首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methamphetamine (METH), a psychostimulant with highly neurotoxic effects, has been known to induce neuronal apoptosis in part through an endoplasmic reticulum (ER) stress pathway. Melatonin is an endogenous antioxidant compound that exerts protective effects against several neurodegenerative conditions, including METH-induced neurotoxicity, via various mechanisms. However, the role of melatonin in ER stress is still relatively unclear. In the present study, we investigated ER stress and neuronal apoptosis following METH treatment and the role of melatonin in METH-mediated ER stress-induced cell death in the SH-SY5Y neuroblastoma cell line. We found that METH caused the overexpression of ER stress-related genes, including C/EBP homologous protein and spliced X-box binding protein 1, in dose- and time-dependent manners. Moreover, METH time-dependently activated caspase-12 and -3, leading to cellular apoptosis. Furthermore, we demonstrated that pretreatment with melatonin attenuated the overexpression of ER stress-related genes and the cleavages of caspase-12 and -3 caused by METH exposure. Flow cytometry revealed that METH-mediated neuronal apoptosis was also prevented by melatonin. These findings suggest the protective effects of melatonin against ER stress and apoptosis caused by METH and other harmful agents.  相似文献   

2.
The Ts65Dn (TS) mouse, the most widely used model of Down syndrome (DS), has a partial trisomy of a segment of chromosome 16 that is homologous to the distal part of human chromosome 21. This mouse shares many phenotypic characteristics with people with DS including neuromorphological, neurochemical, and cognitive disturbances. Both TS and DS brains show earlier aging and neurodegeneration. Since fibroblast cultures from TS mice and human DS hippocampal regions show increased apoptotic cell death it has been suggested that alterations in cerebral apoptosis might be implicated in the cognitive deficits found in TS mice and in people with DS. In the present study we have evaluated brain expression levels of several proapoptotic and antiapoptotic proteins from the mitochondrial (Bcl-2, Bcl-XL, Bax and Bad) and the extrinsic (Fas-R and Fas-L) apoptotic pathways as well as the final executioner caspase-3, in the cortex and hippocampus of TS mice. No significant alterations in the expression levels of the proapoptotic Bad and Bax or the antiapoptotic Bcl-2 proteins in the cortex or hippocampus were found in TS mice. However, TS mice showed downregulation of Bcl-XL in the hippocampus. In the extrinsic pathway we found unchanged levels of Fas-L in both structures and also in the expression levels of Fas-R in the hippocampus. Although Bcl-XL downregulation suggests that the hippocampus of TS mice is less protected against programmed cell death, we did not find any evidence for increased apoptosis in TS mice since neither TUNEL-positive cells nor active caspase-3 expression were found in cortex or hippocampus of TS or CO mice.  相似文献   

3.
Cellular mechanisms involved in multiple neurodegenerative diseases converge on mitochondria to induce overproduction of reactive oxygen species, damage to mitochondria, and subsequent cytochrome c release. Little is currently known regarding the contribution mitochondrial dynamics play in cytochrome c release following oxidative stress in neurodegenerative disease. Here we induced oxidative stress in the HT22 cell line with glutamate and investigated key mediators of mitochondrial dynamics to determine the role this process may play in oxidative stress induced neuronal death. We report that glutamate treatment in HT22 cells induces increase in reactive oxygen species (ROS), release of the mitochondrial fusion protein Opa1 into the cytosol, with concomitant release of cytochrome c. Furthermore, following the glutamate treatment alterations in cell signaling coincide with mitochondrial fragmentation which culminates in significant cell death in HT22 cells. Finally, we report that treatment with the antioxidant tocopherol attenuates glutamate induced-ROS increase, release of mitochondrial Opa1 and cytochrome c, and prevents cell death.  相似文献   

