首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stressful situations can change biological process in human and animal, and some of these changes may transfer to the next generations. We used a communication box to induce chronic electrical foot-shock stress in rats. Tail flick latency and formalin test were done to determine the level of pain sensation. Real-time RT-PCR was used to measure the level of spinal cord μ-opioid (MOR) and α2-adrenergic receptors (α2-AR) mRNA. We demonstrate that chronic stress can change nociception and leads to hyperalgesia. Moreover, spinal cord MOR mRNA level decreased following chronic stress. We did not observe any significant changes in the level of spinal cord α2-AR mRNA between stressed and non-stressed rats. In addition, non-stressed sons of stressed mothers showed hyperalgesia compared to the control group. They showed lesser level of MOR mRNA level in comparison to the control rats. Furthermore, stressed sons of stressed mothers illustrated more hyperalgesia than the other stressed groups. We indicate that chronic stress can reduce spinal cord MOR mRNA level and lead to hyperalgesia. Additionally, these changes can transfer to offspring.  相似文献   

2.
The present study investigated the role of inhibitor of protein phosphatases 1 and 2A on the modulation of the phosphorylation of the spinal N-methyl-D-aspartate receptor (NMDAR) NR1 and NR2B subunits following electroacupuncture (EA) stimulation in rats. Bilateral 2Hz EA stimulations with 1.0 mA were delivered at those acupoints corresponding to Zusanli and Sanyinjiao to men via needles for 30 min. EA analgesia was slightly reduced by the intrathecal injection of calyculin A during EA stimulation. At 60 min after the termination of EA stimulation, the levels of c-fos, serine phosphorylation of NR1 and NR2B by Western analysis had increased in the L(4-5) segments of the spinal cord after EA treatment. These expressions were enhanced by the intrathecal injection of calyculin A and immunohistochemical analyses confirmed the significant increase of these proteins. As for the regional reaction of NMDAR subunits, a mean integrated optical density of phosphorylated NR1 and NR2B subunits was potentiated by calyculin A injections in the superficial laminae and neck region and superficial laminae and nucleus proprius, respectively. It can be concluded that protein phosphatase may play an important role in EA analgesia by modulating the phosphorylation state of spinal NMDAR subunits.  相似文献   

3.
In addition to analgesia, opioids may also produce paradoxical pain amplification [opioid-induced hyperalgesia (OIH)] either on abrupt withdrawal or during continuous long-term application. Here, we assessed antinociceptive and pronociceptive effects of three clinically used opioids at C-fiber synapses in the rat spinal dorsal horn in vivo. During 60 min of intravenous infusions of remifentanil (450 μg·kg?1·h?1), fentanyl (48 μg·kg?1·h?1), or morphine (14 mg·kg?1·h?1), C-fiber-evoked field potentials were depressed and paired-pulse ratios (PPR) were increased, indicating a presynaptic inhibition by all three opioids. After withdrawal, postsynaptic responses were enhanced substantially for the remaining of the recording periods of at least 3 h. Withdrawal from remifentanil led to long-term potentiation (LTP) of synaptic strength in C-fibers via activation of spinal μ-opioid receptors (MORs) and spinal NMDA receptors (NMDARs). Fentanyl and morphine caused an enhancement of synaptic transmission at C-fibers, which involved two distinct mechanisms: (1) an opioid withdrawal LTP that also required activation of spinal MORs and NMDARs and that was associated with a decrease in PPR suggestive of a presynaptic mechanism of its expression, and (2) an immediate-onset, descending facilitation of C-fiber-evoked field potentials during and after intravenous infusion of fentanyl and morphine. Immediate-onset, descending facilitation was mediated by the activation of extraspinal MORs, descending serotonergic pathways, and spinal 5-hydroxytryptamine-3 receptors (5-HT?Rs). Our study identified fundamentally different pronociceptive effects of clinically used opioids and suggests that OIH can be prevented by the combined use of NMDAR and 5-HT?R antagonists.  相似文献   

