首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TDP-43 (TAR DNA-binding protein 43) inclusions are a hallmark of amyotrophic lateral sclerosis (ALS). In this study, we report that TDP-43 and nuclear factor κB (NF-κB) p65 messenger RNA and protein expression is higher in spinal cords in ALS patients than healthy individuals. TDP-43 interacts with and colocalizes with p65 in glial and neuronal cells from ALS patients and mice expressing wild-type and mutant TDP-43 transgenes but not in cells from healthy individuals or nontransgenic mice. TDP-43 acted as a co-activator of p65, and glial cells expressing higher amounts of TDP-43 produced more proinflammatory cytokines and neurotoxic mediators after stimulation with lipopolysaccharide or reactive oxygen species. TDP-43 overexpression in neurons also increased their vulnerability to toxic mediators. Treatment of TDP-43 mice with Withaferin A, an inhibitor of NF-κB activity, reduced denervation in the neuromuscular junction and ALS disease symptoms. We propose that TDP-43 deregulation contributes to ALS pathogenesis in part by enhancing NF-κB activation and that NF-κB may constitute a therapeutic target for the disease.  相似文献   

2.
Since the discovery of neuropathological lesions made of TDP-43 and ubiquitin proteins in cases of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), there is a burst of effort on finding related familial mutations and developing animal models. We used an adeno-associated virus (AAV) vector for human TDP-43 expression targeted to the substantia nigra (SN) of rats. Though TDP-43 was expressed mainly in neuronal nuclei as expected, it was also expressed in the cytoplasm, and dotted along the plasma membrane of neurons. Cytoplasmic staining was both diffuse and granular, indicative of preinclusion lesions, over 4 weeks. Ubiquitin deposited in the cytoplasm, specifically in the TDP-43 group, and staining for microglia was increased dose-dependently by 1–2 logs in the TDP-43 group, while neurons were selectively obliterated. Neuronal death induced by TDP-43 was pyknotic and apoptotic. TDP-43 gene transfer caused loss of dopaminergic neurons in the SN and their axons in the striatum. Behavioral motor dysfunction resulted after TDP-43 gene transfer that was vector dose-dependent and progressive over time. The cytoplasmic expression, ubiquitination, and neurodegeneration mimicked features of the TDP-43 diseases, and the gliosis, apoptosis, and motor impairment may also be relevant to TDP-43 disease forms involving nigrostriatal degeneration.  相似文献   

3.
Pathological inclusions containing transactive response DNA-binding protein 43 kDa (TDP-43) are common in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). TDP-43 normally localizes predominantly to the nucleus, but during disease progression, it mislocalizes to the cytoplasm. We expressed TDP-43 in rats by an adeno-associated virus (AAV9) gene transfer method that transduces neurons throughout the central nervous system (CNS). To mimic the aberrant cytoplasmic TDP-43 found in disease, we expressed a form of TDP-43 with mutations in the nuclear localization signal sequence (TDP-NLS). The TDP-NLS was detected in both the cytoplasm and the nucleus of transduced neurons. Unlike wild-type TDP-43, expression of TDP-NLS did not induce mortality. However, the TDP-NLS induced disease-relevant motor impairments over 24 weeks. We compared the TDP-NLS to a 25 kDa C-terminal proaggregatory fragment of TDP-43 (TDP-25). The clinical phenotype of forelimb impairment was pronounced with the TDP-25 form, supporting a role of this C-terminal fragment in pathogenesis. The results advance previous rodent models by inducing cytoplasmic expression of TDP-43 in the spinal cord, and the non-lethal phenotype enabled long-term study. Approaching a more relevant disease state in an animal model that more closely mimics underlying mechanisms in human disease could unlock our ability to develop therapeutics.  相似文献   