4.
5.
We have previously reported that presenilin-1 (PS-1)-immunoreactive neurons survive in late-onset sporadic Alzheimer’s disease (AD). To examine if this is also the case in other dementing conditions, and if it is associated with changes in the expression of the main apoptosis-related proteins, a quantitative immunocytochemical study of presenilin-1, Bax, and Bcl-XL in the cerebral cortex of non-demented and AD patients, and patients with frontotemporal dementia (FTD) was performed. In non-demented cases, the frequency of neurons showing PS-1 immunoreactivity was 25–60%, Bax immunoreactivity 36–54%, and Bcl-XL immunoreactivity 26–63% depending on the cortical area. The frequency of NFT-free neurons which contained PS-1 or Bax was consistently increased in all of the areas in AD. In FTD cases, the percentage of PS-1-, but not Bax-immunoreactive neurons was increased only in areas displaying a substantial neuronal loss. Conversely, there was no difference in the densities of Bcl-XL-containing neurons among the three diagnosis groups. These data suggest that surviving neurons in affected cortical areas in AD show a high expression of PS-1 and Bax, indicating that these proteins play a key role in the mechanisms of cell death in this disorder. In FTD, neurons containing PS-1 are preserved, further supporting a neuroprotective role for this protein in other neurodegenerative disorders. Received: 27 October 1998 / Revised: 4 January 1999 / Accepted: 5 January 1999  相似文献   

6.
Mitochondrial dysfunction and oxidative stress are implicated in many neurodegenerative diseases. Mitochondria-targeted drugs that effectively decrease oxidative stress, protect mitochondrial energetics, and prevent neuronal loss may therefore lend therapeutic benefit to these currently incurable diseases. To investigate the efficacy of such drugs, we examined the effects of mitochondria-targeted antioxidants MitoQ10 and MitoE2 on neuronal death induced by neurotrophin deficiency. Our results indicate that MitoQ10 blocked apoptosis by preventing increased mitochondria-derived reactive oxygen species (ROS) and subsequent cytochrome c release, caspase activation, and mitochondrial damage in nerve growth factor (NGF)-deprived sympathetic neurons, while MitoE2 was largely ineffective. In this paradigm, the most proximal point of divergence was the ability of MitoQ10 to scavenge mitochondrial superoxide (O2). MitoQ10 also prevented caspase-independent neuronal death in these cells demonstrating that the mitochondrial redox state significantly influences both apoptotic and nonapoptotic pathways leading to neuronal death. We suggest that mitochondria-targeted antioxidants may provide tools for delineating the role and significance of mitochondrial ROS in neuronal death and provide a new therapeutic approach for neurodegenerative conditions involving trophic factor deficits and multiple modes of cell death.  相似文献   

7.
In hypoxic/ischemic conditions, neuronal apoptotic events are occurred, resulting in neuronal diseases. Estradiol is a female sex hormone with steroid structure known to provide neuroprotection through multiple mechanisms in the central nervous system. This study was aimed to investigate the signal transduction pathway leading to the inhibitory effects of estradiol against cobalt chloride (CoCl2)-mediated hypoxic death in PC12 cells. Estradiol inhibits CoCl2-induced cell death with genomic DNA fragmentation and morphologic changes such as cell shrinkage and condensed nuclei. Pre-incubation of estradiol prior to CoCl2 treatment attenuated CoCl2-mediated the reactive oxygen species (ROS) production and limited the activities of the caspase cascades, such as caspase-8, -9 and -3. Furthermore, estradiol downregulated the Bax:Bcl-2 ratio and decreased the release of cytochrome c from the mitochondria into the cytosol in CoCl2-treated cells, indicating that estradiol affect on mitochondrial pathway. Estradiol attenuated also CoCl2-induced upregulation of Fas-ligand (Fas-L) and truncated of Bid in sequence of death receptor-mediated pathway. In addition, estradiol increased the phosphorylation of Akt in CoCl2-treated cells, demonstrating that estradiol has no affect on upstream signaling through the PI3K/Akt in inhibition of CoCl2-induced apoptosis in PC12 cells.Taken together, estradiol was found to have a neuroprotective effect against CoCl2-induced apoptosis of PC12 cells by the attenuating ROS production and the modulating apoptotic signal pathway through Bcl-2 family, cytochrome c, Fas/Fas-L as well as PI3K/Akt pathway.  相似文献   