4.
Remifentanil is widely used to control intraoperative pain. However, its analgesic effect is limited by the generation of postoperative hyperalgesia. In this study, we investigated whether the impairment of transmembrane protein 16C (TMEM16C)/Slack is required for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) activation in remifentanil-induced postoperative hyperalgesia. Remifentanil anesthesia reduced the paw withdrawal threshold from 2 h to 48 h postoperatively, with a decrease in the expression of TMEM16C and Slack in the dorsal root ganglia (DRG) and spinal cord. Knockdown of TMEM16C in the DRG reduced the expression of Slack and elevated the basal peripheral sensitivity and AMPAR expression and function. Overexpression of TMEM16C in the DRG impaired remifentanil-induced ERK1/2 phosphorylation and behavioral hyperalgesia. AMPAR-mediated current and neuronal excitability were downregulated by TMEM16C overexpression in the spinal cord. Taken together, these findings suggest that TMEM16C/Slack regulation of excitatory synaptic plasticity via GluA1-containing AMPARs is critical in the pathogenesis of remifentanil-induced postoperative hyperalgesia in rats.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12264-021-00652-5.  相似文献   

5.
The N‐methyl‐D ‐aspartate receptor (NMDAR) contributes to central sensitization in the spinal cord and the generation of pain hypersensitivity. NMDAR function is modulated by post‐translational modifications including phosphorylation, and this is proposed to underlie its involvement in the production of pain hypersensitivity in the spinal cord. We now show that a noxious heat stimulus applied to the rat hindpaw induces phosphorylation of the NMDAR NR1 subunit at a protein kinase C (PKC)‐dependent site, serine‐896, in superficial dorsal horn neurons. Phosphorylation of NR1 serine‐896 is essentially absent in the superficial dorsal horn laminae of naïve rats, but there is rapid (< 2 min) induction following a noxious but not innocuous heat stimulus. The number of pNR1‐immunoreactive neuronal profiles in the superficial dorsal horn peaks 30 min after noxious heat stimulation and persists for up to 1 h. pNR1serine896 induction occurs in the endoplasmic reticulum, suggesting that it contributes to trafficking of the receptor from intracellular stores to the membrane. The phosphorylation of the subunit is attenuated by intrathecal injection of the NMDAR antagonist, MK801, suggesting that the NMDAR is involved via a feed‐forward mechanism in its own phosphorylation. The pNR1serine896‐positive neurons are highly co‐localized with PKCdelta and only rarely with PKCgamma. These data provide evidence for an activity‐dependent NMDAR phosphorylation at the PKC‐dependent site, serine‐896, in spinal cord dorsal horn neurons initiated by peripheral noxious stimuli.  相似文献   

6.
Despite abundant evidence implicating the importance of N-methyl-D-aspartate (NMDA) receptors in the spinal cord for pain transmission, the signal transduction coupled to NMDA receptor activation is largely unknown for the neuropathic pain state that lasts over periods of weeks. To address this, we prepared mice with neuropathic pain by transection of spinal nerve L5. Wild-type, NR2A-deficient, and NR2D-deficient mice developed neuropathic pain; in addition, phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 was observed in the superficial dorsal horn of the spinal cord 1 week after nerve injury. Neuropathic pain and NR2B phosphorylation at Tyr1472 were attenuated by the NR2B-selective antagonist CP-101,606 and disappeared in mice lacking Fyn kinase, a Src-family tyrosine kinase. Concomitant with the NR2B phosphorylation, an increase in neuronal nitric oxide synthase activity was visualized in the superficial dorsal horn of neuropathic pain mice by NADPH diaphorase histochemistry. Electron microscopy showed that the phosphorylated NR2B was localized at the postsynaptic density in the spinal cord of mice with neuropathic pain. Indomethacin, an inhibitor of prostaglandin (PG) synthesis, and PGE receptor subtype EP1-selective antagonist reduced the NR2B phosphorylation in these mice. Conversely, EP1-selective agonist stimulated Fyn kinase-dependent nitric oxide formation in the spinal cord. The present study demonstrates that Tyr1472 phosphorylation of NR2B subunits by Fyn kinase may have dual roles in the retention of NMDA receptors in the postsynaptic density and in activation of nitric oxide synthase, and suggests that PGE2 is involved in the maintenance of neuropathic pain via the EP1 subtype.  相似文献   