4.
5.
Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron degeneration, which ultimately leads to paralysis and death. Mutation of TAR DNA binding protein 43 (TDP-43) has been linked to the development of an inherited form of ALS. Existing TDP-43 transgenic animals develop a limited loss of motor neurons and therefore do not faithfully reproduce the core phenotype of ALS. Here, we report the creation of multiple lines of transgenic rats in which expression of ALS-associated mutant human TDP-43 is restricted to either motor neurons or other types of neurons and skeletal muscle and can be switched on and off. All of these rats developed progressive paralysis reminiscent of ALS when the transgene was switched on. Rats expressing mutant TDP-43 in motor neurons alone lost more spinal motor neurons than rats expressing the disease gene in varying neurons and muscle cells, although these rats all developed remarkable denervation atrophy of skeletal muscles. Intriguingly, progression of the disease was halted after transgene expression was switched off; in rats with limited loss of motor neurons, we observed a dramatic recovery of motor function, but in rats with profound loss of motor neurons, we only observed a moderate recovery of motor function. Our finding suggests that mutant TDP-43 in motor neurons is sufficient to promote the onset and progression of ALS and that motor neuron degeneration is partially reversible, at least in mutant TDP-43 transgenic rats.  相似文献   

6.
7.
Improved spread of transduction in the central nervous system (CNS) was achieved from intravenous administration of adeno-associated virus serotype-9 (AAV9) to neonatal rats. Spinal lower motor neuron transduction efficiency was estimated to be 78% using the highest vector dose tested at a 12-week interval. The widespread expression could aid studying diseases that affect both the spinal cord and brain, such as amyotrophic lateral sclerosis (ALS). The protein most relevant to neuropathology in ALS is transactive response DNA-binding protein 43 (TDP-43). When expressed in rats, human wild-type TDP-43 rapidly produced symptoms germane to ALS including paralysis of the hindlimbs and muscle wasting, and mortality over 4 weeks that did not occur in controls. The hindlimb atrophy and weakness was evidenced by assessments of rotarod, rearing, overall locomotion, muscle mass, and histology. The muscle wasting suggested denervation, but there was only 14% loss of motor neurons in the TDP-43 rats. Tissues were negative for ubiquitinated, cytoplasmic TDP-43 pathology, suggesting that altering TDP-43''s nuclear function was sufficient to cause the disease state. Other relevant pathology in the rats included microgliosis and degenerating neuronal perikarya positive for phospho-neurofilament. The expression pattern encompassed the distribution of neuropathology of ALS, and could provide a rapid, relevant screening assay for TDP-43 variants and other disease-related proteins.  相似文献   

8.
《Annals of medicine》2013,45(8):817-828
Abstract

There is increasing evidence that frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) represent a continuum of neurodegenerative diseases. FTLD is complicated by ALS in a significant proportion of patients, and neuropsychological studies have demonstrated frontotemporal dysfunction in up to 50% of ALS patients. More recently, advances in neuropathology and molecular genetics have started to disclose the biological basis for the observed clinical concurrence. TDP-43 and FUS have been discovered as key pathological proteins in both FTLD and ALS. The most recent discovery of a pathological hexanucleotide repeat expansion in the gene C9orf72 as a frequent cause of both FTLD and ALS has eventually confirmed the association of these two at first sight distinct neurodegenerative diseases. Mutations in the TARDBP, FUS, and VCP genes had previously been associated with different phenotypes of the FTLD-ALS spectrum, although in these cases one end of the spectrum predominates. Whilst on the one hand providing evidence for overlap, these discoveries have also highlighted that FTLD and ALS are etiologically diverse. In this review, we review the recent advances that support the existence of an FTLD-ALS spectrum, with particular emphasis on the molecular genetic aspect.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS) is an adult-onset degeneration of motor neurons that is commonly caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Both patients and Tg mice expressing mutant human SOD1 (hSOD1) develop aggregates of unknown importance. In Tg mice, 2 different strains of hSOD1 aggregates (denoted A and B) can arise; however, the role of these aggregates in disease pathogenesis has not been fully characterized. Here, minute amounts of strain A and B hSOD1 aggregate seeds that were prepared by centrifugation through a density cushion were inoculated into lumbar spinal cords of 100-day-old mice carrying a human SOD1 Tg. Mice seeded with A or B aggregates developed premature signs of ALS and became terminally ill after approximately 100 days, which is 200 days earlier than for mice that had not been inoculated or were given a control preparation. Concomitantly, exponentially growing strain A and B hSOD1 aggregations propagated rostrally throughout the spinal cord and brainstem. The phenotypes provoked by the A and B strains differed regarding progression rates, distribution, end-stage aggregate levels, and histopathology. Together, our data indicate that the aggregate strains are prions that transmit a templated, spreading aggregation of hSOD1, resulting in a fatal ALS-like disease.  相似文献   