8.
9.
Methamphetamine (METH) has been reported to induce endoplasmic reticulum (ER) stress and neuronal apoptosis in the central nervous system (CNS) during the development of addiction. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays an important role in inhibiting apoptosis and protects neurons from cytotoxicity through ER and mitochondria-mediated pathways. Our previous study has been reported that Trx-1 protects mice from METH-induced rewarding effect. However, whether Trx-1 plays the role in resisting METH injury is still unclear. Here, we aim to investigate whether Trx-1 participates in the regulation of METH-induced CNS injury via ER stress and mitochondria-mediated pathways. Our study first repeated the conditioned place preference expression induced by METH. Then we detected and found that METH increased the expression of N-methyl-d-asparate (NMDA) receptor subunit 2B (NR2B) and the level of glutamate (Glu) in the ventral tegmental area (VTA) and nucleus accumbens (NAc), while Trx-1 overexpression suppressed the increases. We further examined ER stress-related proteins and mitochondrial apoptosis pathway in the VTA and NAc, and found that METH increased the expressions of glucose regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Bax, as same time decreased the expressions of procaspase12, Bcl-2, and procaspase3, while Trx-1 overexpression blocked these changes. These results indicate that Trx-1 blocks METH-induced injury by suppressing ER stress and mitochondria-mediated apoptosis in the VTA and NAc via targeting glutamatergic system.  相似文献   

10.
11.
In this study we analyzed whether other members of the Bcl-2 family are regulated in the absence of Bax during the postnatal development of the striatum and cortex and after striatal excitotoxic lesion. Compared with wild-type animals, Bax knockout mice showed region- and time-dependent increases in pro-apoptotic proteins Bak and BimEL. Excitotoxicity induced in the adult striatum increased BimEL in both genotypes whereas Bak and Bcl-xL were only increased in Bax knockout mice. However, translocation of BimEL protein to the mitochondrial fraction, cytochrome c release and caspase-3 activation were only observed in wild-type striata. Furthermore, analysis of Bim null mutant mice showed that this protein is not essential to excitotoxicity-induced striatal cell death. In conclusion, our results show that in Bax deficient mice BimEL and Bak are specifically regulated during postnatal development, suggesting that these proteins may participate in the compensatory mechanisms triggered in the absence of Bax. In contrast, Bax is required to induce apoptosis after excitotoxicity in the adult striatum.  相似文献   

12.
We examined the toxicity of paraquat, a possible environmental risk factor for neurodegenerative disorders like Parkinson's disease (PD). Paraquat is structurally similar to the neurotoxin MPP+ that can induce Parkinsonian-like features in rodents, non-human primates and human. Exposure of cerebellar granule cells to relatively low concentrations of paraquat (5 μM) produces apoptotic cell death with a reduction in mitochondrial cytochrome c content, proteolytic activation and caspase-3 activity increase and DNA fragmentation. Paraquat-induced apoptosis was significantly attenuated by co-treatment of cerebellar granule cells with the radical scavenger vitamin E, suggesting that paraquat-induced free radicals serve as important signal in initiation of cell death. As a decrease in mitochondrial cytochrome c content is also prevented by allopurinol, we suggest that xanthine oxidase plays an important role in the free radical production that precedes the apoptotic cascade and cell death after paraquat exposition.  相似文献   

13.
Methamphetamine (METH) is a psychostimulant that damages nigrostriatal dopaminergic terminals, primarily by enhancing dopamine and glutamate release. α1-adrenergic receptor (AR) subtype involved in METH-induced neurotoxicity in rats was investigated using selective α1-AR antagonists. METH neurotoxicity was evaluated by (1) measuring body temperature; (2) determining tyrosine hydroxylase (TH) immunoreactivity levels; (3) examining levels of dopamine and its metabolites; and (4) assessing glial fibrillary acidic protein (GFAP) and microglial immunoreactivity in the striatum. METH caused a decrease in dopamine and TH levels and induced hyperthermia which is an exacerbating factor of METH neurotoxicity. Concurrently, METH increased GFAP expression and the number of activated microglia. Pretreatment with prazosin, a nonselective α1-AR antagonist, completely abolished METH-induced decrease in both dopamine and TH and caused a partial reduction in hyperthermia. Prazosin also prevented METH-induced increase in both GFAP expression and the number of activated microglia. In vivo microdialysis analysis revealed that prazosin, however, does not alter the METH-induced dopamine release in the striatum. The neuroprotective effects of prazosin could be mimicked by a selective α1D antagonist, BMY 7378, but not by selective α1A or α1B antagonists. These results suggest that the α1D-AR is involved in METH-induced hyperthermia and neurotoxicity in rats.  相似文献   