7.
目的探讨氯胺酮(KET)连续鞘内注射对慢性坐骨神经挤压损伤大鼠脊髓背角N-甲基-D-天冬氨酸亚基(NMDA-2B,即NR2B)蛋白表达的影响。方法雄性SD大鼠18只,随机分为假手术组、坐骨神经损伤组(CCI组)和CCI KET组。按Bennett等法制作CCI模型,分别以von-Frey纤维丝和冷水测定痛阈及冷刺激反应,采用免疫组化技术测定各组脊髓背角NR2B蛋白表达的变化。结果CCI组痛阈显著下降,冷刺激反应显著升高,脊髓背角有大量NR2B免疫阳性蛋白表达(P<0.01);CCI KET组出现轻度痛敏症状,NR2B阳性蛋白表达受到明显抑制(P<0.01)。结论NR2B蛋白表达上调可能是神经损伤后出现慢性疼痛的发病机制之一,KET通过抑制其表达从而发挥一定程度镇痛作用。  相似文献   

8.
Objectives: Remifentanil may induce hyperalgesia. Recent studies implicate a close relationship between post-surgical hyperalgesia and phosphorylation and activation of p38 mitogen-activated protein kinase (p38MAPK) in the spinal microglia. This study aimed to investigate whether the combination of post-surgical and remifentanil-induced hyperalgesia worsens post-operative pain and whether phosphorylated p38MAPK (phospho-p38MAPK) in the spinal dorsal horn in rats is involved in remifentanil-induced postoperative hyperalgesia.

Methods: Sprague-Dawley rats were randomly divided into six groups: control, incision only, remifentanil only, remifentanil + incision, remifentanil + incision + SB203580, and remifentanil + incision + DMSO. The p38MAPK inhibitor SB203580 and DMSO were injected intrathecally. A right plantar surgical incision was performed in the incision groups, and remifentanil was infused for 60 min in the remifentanil groups. Mechanical paw withdrawal threshold (PWT) and thermal paw withdrawal latency (PWL) of the bilateral hind paws were measured and the number of phospho-p38MAPK-positive cells in rat spinal dorsal horn sections was counted.

Results: Intravenous remifentanil infusion decreased bilateral plantar PWL values from 1 h to 3 days after surgery, however there was no additive effect with incision-induced values. There was a significant increase in the number of dorsal horn phospho-p38MAPK-positive cells in the remifentanil + incision group compared to the incision group, but no increase in the number of these cells when remifentanil was given alone. Intrathecal pretreatment with SB203580 attenuated remifentanil + incision–induced postoperative hyperalgesia and significantly reduced activation of phospho-p38MAPK in spinal dorsal horn.

Conclusions: Incision-induced and remifentanil-induced increases in hyperalgesia were not additive when incision and remifentanil were used together. Data on phospho-38MAPK activation in remifenanil-induced hyperalgesia were contradictory and need further clarification.  相似文献   

9.
ABSTRACT

Background and Objectives: Studying the underlying mechanisms of opiate-induced hyperalgesia is fundamental to understanding and treating pain. Our previous study has proved that ephrinB/EphB signaling contributes to opiate-induced hyperagesia, but the manner in which ephrinB/EphB signaling acts on spinal nociceptive information networks to produce hyperalgesia remains unclear. Other studies have suggested that ephrinB/EphB signaling, NMDA receptor and COX-2 act together to participate in the modulation of nociceptive information processes at the spinal level. The objective of this research was to investigate the role of COX-2 in remifentanil-induced hyperalgesia and its relationship with ephrinB/EphB signaling.

Methods: We characterized the remifentanil-induced pain behaviours by evaluating thermal hyperalgesia and mechanical allodynia in a mouse hind paw incisional model. Protein expression of COX-2 in spinal cord was assayed by western blotting and mRNA level of COX-2 was assayed by Real-time PCR (RT-PCR).

Results: Continuing infusion of remifentanil produced thermal hyperalgesia and mechanical allodynia, which was accompanied by increased expression of spinal COX-2 protein and mRNA. This response was inhibited by pre-treatment with EphB2-Fc, an antagonist of ephrinB/EphB. SC58125 and NS398, inhibitors of COX-2, suppressed pain behaviours induced by remifentanil infusion and reversed the increased pain behaviours induced by intrathecal injection of ephrinB2-Fc, an agonist of ephrinB/EphB.

