerequisite for 25(OH)D3 to function in an autocrine/paracrine manner. However, we also observed that clotrimazol (1α-hydroxylase inhibitor) enhanced 25(OH)D3 -induced CYP24 expression in breast cancer cells. In mammary glands derived from 1α-hydroxylase knockout mice, 25(OH)D3 treatment in organ culture significantly induced CYP24 expression, indicating a potential direct effect of 25(OH)D3. In MMOC, 100–250 nM 25(OH)D3 suppressed both ovarian hormone-dependent and -independent mammary precancerous lesions (induced by DMBA) by more than 50%, while the active hormone 1,25(OH)2D3 (positive control) at 100 nM suppressed alveolar lesions by more than 80%. The inactive vitamin D3 (negative control) at 100 nM suppressed alveolar lesions by only 20% (P > 0.05). We found that 25(OH)D3 inhibits DMBA-induced mammary alveolar lesions (MAL) in a stage-specific manner: 25(OH)D3 mainly inhibits the promotion stage of lesion formation. We conclude that 25(OH)D3 could serve as a non-toxic natural chemopreventive agent for further development for breast cancer prevention.  相似文献   

14.
Normal human mammary epithelial cell (HMEC) cultures originating from 2 mammoplasty reduction surgical samples were transfected with replication-defective SV 40 DNA. Two independent cell lines designated as S2T2 and S1T3, selected for their increased proliferation potential and lifespan, were propagated for greater than 22 months in culture. They maintained a near-diploid karyotype with few chromosomal markers such as trisomy 1q (S1T3) and trisomy 8q (S2T2), which are most common in breast cancer in vivo. Immortalized S1T3 cells were not tumorigenic, whereas S2T2 cells produced slowly growing tumors in nude mice. One tumor was propagated in vitro and the transformed NS2T2 cell line subsequently raised 100% large tumors in the nude mouse. Rearrangement of the SV40 genome was observed in NS2T2 cells, which was not associated with increased expression of large T antigen. S1T3, S2T2 and transformed NS2T2 cell lines expressed cytokeratins CK18, CK19, the mammary-specific antigen DF3, and functional EGF receptors. Single-step immortalization and malignant transformation of human breast epithelial cells can thus occur upon transfection with SV40 large T oncogene. The chromosomal abnormalities observed in these cell lines suggest that they could offer a model for the study of breast-tumor progression in vitro.  相似文献   

15.
J C Sarup  K V Rao  C F Fox 《Cancer research》1988,48(18):5071-5078
Specific progesterone binding by cultured human breast carcinoma T47D, MCF-7, and ZR75-1 cells was decreased 25-40% by epidermal growth factor (EGF), with a 50% effective dose of 0.1 nM EGF. Studies with the soluble and particulate fractions prepared after homogenization of T47D cells grown in glass roller bottles revealed equivalent EGF-induced decreases in progesterone binding to receptors in both fractions. Equilibrium progesterone binding studies with these soluble and particulate fractions revealed that EGF decreased the receptor number, but had no effect on affinity. With cells grown adherent to plastic dishes, EGF treatment induced a greater decrease in binding to receptors recovered in the particulate fraction, than to receptors recovered in the soluble fraction. The decrease in progesterone binding induced by 20 nM EGF was maximal after 2 min of cellular EGF treatment for receptors recovered in the soluble fraction, but was only half-maximal after 15 min for receptors recovered in the particulate fraction. Decreased progesterone binding persisted for at least 8 days in cells cultured with 1 nM EGF. Either insulin or EGF stimulated T47D cell proliferation by two- to threefold with a 50% effective dose of 100 nM for insulin and 0.1 nM for EGF. The progestin, R5020, decreased T47D cell growth by 30% with a 50% effective dose of 1 nM. Either EGF or insulin antagonized the inhibitory effect of R5020 on cell reproduction, but progestins did not antagonize the growth stimulatory response of cells to EGF. Progestins increased the number of EGF receptors within 12 h of their addition to T47D cells, but this response was lost after 6 days. These data show that EGF or progesterone can regulate the receptor number of the other, but for cell reproduction, the effect of EGF is dominant over that of progestins.  相似文献   

16.
Choriocarcinoma is a highly malignant epithelial tumour that is most often associated with hydatidiform mole and presents the most common emergency medical problem in the management of trophoblast disease. We hypothesise that the hormones/cytokines present within the tumour microenvironment play key roles in the development of choriocarcinoma. In this study we assessed the effects of interleukin-1β (IL-1β) on cell death in the presence or absence of the sex hormone progesterone using two choriocarcinoma cell lines (BeWo and JEG-3) as in vitro experimental models. Although IL-1β induced cell death in both cell lines, the effect was more pronounced in JEG-3 cells, where cell death reached 40% compared to 15% in BeWo cells. Cell death of JEG-3 cells in response to IL-1β was significantly decreased by co-treatment with 100 nM and 1000 nM progesterone and completely abolished at a progesterone concentration of 1000 nM. Progesterone was also able to induce phosphorylation of ERK1/2 in these cells. Pretreatment of JEG-3 cells with a specific MAPK inhibitor (UO126) inhibited progesterone's inhibitory effect on cell death. Collectively, these data provide evidence of cross-talk between progesterone and IL-1β in this aggressive and poorly understood tumour that involves activation of a MAPK pathway and involvement of numerous progesterone receptors.  相似文献   