14.
Methamphetamine (METH) exposure reportedly promotes microglial activation and pro-inflammatory cytokines secretion. Sustained inflammation in abusers of psychostimulant drugs further induces neural damage. Cholecystokinin-8 (CCK-8) is a gut-brain peptide which exerts a wide range of biological activities in the gastrointestinal tract and central nervous system. We previously found that pre-treatment with CCK-8 inhibited behavioural and histologic changes typically induced by repeated exposure to METH. Here, we aimed to estimate the effects of CCK-8 on METH-induced neuro-inflammation, which is markedly characterized by microglia activation and increased pro-inflammatory cytokines production in vivo and in vitro. Moreover, we assessed the subtypes of the CCK receptor mediating the regulatory effects of CCK-8, and the changes in the NF-κB signalling pathway. We found that CCK-8 inhibited METH-induced microglial activation and IL-6 and TNF-α generation in vivo and in vitro in a dose-dependent manner. Furthermore, co-treatment of CCK-8 with METH significantly attenuated the activation of the NF-κB signalling pathway by activating the CCK2 receptor subtype in N9 cells. In conclusion, our findings indicated the inhibitory effect of CCK-8 on METH-induced neuro-inflammation in vivo and in vitro, and suggested the underlying mechanism may involve the activation of the CCK2 receptor, which downregulated the NF-κB signalling pathway induced by METH stimulation.  相似文献   

15.
Neonatal (P7) brain hypoxia–ischemia (HI) induces intracellular Bax protein shifts to the nucleus, mitochondria, and endoplasmic reticulum (ER), where it triggers the activation of the respective cell death signaling cascades. When compared with HI‐treated rat pups, 100% O2 resuscitation of HI‐treated rat pups increases HI‐induced ER Bax levels, ER‐mediated cell death signaling, and resultant lesion volume and inflammation due to increased necrotic‐like cell death. To better characterize the role of Bax intracellular shuttling ER cell death signaling and necrotic‐like cell death, we used rotenone‐treated P5 neuronal cortical cultures to increase ER Bax levels and subsequent cell death signaling. We treated P5 primary cortical neurons with 25 μM and 100 μM rotenone as an apoptotic or necrotic‐like stimulus, respectively, and measured intracellular organelle Bax levels and the subsequent activation of ER/mitochondrial cell death signaling. The 25 μM rotenone treatment promptly increased nuclear Bax levels followed by a later increase in mitochondrial Bax levels and caspase‐mediated cleavage of α‐fodrin. The 100 μM rotenone treatment also resulted in an early increase in nuclear Bax levels followed by a subsequent increase in ER Bax levels and calpain‐mediated cleavage of α‐fodrin. After pretreatment with the immunosuppressive and neuroprotective FK506, there was a delay in Bax intracellular shifts and cell death signaling for both the 25 and 100 μM rotenone treatments. These results suggest that the different outcomes of apoptotic‐like vs. necrotic‐like cell death resulting from the treatment of neuronal cultures with rotenone at 25 and 100μM rotenone reflect changes in the intracellular trafficking of Bax among different organelles. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
Methamphetamine toxicity and messengers of death   总被引:2,自引:0,他引:2  
Methamphetamine (METH) is an illicit psychostimulant that is widely abused in the world. Several lines of evidence suggest that chronic METH abuse leads to neurodegenerative changes in the human brain. These include damage to dopamine and serotonin axons, loss of gray matter accompanied by hypertrophy of the white matter and microgliosis in different brain areas. In the present review, we summarize data on the animal models of METH neurotoxicity which include degeneration of monoaminergic terminals and neuronal apoptosis. In addition, we discuss molecular and cellular bases of METH-induced neuropathologies. The accumulated evidence indicates that multiple events, including oxidative stress, excitotoxicity, hyperthermia, neuroinflammatory responses, mitochondrial dysfunction, and endoplasmic reticulum stress converge to mediate METH-induced terminal degeneration and neuronal apoptosis. When taken together, these findings suggest that pharmacological strategies geared towards the prevention and treatment of the deleterious effects of this drug will need to attack the various pathways that form the substrates of METH toxicity.  相似文献   