Conclusions: Our findings confirmed that COX-2 is involved in remifentanil-induced hyperalgesia related to ephrinB/EphB signaling. EphrinB/EphB signaling might be the upstream of COX-2.  相似文献   

10.
The most common type of chronic pain following spinal cord injury (SCI) is central neuropathic pain and SCI patients typically experience mechanical allodynia and thermal hyperalgesia. The present study was designed to examine the potential role of astrocyte gap junction connectivity in the induction and maintenance of “below-level” neuropathic pain in SCI rats. We examined the effect of intrathecal treatment with carbenoxolone (CARB), a gap junction decoupler, on SCI-induced bilateral thermal hyperalgesia and mechanical allodynia during the induction phase (postoperative days 0 to 5) and the maintenance phase (days 15 to 20) following T13 spinal cord hemisection. Immunohistochemistry was performed to determine potential SCI-induced changes in spinal astrocyte activation and phosphorylation of the NMDA receptor NR1 subunit (pNR1). CARB administered during the induction period dose-dependently attenuated the development of bilateral thermal hyperalgesia and mechanical allodynia. Intrathecal CARB also significantly reduced the bilateral SCI-induced increase in GFAP-immunoreactive (ir) staining and the number of pNR1-ir cell profiles in the spinal cord dorsal horn compared to vehicle-treated rats. In contrast, CARB treatment during the maintenance phase had no effect on the established thermal hyperalgesia and mechanical allodynia nor on spinal GFAP expression or the number of pNR1-ir cell profiles. These results indicate that gap junctions play a critical role in the activation of astrocytes distant from the site of SCI and in the subsequent phosphorylation of NMDA receptors in the lumbar spinal cord. Both of these processes appear to contribute to the induction of bilateral below-level pain in SCI rats.  相似文献   

11.
Spinal N-methyl d-aspartate receptor (NMDAR) plays a pivotal role in nerve injury-induced central sensitization. Recent studies suggest that NMDAR also contributes to neuron-astrocyte signaling. c-Jun N-terminal kinase (JNK) is persistently and specifically activated (indicated by phosphorylation) in spinal cord astrocytes after nerve injury and thus it is considered as a dependable indicator of pain-related astrocytic activation. NMDAR-mediated JNK activation in spinal dorsal horn might be an important form of neuron-astrocyte signaling in neuropathic pain. In the present study, we observed that intrathecal injection of MK-801, a noncompetitive NMDA receptor antagonist, or Ro25-6981 and ifenprodil, which are selective antagonists of NR2B-containing NMDAR each significantly reduced nerve injury-induced JNK activation. Double immunostaining showed that NR2B was highly expressed in neurons, indicating the effect of NMDAR antagonists on JNK activation was indirect. We further observed that intrathecal injection of NMDA (twice a day for 3 days) significantly increased spinal JNK phosphorylation. Besides, NMDAR-related JNK activation could be blocked by a neuronal nitric oxide synthase (nNOS) selective inhibitor (7-nitroindazole sodium salt) but not by a nNOS sensitive guanylyl cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). Finally, real-time RT-PCR and immunostaining showed that nerve injury-induced interleukin-1beta expression was dependent on astrocytic JNK activation. Treatments targeting NMDAR-nNOS pathway also influenced interleukin-1beta expression, which further confirmed our hypothesis. Taken together, our results suggest that neuronal NMDAR-nNOS pathway could activate astrocytic JNK pathway. Excitatory neuronal transmission initiates astrocytic activation-induced neuroinflammation in this way, which contributes to nerve injury-induced neuropathic pain.  相似文献   

12.
Opioid‐induced hyperalgesia (OIH) and allodynia is a well‐known phenomenon and refers to the pain sensitization in patients after prolonged opioid exposure. OIH limits the use of opioids in pain control, but the underlying mechanisms are not fully clear. This study investigated the role of mitochondrial Ca2+ uniporter (MCU) in remifentanil (a commonly used opioid analgesic)‐induced allodynia. Using a rat model of OIH, we found that incision‐ and remifentanil‐induced mechanical allodynia were remarkably attenuated by pretreatment with Ru360, a specific MCU antagonist, suggesting a critical role of MCU in both incision‐ and opioid‐induced allodynia. In addition, imaging studies with Rhod‐2 (a mitochondrial Ca2+ dye) in spinal tissues demonstrated increased mitochondrial Ca2+ level in response to incision and remifentanil infusion, which was attenuated by Ru360. Western blot and immunohistochemistry showed that pNR [phosphorylated N‐methyl‐D‐aspartate (NMDA) receptor] and pERK (phosphorylated extracellular signal‐regulated kinase) are increased during both incision‐induced hyperalgesia and remifentanil‐induced hyperalgesia, and again the increases in pNR and pERK were remarkably attenuated by Ru360. Together, our data demonstrate that MCU plays a critical role in remifentanil‐induced postoperative mechanical allodynia, with NMDA receptor and ERK as possible downstream effectors. Our findings provide novel mechanisms for remifentanil‐induced mechanical allodynia and encourage future studies to examine the mitochondrial Ca2+ uniporter as a potential therapeutic target for prevention of OIH.  相似文献   