10.
小胶质细胞NLRP3炎症小体激活正在成为神经退行性变期间神经炎症的关键因素。β-淀粉样蛋白和α-突触核蛋白等致病蛋白的聚集体可触发小胶质细胞NLRP3激活,并导致半胱氨酸天冬氨酸酶激活和白介素-1β分泌。半胱氨酸天冬氨酸酶和白介素-1β均促进肌萎缩侧索硬化(ALS)小鼠SOD1G93A模型的疾病进展,这提示小胶质细胞NLRP3在该进程中起作用。然而,先前的研究表明SOD1G93A模型小鼠的小胶质细胞并不表达NLRP3,并且SOD1G93A蛋白在小胶质细胞中产生白介素-1β不依赖于NLRP3。本研究展示了使用Nlrp3-GFP基因敲入小鼠,在SOD1G93A小鼠中小胶质细胞表达NLRP3。结果表明,聚集和可溶性SOD1G93A均以剂量和时间依赖性方式激活小鼠原代小胶质细胞中的炎性体,导致半胱氨酸天冬氨酸酶和白介素-1β裂解、ASC斑点形成和白介素-1β分泌。重要的是,SOD1G93A不能诱导缺乏Nlrp3的小胶质细胞或用特异性NLRP3抑制剂MCC950预处理的小胶质细胞分泌白介素-1β,这证实NLRP3是介导SOD1诱导的小胶质细胞白介素-1β分泌的关键炎性体复合物。在TDP-43Q331K ALS小鼠模型中也观察到小胶质细胞NLRP3上调,并且TDP-43野生型和突变蛋白也能以NLRP3依赖性方式激活小胶质细胞炎症小体。从机制上,本研究确定活性氧簇和ATP的产生是SOD1G93A介导的NLRP3激活所需的关键事件。总之,本研究的数据表明ALS小胶质细胞表达NLRP3,病理性ALS蛋白激活了小胶质细胞NLRP3炎性体。因此,抑制NLRP3可能是阻止小胶质细胞神经炎症和ALS疾病进展的潜在治疗方法。  相似文献   

11.
Ang II type 1 (AT1) receptors activate both conventional heterotrimeric G protein-dependent and unconventional G protein-independent mechanisms. We investigated how these different mechanisms activated by AT1 receptors affect growth and death of cardiac myocytes in vivo. Transgenic mice with cardiac-specific overexpression of WT AT1 receptor (AT1-WT; Tg-WT mice) or an AT1 receptor second intracellular loop mutant (AT1-i2m; Tg-i2m mice) selectively activating G(alpha)q/G(alpha)i-independent mechanisms were studied. Tg-i2m mice developed more severe cardiac hypertrophy and bradycardia coupled with lower cardiac function than Tg-WT mice. In contrast, Tg-WT mice exhibited more severe fibrosis and apoptosis than Tg-i2m mice. Chronic Ang II infusion induced greater cardiac hypertrophy in Tg-i2m compared with Tg-WT mice whereas acute Ang II administration caused an increase in heart rate in Tg-WT but not in Tg-i2m mice. Membrane translocation of PKCepsilon, cytoplasmic translocation of G(alpha)q, and nuclear localization of phospho-ERKs were observed only in Tg-WT mice while activation of Src and cytoplasmic accumulation of phospho-ERKs were greater in Tg-i2m mice, consistent with the notion that G(alpha)q/G(alpha)i-independent mechanisms are activated in Tg-i2m mice. Cultured myocytes expressing AT1-i2m exhibited a left and upward shift of the Ang II dose-response curve of hypertrophy compared with those expressing AT1-WT. Thus, the AT1 receptor mediates downstream signaling mechanisms through G(alpha)q/G(alpha)i-dependent and -independent mechanisms, which induce hypertrophy with a distinct phenotype.  相似文献   

