首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow polyelectrolyte microcapsules based on poly(l-glutamic acid) (PLGA) and chitosan (CS) with opposite charges were fabricated by layer-by-layer (LbL) assembly technique using melamine formaldehyde (MF) microparticles as sacrificial templates. The LbL assembly of polyelectrolytes and the resultant PLGA/CS microcapsules were characterized. A hydrophilic anticancer drug, 5-fluorouracil (5-FU), was chosen to investigate the loading and release properties of the microcapsules. The PLGA/CS microcapsules show high loading capacity of 5-FU under conditions of high drug concentration and salt adding. The high loading can be ascribed to spontaneous deposition of 5-FU induced by hydrogen bonding between 5-FU and PLGA/CS microcapsules. The PLGA/CS microcapsules show sustained release behavior. The release rate of 5-FU drastically slows down after loading in PLGA/CS microcapsules. The 5-FU release from PLGA/CS microcapsules can be best described using Ritger-Peppas or Baker-Londale models, indicating the diffusion mechanism of 5-FU release from the PLGA/CS microcapsules. In vitro cytotoxicity evaluation by the MTT assay shows good cell viability over the entire concentration range of PLGA/CS microcapsules. Therefore, the novel PLGA/CS microcapsules are expected to find application in drug delivery systems because of the properties of biodegradability, high loading, sustained release and cell compatibility.  相似文献   

2.
3.
A series of novel amphiphilic chitosan derivatives, cholic acid modified N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (HTCC-CA) with different quaternization degrees and cholic acid substitutions were synthesized in this study. HTCC-CA is biocompatible and forms particles in aqueous solution. The binding with superoxide dismutase (SOD) at pH 6.8 destroys the original aggregates of HTCC-CA and produces smaller SOD/HTCC-CA complex nanoparticles via electrostatic and hydrophobic interactions. The SOD loading efficiency and loading capacity of HTCC-CA can reach to more than 90% and 45%, respectively. Confocal laser scanning microscopy observation and flow cytometry analysis reveal that SOD/HTCC-CA complex nanoparticles greatly enhance the cellular internalization of the loaded SOD. The SOD activities and malonaldehyde concentrations in the serum and organs of the rats, administrated intravenously with free SOD, free HTCC-CA, and SOD/HTCC-CA nanoparticles, were assayed to evaluate the antioxidant efficiency in vivo. The results demonstrate that free HTCC-CA is effective to scavenge superoxide radicals in the blood circulation and SOD/HTCC-CA nanoparticles have better antioxidant efficiency than free SOD as well as free HTCC-CA.  相似文献   

4.
With the aim to establish new strategies for fabricating bioactive nanostructured matrices for controlled drug delivery or potential tissue engineering, a facile and one-pot protocol was developed in this study to produce drug-loaded poly(l-lactide) (PLLA) nanostructures by thermally induced phase separation. Using both steroidal and nonsteroidal anti-inflammatory drugs, we demonstrated that lipophilic drugs can be efficiently incorporated in either nanosheet-like or nanofibrous PLLA matrices. Thus entrapped drug was randomly distributed in the interconnected nanostructures in the form of nanoscaled crystals. In vitro release study revealed that drug release kinetics may be modulated, on the one hand, by the nanostructure of matrices, while on the other hand by the polymer concentration utilized for fabrication. As for hydrophilic compounds, they could be conveniently loaded into nanofibrous structure by post-fabrication absorption. In addition to the conceptual proof of potential applications of nanostructured PLLA matrices for controlled drug delivery, the strategy employed herein offers a new way to construct bioactive scaffolds, such as antibacterial or anti-inflammatory scaffolds, which may find broad applications for tissue regeneration and stem cells-based biotherapy.  相似文献   