13.
Calcium influx via N-methyl-D-aspartate (NMDA)-subtype glutamate receptors (NMDARs) regulates the intracellular trafficking of NMDARs, leading to long-lasting modification of NMDAR-mediated synaptic transmission that is involved in development, learning, and synaptic plasticity. The present study investigated the contribution of such NMDAR-dependent synaptic trafficking in spinal dorsal horn to the induction of pain hypersensitivity. Our data showed that direct activation of NMDARs by intrathecal NMDA application elicited pronounced mechanical allodynia in intact mice, which was concurrent with a specific increase in the abundance of NMDAR subunits NR1 and NR2B at the postsynaptic density (PSD)-enriched fraction. Selective inhibition of NR2B-containing NMDARs (NR2BR) by ifenprodil dose dependently attenuated the mechanical allodynia in NMDA-injected mice, suggesting the importance of NR2BR synaptic accumulation in NMDA-induced pain sensitization. The NR2BR redistribution at synapses after NMDA challenge was associated with a significant increase in NR2B phosphorylation at Tyr1472, a catalytic site by Src family protein tyrosine kinases (SFKs) that has been shown to prevent NR2B endocytosis. Intrathecal injection of a specific SFKs inhibitor, PP2, to block NR2B tyrosine phosphorylation eliminated NMDA-induced NR2BR synaptic expression and also attenuated the mechanical allodynia. These data suggested that activation of spinal NMDARs was able to accumulate NR2BR at synapses via SFK signaling, which might exaggerate NMDAR-dependent nociceptive transmission and contribute to NMDA-induced nociceptive behavioral hyperresponsiveness.  相似文献   

14.
The present study investigates the role of serine/threonine protein phosphatase 2A (PP2A) in the modulation of the phosphorylation of the NR1 and NR2B subunits of NMDA receptors in the spinal cord of rats following intradermal injection of capsaicin. The effects of a specific inhibitor of PP2A, fostriecin, on the expression of NR1, phospho-NR1, NR2B, and phospho-NR2B subunits of the NMDA receptor in the spinal cord of rats following noxious stimulation were examined. After continually perfusing with ACSF or fostriecin (3 microM) through a previously implanted microdialysis fiber for 30 min, central sensitization was initiated by injection of capsaicin into the plantar surface of the left paw of rats. The spinal cord was removed at different time points (30, 60, 90, 120, 180 min) after intradermal injection of capsaicin. Western blots were performed to examine the expression of NMDA subunits in spinal cord tissue by using specific antibodies. We found that the upregulated phosphorylation of both NR1 and NR2B subunits induced by capsaicin injection was significantly potentiated by the PP2A inhibitor without affecting the NR1 and NR2B protein itself. These results suggest that PP2A may have a regulatory effect on central sensitization induced by noxious stimuli in the periphery by regulating the phosphorylation state of NMDA receptors.  相似文献   

15.
Hippocampal N-methyl-D-aspartate receptors (NMDARs) contribute to the expression of certain types of synaptic plasticity, such as long-term potentiation (LTP). It is well documented that tyrosine kinases increase NMDAR phosphorylation and potentiate NMDAR function. However, it is unclear how these phosphorylation changes result in enhanced NMDAR activity. We previously reported that NMDAR surface expression can be increased by LTP-inducing stimulation via tyrosine kinase-dependent mechanisms in the adult hippocampus [D.R. Grosshans, D.A. Clayton, S.J. Coultrap, M.D. Browning, Nat. Neurosci., 5 (2002) 27-33]. We therefore hypothesized that tyrosine phosphorylation of the NMDAR may enhance the trafficking of the receptor to the synaptic membrane. Here, we show that the stoichiometry of NR2A and NR2B tyrosine phosphorylation is significantly higher in synaptosomal membranes than intracellular microsomal/light membranes. Interestingly, NR2B tyrosine-1472, but not NR1 serine-896 or -897, phosphorylation is significantly higher in synaptosomal membranes than intracellular microsomal/light membranes. Furthermore, treatment of hippocampal slices with either a tyrosine phosphatase inhibitor or a tyrosine kinase inhibitor alters NMDAR tyrosine phosphorylation and produces a corresponding change in the concentration of NMDARs in the synaptosomal membrane fraction. Taken together, these data support the hypothesis that tyrosine phosphorylation may enhance NMDAR activity by increasing the number of NMDARs at the synaptic membrane.  相似文献   