12.
Introduction: Straightforward studies compared adeno-associated virus (AAV) serotypes to determine the most appropriate one for robust expression in the CNS. AAV9 was efficient when directly injected into the brain, but more surprisingly, AAV9 produced global expression in the brain and spinal cord after a peripheral, systemic route of administration to neonatal mice.

Areas covered: Topics include AAV9 gene delivery from intraparenchymal, intravenous, intrathecal and intrauterine routes of administration, and related preclinical studies and disease models. Systemic AAV9 gene transfer yields remarkably consistent neuronal expression, though only in early development. AAV9 is versatile to study neuropathological proteins: microtubule-associated protein tau and transactive response DNA-binding protein 43 kDa (TDP-43).

Expert opinion: AAV9 will be more widely used based on current data, although other natural serotypes and recombineered vectors may also support or improve upon wide-scale expression. A peripheral-to-central gene delivery that can affect the entire CNS without having to inject the CNS is promising for basic functional experiments, and potentially for gene therapy. Systemic or intra-cerebrospinal fluid routes of AAV9 administration should be considered for spinal muscular atrophy, lysosomal storage diseases and amyotrophic lateral sclerosis, if more neuronal expression can be achieved in adults, or if glial expression can be exploited.  相似文献   

13.
The fatal adult motor neuron disease amyotrophic lateral sclerosis (ALS) shares some clinical and pathological overlap with frontotemporal dementia (FTD), an early-onset neurodegenerative disorder. The RNA/DNA-binding proteins fused in sarcoma (FUS; also known as TLS) and TAR DNA binding protein-43 (TDP-43) have recently been shown to be genetically and pathologically associated with familial forms of ALS and FTD. It is currently unknown whether perturbation of these proteins results in disease through mechanisms that are independent of normal protein function or via the pathophysiological disruption of molecular processes in which they are both critical. Here, we report that Drosophila mutants in which the homolog of FUS is disrupted exhibit decreased adult viability, diminished locomotor speed, and reduced life span compared with controls. These phenotypes were fully rescued by wild-type human FUS, but not ALS-associated mutant FUS proteins. A mutant of the Drosophila homolog of TDP-43 had similar, but more severe, deficits. Through cross-rescue analysis, we demonstrated that FUS acted together with and downstream of TDP-43 in a common genetic pathway in neurons. Furthermore, we found that these proteins associated with each other in an RNA-dependent complex. Our results establish that FUS and TDP-43 function together in vivo and suggest that molecular pathways requiring the combined activities of both of these proteins may be disrupted in ALS and FTD.  相似文献   

14.
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expansion of glutamine repeats in the huntingtin (htt) protein. Abnormal protein folding and the accumulation of mutated htt are hallmarks of HD neuropathology. Heat-shock proteins (hsps), which refold denatured proteins, might therefore mitigate HD. We show here that hsp104 and hsp27 rescue striatal dysfunction in primary neuronal cultures and HD rat models based on lentiviral-mediated overexpression of a mutated htt fragment. In primary rat striatal cultures, production of hsp104 or hsp27 with htt171-82Q restored neuronal nuclei (NeuN)-positive cell density to that measured after infection with vector expressing the wild-type htt fragment (htt171-19Q). In vivo, both chaperones significantly reduced mutated-htt-related loss of DARPP-32 expression. Furthermore, hsps affected the distribution and size of htt inclusions, with the density of neuritic aggregates being remarkably increased in striatal neurons overexpressing hsps. We also found that htt171-82Q induced the up-regulation of endogenous hsp70 that was co-localized with htt inclusions, and that the overexpression of hsp104 and hsp27 modified the subcellular localization of hsp70 that became cytoplasmic. Finally, hsp104 induced the production of endogenous hsp27. These data demonstrate the protective effects of chaperones in mammalian models of HD.  相似文献   