5.
田春莉  鞠曹云  张灿 《药学研究》2018,37(9):535-539
壳聚糖是一种来源丰富的碱性多糖,具有良好的生物相容性和生物可降解性,但是其差的溶解性限制了壳聚糖在医药领域的应用。为了提高壳聚糖的溶解性,研究者对壳聚糖进行两亲性改性,通过选择不同的亲水、疏水基团,设计合成了两亲性壳聚糖衍生物。并利用其在水溶液中的自组装性能,形成两亲性壳聚糖纳米粒,用于多种药物的递送,以达到增加药物溶解性、稳定性、降低药物毒性和提高生物利用度等目的。本文综述了两亲性壳聚糖衍生物的合成方法,以及其在药物递送系统中的应用。  相似文献   

6.
This work presents the evaluation of chitosan-functionalised poly(2-hydroxyethyl methacrylate) (CS/PHEMA) core-shell microgels as drug delivery carriers. CS/PHEMA microgels were prepared by emulsifier-free emulsion polymerisation with N,N?′-methylenebisacrylamide (MBA) as a crosslinker. The study on drug loading, using salicylic acid (SA) as a model drug, was performed. The results showed that the encapsulation efficiency (EE) increased as drug-to-microgel ratio was increased. Higher EE can be achieved with the increase in degree of crosslinking, by increasing the amount of MBA from 0.01?g to 0.03?g. In addition, the highest EE (61.1%) was observed at pH 3. The highest release of SA (60%) was noticed at pH 2.4, while the lowest one (49.4%) was obtained at pH 7.4. Moreover, the highest release of SA was enhanced by the presence of 0.2 M NaCl. The pH- and ionic-sensitivity of CS/PHEMA could be useful as a sustained release delivery device, especially for oral delivery.  相似文献   

7.
The purpose of this study was the preparation, optimisation and in vitro characterisation of PHBV and PLGA blend nanoparticles (NPs) for prolonged delivery of Teriparatide. Double emulsion solvent evaporation technique was employed for the fabrication of NPs. The nanoformulation was optimised using the Box–Behnken methodology. The morphological properties of NPs were assessed by both SEM and transmission electron microscopy (TEM). Encapsulation of Teriparatide within the NPs and lacking of chemical bonds between drug and copolymers were proved by XRPD, FTIR and DSC. The structural stability of Teriparatide after processing was confirmed by fluorescence spectrometry. The average size of optimised NPs was 250.0?nm with entrapment efficiency (EE) of 89.5% and drug loading (DL) of 5.0%. Teriparatide release from optimised NPs led to 64.4% release over 30 days and it showed a diffusion-based mechanism. Based on the favourable results, PHBV/PLGA blend NPs could be a promising candidate for designing a controlled release formulation of Teriparatide.  相似文献   

8.
武玉敏 《齐鲁药事》2014,(8):475-477
透明质酸是一种酸性黏多糖,其作为优良的药物载体,具有生物相容性良好,生物可降解的特性,同时可与肿瘤细胞表面富含的CD44、RHAMM等受体结合,目前已成为抗肿瘤药物递送载体研究的主要热点。本综述主要通过查阅近年文献,对透明质酸在紫杉醇新型给药系统中的应用进行综述。  相似文献   

9.
Glucocorticoids remain one of the mainstays of therapy for acute attacks of inflammatory bowel disease despite systemic side effects that limit their use. Prodrugs that selectively deliver glucocorticoids to the colon may lower the required dose and side effects. Because enzymes of gut microflora are able to cleave certain peptide and ester bonds, the ability of an ester prodrug consisting of dexamethasone (DX) as model drug and poly(L-aspartic acid) (weight-average mol wt=30,000) as drug carrier was investigated to selectively release the drug in the large intestine. Prodrug and drug solutions (1.18 mg DX/ml DMSO) were administered to two groups of male Sprague-Dawley rats by intragastric infusion using an ALZET® osmotic pump. All rats were infused for sufficient time to achieve steady state in both blood and GI-tract tissues. DX concentrations in blood and tissue samples were measured with HPLC. The steady state DX concentrations at these sites were used to calculate a drug delivery index (DDI). DX blood concentrations were significantly lower (p<0.05) after intragastric administration of the prodrug. Moreover, prodrug administration resulted in significantly higher DX concentrations in the cecum and colon mucosa and the cecum muscle tissue compared to DX administration (p<0.05). The prodrug led to an increase of the DX concentration in the large intestinal tissues by factors of 1.3–2.0 and to an 1.3-fold decrease of DX blood concentrations. Thus, this novel conjugate should both increase efficacy and reduce toxicity to some extent.  相似文献   