18.
Methamphetamine (METH) is a potent inducer of dopamine (DA) release, and is toxic to DA neurons. It has been reported that the formation of free radicals is an early signaling event that mediates cell death caused by METH. Currently, studies suggest that the generation of free radicals by oxidative catabolism of DA and dysfunction of the mitochondrial respiration chain are important mediators of neuronal death in Parkinson's disease (PD) and one process may counter the effect of the other. In our previous study, we investigated the deleterious effects of METH-induced reactive oxygen species (ROS) and mitochondrial dysfunction in dopaminergic SK-N-SH cells in culture, and assessed whether zinc-metallothionein induction provided mitochondrial protection against METH-induced mitochondrial dysfunction. Our present data demonstrate that METH enhances lipid peroxidation and mitochondrial manganese superoxide dismutase (MnSOD) enzyme levels, and decreases the antioxidant-reduced glutathione (GSH) together with an inhibition of mitochondrial complex-I activity. Pre-treatment with zinc markedly prevents the increase of lipid peroxidation and provides mitochondrial protection by scavenging free radicals via metallothionein and by increasing mitochondrial GSH and complex-I levels, thus rescuing SK-N-SH cells from METH toxicity. It should be emphasized that, however, it is still not clear that effects of METH on cultured SK-N-SH reliably model the effects of METH in the intact animal. Further studies in the intact animal are needed.  相似文献   

19.
Recent data have provided important clues about the molecular mechanisms underlying certain neurodegenerative diseases. Most cell death in vertebrates proceeds via the mitochondrial pathway of apoptosis. Mitochondria contain proapoptotic factors such as cytochrome c and AIF in their intermembrane space. Furthermore, mitochondrial membrane permeabilization (MMP) is a critical event during apoptosis, representing the “point of no return” of the lethal process. Modern medicine is developing an increasing number of drugs for neurodegenerative disease, but no neuroprotective treatment has yet been established. While current treatments temporarily alleviate symptoms, they do not halt disease progression. This paper briefly reviews the pharmacological inhibition of mitochondrial membrane permeabilization for neuroprotection.  相似文献   

20.
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disease caused by polyglutamine-expanded ataxin-3. In the present study, we expressed disease-causing mutant ataxin-3-Q79 in neuronal cultures of cerebellum, striatum and substantia nigra by using recombinant adenoviruses. Subsequently, SCA3 cellular model was used to investigate the molecular mechanism by which ataxin-3-Q79 causes neuronal death. TUNEL staining studies showed that ataxin-3-Q79 induced apoptotic death of cerebellar, striatal or substantia nigra neurons. Ataxin-3-Q79 activated caspase-3 and caspase-9 without inducing the formation of active caspase-8. Ataxin-3-Q79 promoted mitochondrial release of cytochrome c and Smac, which was preceded by the upregulation of Bax protein and downregulation of Bcl-x(L) protein expression. Real-time TaqMan RT-PCR assays demonstrated that ataxin-3-Q79 upregulated Bax mRNA level and downregulated Bcl-xL mRNA expression in striatal, cerebellar and substantia nigra neurons. Our results suggest that polyglutamine-expanded ataxin-3-Q79 activates mitochondrial apoptotic pathway and induces neuronal death by upregulating Bax expression and downregulating Bcl-xL expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号