16.
Latent sensitization (LS) of pain engages pronociceptive signaling pathways in the dorsal horn that include NMDA receptor (NMDAR)→adenylyl cyclase-1 (AC1)→protein kinase A (PKA), and exchange proteins directly activated by cyclic AMP (Epacs). To determine whether these pathways operate similarly between males and females or are under the inhibitory control of spinal κ opioid receptors (KOR), we allowed hyperalgesia to resolve after plantar incision and then blocked KOR with intrathecal administration of LY2456302, which reinstated hyperalgesia and facilitated touch-evoked immunoreactivity of phosphorylated extracellular signal-regulated kinase (pERK) in neurons (NeuN) but not astrocytes (GFAPs) nor microglia (Iba1). LY2456302 reinstated hyperalgesia even when administered 13 months later, indicating that chronic postoperative pain vulnerability persists for over a year in a latent state of remission. In both sexes, intrathecal MK-801 (an NMDAR competitive antagonist) prevented LY2456302-evoked reinstatement of hyperalgesia as did AC1 gene deletion or the AC1 inhibitor NB001. NB001 also prevented stimulus-evoked pERK. In both sexes, the Epac inhibitor ESI-09 prevented reinstatement, whereas the Epac activator 8-CPT reinstated hyperalgesia. By contrast, the PKA inhibitor H89 prevented reinstatement only in male mice, whereas the PKA activator 6-bnz-cAMP itself evoked reinstatement at all doses tested (3–30 nmol, i.t.). In neither sex did incision change gene expression of KOR, GluN1, PKA, or Epac1 in dorsal horn. We conclude that sustained KOR signaling inhibits spinal PKA-dependent mechanisms that drive postoperative LS in a sex-dependent manner. Our findings support the development of AC1, PKA, and Epac inhibitors toward a new pharmacotherapy for chronic postoperative pain.SIGNIFICANCE STATEMENT Because of neural mechanisms that are not well understood, men and women respond differently to treatments for chronic pain. We report that surgical incision recruits a pronociceptive latent pain sensitization that persisted for over a year and was kept in check by the sustained analgesic activity of κ opioid receptors. NMDAR→AC1→cAMP→Epac signaling pathways in the dorsal horn of the spinal cord maintain latent sensitization in both males and females; however, only males recruit a PKA-dependent mechanism. This work presents a novel male-specific mechanism for the promotion of chronic postoperative pain.  相似文献   

17.
Somatostatin (SST) and the somatostatin receptor type 2 (sstr2) are expressed in the superficial part (Laminae I–III) of the dorsal horn of the spinal cord. Since the neurons in these laminae also receive nociceptive sensation from the periphery, it was hypothesized that both SST and sstr2 could be involved in the modulation of nociceptive transmission. To the best of knowledge, there are no studies on the involvement of SST and sstr2 in hind paw incision model in rats, which mimics postoperative pain in humans. Sprague-Dawley rats were subjected to hind paw incision under isoflurane anaesthesia and the resulting mechanical allodynia and thermal hyperalgesia were evaluated for 5 days. In another set of animals, the spinal cord was isolated at specified time intervals after incision and examined for SST and sstr2 expression using immunohistochemistry and immunoblotting procedures. Finally, nociceptive parameters were again evaluated in incised rats, which had received SST (400 µg/kg i.p. three times per day). Blood glucose level and locomotor activity were determined after SST treatment. Both allodynia and hyperalgesia were highest immediately after incision. Spinal SST expression increased at 2 h. A further increase was noted on day 3. Expression of sstr2 increased initially but decreased at day 1. These changes could be due to exocytosis of SST and internalization of the ligand–receptor complex. SST injection significantly attenuated mechanical allodynia but not thermal hyperalgesia. Significant change in blood glucose level or locomotor activity was absent. SST appears to contribute to postincisional pain. This finding could be of clinical relevance.  相似文献   