10.
The triblock copolymer based on poly(-caprolactone) (PCL) as hydrophobic part and poly(ethylene glycol) (PEG) as hydrophilic one was synthesized and characterized. Core-shell type nanoparticles of poly(-caprolactone)/poly(ethylene glycol)/poly(-caprolactone) (CEC) block copolymer were prepared by a dialysis technique. According to the amphiphilic characters, CEC block copolymer can self-associate at certain concentration and their critical association concentration (CAC) was determined by fluorescence probe technique. CAC value of the CEC-2 block copolymer was evaluated as 0.0030 g/l. CAC values of CEC block copolymer decreased with the increase of PCL chain length, i.e. the shorter the PCL chain length, the higher the CAC values. From the observation of transmission electron microscopy (TEM), the morphologies of CEC-2 core-shell type nanoparticles were spherical shapes. Particle size of CEC-2 nanoparticles was 32.3±17.3 nm as a monomodal and narrow distribution. Particle size, drug loading, and drug release rate of CEC-2 nanoparticles were changed by the initial solvents and the molecular weight of CEC. The degradation behavior of CEC-2 nanoparticles was observed by 1H NMR spectroscopy. It was suggested that clonazepam (CNZ) release kinetics were dominantly governed by diffusion mechanism.  相似文献   

11.
Polyethylenimine (PEI) has been commonly used as a cationic polymeric gene carrier due to high transfection efficiency, however, its cytotoxicity has hindered the practical application. In this study, we report the development of poly(amino ester) (PAE) based on glycerol propoxylate triacrylate (GPT) and spermine (SPE) as an alternative gene carrier for lung cancer therapy. GPT-SPE copolymer was prepared by Michael addition reaction between GPT and SPE, and the efficacy was evaluated using shAkt1 as a model therapeutic gene. The molecular weight and composition were characterized using gel permeability chromatography (GPC) and 1H-nuclear magnetic resonance (1H-NMR), respectively. The GPT-SPE could effectively condense DNA with about 163 nm size and protect the DNA from nucleases. GPT-SPE/DNA complexes showed excellent transfection with low toxicity both in vitro and in vivo. Furthermore, aerosol delivery of GPT-SPE/Akt1 shRNA complexes significantly suppressed lung tumorigenesis in K-rasLA1 lung cancer model mice. These results suggest that GPT-SPE can be used in shRNA-based lung cancer gene therapy.  相似文献   

12.
13.
Non-viral vectors such as liposomes, polycations, and nanoparticles have been used as gene delivery systems. In this study, we prepared and characterized biodegradable poly(L-lactic acid) (PLA)/polyethylenimine (PEI) nanoparticles as gene carriers. pCMV/β-gal and pEGFP-C1 were utilized as model plasmid DNAs (pDNA). Nanoparticles were prepared using a double emulsion-solvent evaporation technique, and their pDNA binding capacity was assessed by agarose gel electrophoresis. Transfection was studied in HEK 293 and HeLa cell lines, and the transfection efficiencies were determined by β-galactosidase assay or flow cytometry. Three kinds of PLA/PEI systems were studied by varying the molecular weight of PEI. The PLA/PEI 25K system had a higher transfection efficiency than the PLA/PEI 0.8K or PLA/PEI 750K systems. The transfection efficiency was found to be dependent on the ratio of PLA/PEI nanoparticles to pDNA with an optimum ratio of 60:1 (w/w). The cytotoxicity was dependent on the quantity of PLA/PEI nanoparticles used, but it was comparable to that of commercial Lipofectin™. These results demonstrate the potential of PLA/PEI nanoparticles as gene carriers.  相似文献   