15.
Progranulin (PGRN) is a widely expressed protein involved in diverse biological processes. Haploinsufficiency of PGRN in the human causes tau-negative, ubiquitin-positive frontotemporal dementia (FTD). However, the mechanisms are unknown. To explore the role of PGRN in vivo, we generated PGRN-deficient mice. Macrophages from these mice released less interleukin-10 and more inflammatory cytokines than wild type (WT) when exposed to bacterial lipopolysaccharide. PGRN-deficient mice failed to clear Listeria monocytogenes infection as quickly as WT and allowed bacteria to proliferate in the brain, with correspondingly greater inflammation than in WT. PGRN-deficient macrophages and microglia were cytotoxic to hippocampal cells in vitro, and PGRN-deficient hippocampal slices were hypersusceptible to deprivation of oxygen and glucose. With age, brains of PGRN-deficient mice displayed greater activation of microglia and astrocytes than WT, and their hippocampal and thalamic neurons accumulated cytosolic phosphorylated transactivation response element DNA binding protein–43. Thus, PGRN is a key regulator of inflammation and plays critical roles in both host defense and neuronal integrity. FTD associated with PGRN insufficiency may result from many years of reduced neutrotrophic support together with cumulative damage in association with dysregulated inflammation.Progranulin (PGRN), also known as proepithelin, acrogranin, or prostate cancer cell–derived growth factor (He and Bateman, 2003), is a secreted protein that undergoes proteolysis to generate seven mutually homologous 6-kD peptides, called GRNs or epithelins. Cysteine comprises 88 of PGRN’s 593 residues and forms six intramolecular disulfide bridges in each of the GRNs, giving them a compact globular structure (Tolkatchev et al., 2008). PGRN is expressed by epithelial cells, macrophages, and neurons. Expression analyses and experiments with the native or recombinant protein have implicated PGRN in embryonic development, tumorigenesis, and wound healing (Daniel et al., 2000; Zhu et al., 2002; He and Bateman, 2003). A prominent role of PGRN in the regulation of inflammation was suggested by our discovery that neutrophil elastase and macrophage-derived secretory leukocyte protease inhibitor (SLPI) promote and prevent, respectively, the conversion of PGRN to GRNs, and that recombinant PGRN inhibits neutrophil activation, whereas GRNs promote epithelial cell generation of neutrophil chemoattractants (Zhu et al., 2002).Mutations in the PGRN gene were recently found to cause frontotemporal dementia (FTD), the second most common dementia in people under the age of 65 (Neary et al., 1998). FTD patients experience gradual and progressive changes in behavior and personality, followed by a cognitive decline, prominent language disorders, and sometimes Parkinsonism, in association with progressive cortical atrophy, neuronal loss, astrocytic gliosis, and microglial activation (Neary et al., 1998). At least 66 different pathogenic mutations in the PGRN gene have been documented in FTD patients, all of which resulted in functional null alleles and haploinsufficiency. These were associated with ubiqitinopathies, characterized by the deposit of ubiquitin-positive but tau-negative immunoreactivity in neuronal cytoplasmic and neuronal intranuclear inclusions (Mackenzie et al., 2006; Cairns et al., 2007; Josephs et al., 2007). One component of neuronal inclusions from PGRN-linked FTD patients was identified as transactivation response element DNA binding protein–43 (TDP-43; Neumann et al., 2006). Recent studies have linked pathological redistribution of TDP-43 from nuclei to cytoplasm to its phosphorylation and degradation (Cook et al., 2008; Hasegawa et al., 2008).In this paper, we report that PGRN-deficient mice responded to infection with exaggerated inflammation. In vitro, their macrophages responded to microbial products by expressing enhanced levels of proinflammatory mediators and reduced antiinflammatory IL-10. Ex vivo, PGRN-deficient hippocampal neurons were more vulnerable than WT to metabolic stress. Finally, we detected microgliosis, astrocytosis, and cytoplasmic localization and phosphorylation of TDP-43 in the hippocampus and thalamus in aged PGRN-deficient mice but not in their WT counterparts. Thus, PGRN has a nonredundant role in modulating inflammatory responses. Our studies raise the possibility that FTD may result in part from brain damage arising from the combination of dysregulated inflammation and heightened neuronal vulnerability.  相似文献   