17.
The inhibitory effect of curcumin, the yellow-colored pigment from turmeric, on telomerase activity was analyzed in human mammary epithelial (MCF-10A) and breast cancer (MCF-7) cells. Telomerase activity in MCF-7 cells is 6.9-fold higher than that of human mammary epithelial cells. In MCF-7 cells, telomerase activity decreased with increasing concentrations of curcumin, inhibiting about 93.4% activity at 100 microM concentration. The inhibition of telomerase activity in MCF-7 cells may be due to down-regulation of hTERT expression. Increasing concentrations of curcumin caused a steady decrease in the level of hTERT mRNA in MCF-7 cells whereas the level of hTER and c-myc mRNAs remained the same. Our results suggest that curcumin inhibits telomerase activity by down-regulating hTERT expression in breast cancer cells and this down-regulation is not through the c-myc pathway.  相似文献   

18.
Maschler S  Wirl G  Spring H  Bredow DV  Sordat I  Beug H  Reichmann E 《Oncogene》2005,24(12):2032-2041
In nontumorigenic mammary epithelial cells (EpH4), transforming growth factor-beta (TGFbeta1) causes cell cycle arrest/apoptosis, but induces epitheliomesenchymal transition (EMT) in Ha-Ras-transformed EpH4 cells (EpRas). EMT is closely correlated with late-stage tumor progression and results in fibroblastic, migratory cells displaying a mesenchymal gene expression program (FibRas). EpRas and FibRas cells showed strongly increased cell substrate adhesion to fibronectin, collagens I/IV and laminin 1. Furthermore, Ras transformation caused enhanced or de-novo expression of the integrin subunits beta1, alpha2 and alpha3, or alpha5 and alpha6, respectively, the latter subunits being even more strongly expressed in FibRas cells. Importantly, polarized EpRas cells expressed integrin subunits beta1 and alpha6 at distinct (apical and lateral) membrane domains, while FibRas cells coexpressed these integrins and alpha5 at the entire plasma membrane. During EMT, EpRas cells formed an alpha5beta1 complex and deposited its ligand fibronectin into the extracellular matrix. Function-blocking alpha5 antibodies attenuated migration, and caused massive apoptosis in EpRas cells undergoing TGFbeta1-induced EMT in collagen gels, but failed to affect EpRas- or FibRas-derived structures. We conclude that functional alpha5beta1 integrin is centrally implicated in EMT induction. Importantly, FibRas cells also failed to deposit the alpha6beta4 ligand laminin 5, suggesting that alpha6beta4 is no longer functional after EMT and replaced by mesenchymal integrins such as alpha5beta1.  相似文献   

19.
The adaptor protein NHERF1/EBP50 (Na/H exchanger regulatory factor 1/ezrin-radixin-moesin-binding phosphoprotein 50) emerged recently as an important player in breast cancer progression. Consisting of two tandem PDZ domains linked to a carboxyl-terminal ezrin-binding region, NHERF1 assembles macromolecular complexes at the apical membrane of epithelial cells in many epithelial tissues, including the mammary gland. Involved initially in trafficking and regulation of transmembrane ion transporters and G protein-coupled receptors, NHERF1 also couples molecules involved in cell growth, such as the platelet-derived growth factor receptor (PDGFR) and PTEN (phosphatase and tensin homolog deleted on chromosome 10). In the previous issue of Breast Cancer Research, Pan and colleagues show an inhibitory action of NHERF1 on the phosphoinositide-3 kinase (PI3K)/Akt pathway in breast cancer cells via interaction of NHERF1 with PTEN, the physiological antagonist of the PI3K. Additionally, they show that NHERF1 expression confers susceptibility to PDGFR pharmacological inhibition depending on the presence of PTEN tumor suppressor.  相似文献   

20.
This is the first report about human tenascin-W, the fourth and final member of the extracellular matrix protein family of tenascins. Sixty-three human breast tumor extracts were analyzed by Western blotting for the presence of tenascin-W and compared with tenascin-C, an established marker of tumor stroma. Interestingly, we found tenascin-W expression in the majority of the tumor tissues, but no detectable expression in the normal mammary parenchyma. Eighty-one percent of the breast tumor samples were tenascin-W positive and 86% showed expression of tenascin-C. However, tenascin-W and tenascin-C amounts varied greatly between tumors and some contained either tenascin-W or tenascin-C exclusively, indicating independent mechanisms regulating their expression. Although there was no difference between high- or low-grade tumors with respect to the presence of tenascin-C, tenascin-W was more prominent in low-grade tumors. For 42 of the breast cancer tissues, a frozen tumor microarray was available to confirm the Western blot data by immunohistochemistry. Similar to tenascin-C, tenascin-W was detected in the tumor stroma. Fibroblasts adhered to tenascin-W in a beta(1) integrin-dependent manner and spread with a distinctive morphology under conditions where they remained round on tenascin-C. CHOB2 cells expressing alpha(v)beta(1) or alpha4beta(1) integrins were able to spread on tenascin-W. Furthermore, addition of tenascin-W to the culture medium increased migration of breast cancer cells toward a fibronectin substratum in vitro. These data imply that tenascin-W expression in the activated tumor stroma facilitates tumorigenesis by supporting the migratory behavior of breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号