14.
Nano-drug delivery systems (NDDS) are functional drug-loaded nanocarriers widely applied in cancer therapy. Recently, layer-by-layer (LbL) assembled NDDS have been demonstrated as one of the most promising platforms in delivery of anticancer therapeutics. Here, a brief review of the LbL assembled NDDS for cancer treatment is presented. The fundamentals of the LbL assembled NDDS are first interpreted with an emphasis on the formation mechanisms. Afterwards, the tailored encapsulation of anticancer therapeutics in LbL assembled NDDS are summarized. The state-of-art targeted delivery of LbL assembled NDDS, with special attention to the elaborately control over the passive and active targeting delivery, are represented. Then the controlled release of LbL assembled NDDS with various stimulus responsiveness are systematically reviewed. Finally, conclusions and perspectives on further advancing the LbL assembled NDDS toward more powerful and versatile platforms for cancer therapy are discussed.  相似文献   

15.
Since the commercialization of polydioxanone (PDX) as a biodegradable monofilament suture by Ethicon in 1981, the polymer has received only limited interest until recently. The limitations of polylactide-co-glycolide (PLGA) coupled with the growing need for materials with enhanced features and the advent of new fabrication techniques such as electrospinning have revived interest for PDX in medical devices, tissue engineering and drug delivery applications. Electrospun PDX mats show comparable mechanical properties as the major structural components of native vascular extracellular matrix (ECM) i.e. collagen and elastin. In addition, PDX’s unique shape memory property provides rebound and kink resistance when fabricated into vascular conduits. The synthesis of methyl dioxanone (MeDX) monomer and copolymers of dioxanone (DX) and MeDX have opened up new perspectives for poly(ester-ether)s, enabling the design of the next generation of tissue engineering scaffolds for application in regenerating such tissues as arteries, peripheral nerve and bone. Tailoring of polymer properties and their formulation as nanoparticles, nanomicelles or nanofibers have brought along important developments in the area of controlled drug or gene delivery.This paper reviews the synthesis of PDX and its copolymers and provides for the first time an exhaustive account of its applications in the (bio)medical field with focus on tissue engineering and drug/gene delivery.  相似文献   

16.
药用缓释材料聚乳酸-乙醇酸共聚物的研制   总被引:1,自引:0,他引:1  
目的:合成药用聚乳酸-乙醇酸高分子缓释材料,用于某些生物药物缓、控释剂型的制备;同时探讨聚合反应条件的影响因素以及优化工艺。方法:在一定的温度和压力下,采用配位-插入聚合法通过交酯开环合成聚乳酸-乙醇酸共聚物缓释材料。结果:本研制合成的聚乳酸-乙醇酸共聚物(PLGA75/25和PLGA50/50)经采用多种鉴定手段表征化学结构正确,力学性能良好,玻璃转化温度为33.7℃,分子量为27000~70000,分子量分布为1.4~1.6,产品最终产率可达70%以上。结论:通过制备工艺条件的控制和优化,在一定范围内,不仅可以得到分子量大小不等和单体比例不同的聚乳酸-乙醇酸缓释材料,而且每批次之间所得分子量重现性良好,合成工艺稳定、可靠。  相似文献   