18.
The hormone, 17β‐estradiol (E2), influences the structure and function of synapses in the CA1 region of the hippocampus. E2 increases the density of dendritic spines and excitatory synapses on CA1 pyramidal cells, increases CA1 cells' sensitivity to excitatory synaptic input mediated by the NMDA receptor (NMDAR), enhances NMDAR‐dependent long‐term potentiation, and improves hippocampus‐dependent working memory. Smith and McMahon ( 2006 J Neurosci 26:8517–8522) reported that the larger NMDAR‐mediated excitatory postsynaptic currents (EPSCs) recorded after E2 treatment are due primarily to an increased contribution of NR2B‐containing NMDARs. We used a combination of electrophysiology, Western blot, and immunofluorescence to investigate two potential mechanisms by which E2 could enhance NR2B‐dependent EPSCs: An increase in NMDAR subunit protein levels and/or a change(s) in NR2B phosphorylation. Our studies confirmed the E2‐induced increase in NR2B‐dependent EPSC amplitude, but we found no evidence that E2 affects protein levels for the NR1, NR2A, or NR2B subunit of the NMDAR, nor that E2 affects phosphorylation of NR2B. Our findings suggest that the effects of E2 on NMDAR‐dependent synaptic physiology in the hippocampus likely result from recruitment of NR2B‐containing NMDARs to synapses rather than from increased expression of NMDARs or changes in their phosphorylation state. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The tricyclic antidepressant amitriptyline binds with high affinity to N-methyl-d-aspartate receptors (NMDARs) and inhibits NMDAR-mediated events. Activation of the postsynaptic density protein-95 (PSD-95)/NMDAR-mediated downstream signaling cascade, including neuronal nitric oxide synthase (nNOS) and protein kinase gamma (PKCγ), has been shown to be involved in morphine tolerance. The present study examined the potential effect of amitriptyline on chronic morphine infusion-induced spinal PSD-95/NMDAR/nNOS/PKCγ signaling in morphine tolerance. Male Wistar rats were implanted with an intrathecal catheter and received an intrathecal infusion of saline or amitriptyline (15 μg/h), morphine+saline (tolerance induction, 15 μg/h), or morphine+amitriptyline for 5 days. Co-administration of amitriptyline with morphine not only preserved the antinociceptive effect of morphine, but also attenuated astrocyte activation in the rat spinal cord dorsal horn. On day 5 after drug infusion, increased expression and phosphorylation of spinal membrane NMDAR NR1 subunit and expression of PSD-95 were observed following chronic morphine infusion and these effects were attenuated by amitriptyline co-infusion. Upregulation of NMDAR-induced intracellular nNOS expression was also inhibited by amitriptyline co-infusion in chronic morphine-infused rats. Furthermore, amitriptyline co-infusion significantly inhibited morphine-induced PKCγ expression in both the cytosol and membrane of spinal neurons. These findings suggest that the attenuation of morphine tolerance caused by amitriptyline is due to downregulation of NMDAR NR1 subunit expression in the synaptosomal membrane accompanied by decreased expression of the scaffolding protein PSD-95. The effects of amitriptyline in attenuating astrocyte activation and reversing tolerance to morphine may be due, at least in part, to inhibition of the PSD-95/NMDAR NR1/nNOS/PKCγ signaling cascade.  相似文献   

20.
Astrocytes play a key role in the maintenance of synaptic transmission by producing L-lactate via the astrocyte-neuron lactate shuttle (ANLS). Astrocyte activation in the spinal cord is involved in the expression of neuropathic pain. We investigated the role of the ANLS in the spinal cord on hyperalgesia in neuropathic pain in mice. Specific activation of dorsal horn astrocytes induced mechanical hyperalgesia, which was attenuated by α-cyano-4-hydroxycinnamate (4-CIN), an inhibitor of monocarboxylate transporters that deliver L-lactate from astrocytes to neurons. Intrathecal L-lactate administration lowered the mechanical nociceptive threshold, which was attenuated by pretreatment with 4-CIN and isosafrole (a lactate dehydrogenase inhibitor), but not gliotoxin. Intrathecal L-lactate administration significantly upregulated c-Fos and cofilin phosphorylation, which was reversed by 4-CIN. The lowered mechanical nociceptive threshold was significantly attenuated by intrathecal fluorocitrate (an astrocyte-specific Krebs cycle inhibitor), 4-CIN, and isosafrole treatment. Thus, these results suggested that, in neuropathic pain, mechanical hyperalgesia was maintained by excessive L-lactate supplied by activated astrocytes via an aberrant ANLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号