17.
Smooth muscle cell proliferation plays a major role in the genesis of restenosis after angioplasty or vascular injury. Controlled release of appropriate drugs alone and in combinations is one approach for treating coronary obstructions, balloon angioplasty, restenosis associated with thrombosis, and calcification. We demonstrated the possibility of encapsulating taxol-loaded polylactic acid (PLA) microspheres within heparin-chitosan spheres to develop a prolonged release co-matrix form. The in vitro release profile of taxol and heparin from this co-matrix system was monitored in phosphate buffered saline pH 7.4, using an ultraviolet spectrophotometer. The amount of taxol/heparin release was initially much higher, followed by a constant slow release profile for a prolonged period. The initial burst release of taxol (15.8%) and heparin (32.7%) from the co-matrix was modified with polyethylene glycol coatings (13.5% and 25.4%, respectively, for 24 hr). From scanning electron microscopy studies, it appears that these drugs diffuse out slowly to the dissolution medium through the micropores of the co-matrix. However, the surface micropores were modified with polyethylene glycol (PEG) coatings for a constant slow release profile. This PEG-coated PLA/chitosan co-matrix may target drug combinations having synergestic effects for prolonged periods to treat restenosis.  相似文献   

18.
Introduction: The main target of tissue engineering is the preparation and application of adequate materials for the design and production of scaffolds, that possess properties promoting cell adhesion, proliferation and differentiation. The use of natural polysaccharides, such as chitosan, to prepare hydrogels for wound healing and controlled drug delivery is a research topic of wide and increasing interest.

Areas covered: This review presents the latest results and challenges in the preparation of chitosan and chitosan-based scaffold/hydrogel for wound healing applications. A detailed overview of their behavior in terms of controlled drug delivery, divided by drug categories, and efficacy was provided and critically discussed.

Expert opinion: The need to establish and exploit the advantages of natural biomaterials in combination with active compounds is playing a pivotal role in the regenerative medicine fields. The challenges posed by the many variables affecting tissue repair and regeneration need to be standardized and adhere to recognized guidelines to improve the quality of evidence in the wound healing process. Currently, different methodologies are followed to prepare innovative scaffold formulations and structures. Innovative technologies such as 3D printing or bio-electrospray are promising to create chitosan-based scaffolds with finely controlled structures with customizable shape porosity and thickness. Chitosan scaffolds could be designed in combination with a variety of polysaccharides or active compounds with selected and reproducible spacial distribution, providing active wound dressing with highly tunable controlled drug delivery.  相似文献   


19.
The present review provides an overview on the recent progress in the development of pH- and sugar-sensitive layer-by-layer (LbL) thin films and microcapsules in relation to their potential applications in drug delivery. pH-sensitive LbL films and microcapsules have been studied for the development of peptide and protein drug delivery systems to the gastrointestinal tract, anti-cancer drugs to tumor cells, anti-inflammatory drugs to inflamed tissues, and the intracellular delivery of DNA, where pH is shifted from neutral to acidic. pH-induced decomposition or permeability changes of LbL films and microcapsules form the basis for the pH-sensitive release of drugs. Sugar-sensitive LbL films and microcapsules have been studied mainly for the development of an artificial pancreas that can release insulin in response to the presence of glucose. Therefore, glucose oxidase, lectin, and phenylboronic acid have been used for the construction of glucose-sensitive LbL films and microcapsules. LbL film-coated islet cells are also candidates for an artificial pancreas. An artificial pancreas would make a significant contribution to improving the quality of life of diabetic patients by replacing repeated subcutaneous insulin injections.  相似文献   

20.
Poly(alkylcyanoacrylate) (PACA) nanoparticles were first developed 25 years ago taking advantage of the in vivo degradation potential of the polymer and of its good acceptance by living tissues. Since then, various PACA nanoparticles were designed including nanospheres, oil-containing and water-containing nanocapsules. This made possible the in vivo delivery of many types of drugs including those presenting serious challenging delivery problems. PACA nanoparticles were proven to improve treatments of severe diseases like cancer, infections and metabolic disease. For instance, they can transport drugs accross barriers allowing delivery of therapeutic doses in difficult tissues to reach including in the brain or in multidrug resistant cells. This review gives an update on the more recent developments and achievements on design aspects of PACA nanoparticles as delivery systems for various drugs to be administered in vivo by different routes of administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号