16.
INTRODUCTION: Straightforward studies compared adeno-associated virus (AAV) serotypes to determine the most appropriate one for robust expression in the CNS. AAV9 was efficient when directly injected into the brain, but more surprisingly, AAV9 produced global expression in the brain and spinal cord after a peripheral, systemic route of administration to neonatal mice. AREAS COVERED: Topics include AAV9 gene delivery from intraparenchymal, intravenous, intrathecal and intrauterine routes of administration, and related preclinical studies and disease models. Systemic AAV9 gene transfer yields remarkably consistent neuronal expression, though only in early development. AAV9 is versatile to study neuropathological proteins: microtubule-associated protein tau and transactive response DNA-binding protein 43 kDa (TDP-43). EXPERT OPINION: AAV9 will be more widely used based on current data, although other natural serotypes and recombineered vectors may also support or improve upon wide-scale expression. A peripheral-to-central gene delivery that can affect the entire CNS without having to inject the CNS is promising for basic functional experiments, and potentially for gene therapy. Systemic or intra-cerebrospinal fluid routes of AAV9 administration should be considered for spinal muscular atrophy, lysosomal storage diseases and amyotrophic lateral sclerosis, if more neuronal expression can be achieved in adults, or if glial expression can be exploited.  相似文献   

17.
Apoptosis of motor neurons is a well-documented feature in amyotrophic lateral sclerosis (ALS) and related motor neuron diseases (MNDs). However, the role of apoptosis in the pathogenesis of these diseases remains unresolved. One possibility is that the affected motor neurons only succumb to apoptosis once they have exhausted functional capacity. If true, blocking apoptosis should confer no therapeutic benefit. To directly investigate this idea, we tested whether tissue-specific deletion in the mouse CNS of BCL2-associated X protein (BAX) and BCL2-homologous antagonist/killer (BAK), 2 proapoptotic BCL-2 family proteins that together represent an essential gateway to the mitochondrial apoptotic pathway, would protect against motor neuron degeneration. We found that neuronal deletion of Bax and Bak in a mouse model of familial ALS not only halted neuronal loss, but prevented axonal degeneration, symptom onset, weight loss, and paralysis and extended survival. These results show that motor neurons damaged in ALS activate the mitochondrial apoptotic pathway early in the disease process and that apoptotic signaling directly contributes to neuromuscular degeneration and neuronal dysfunction. Hence, inhibiting apoptosis upstream of mitochondrial permeabilization represents a possible therapeutic strategy for preserving functional motor neurons in ALS and other MNDs.  相似文献   

18.
19.
There are several incurable diseases of motor neuron degeneration, including amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, hereditary spastic hemiplegia, spinal muscular atrophy, and bulbospinal atrophy. Advances in gene transfer techniques coupled with new insights into molecular pathology have opened promising avenues for gene therapy aimed at halting disease progression. Nonviral preparations and recombinant adenoviruses, adeno-associated viruses, herpesviruses, and lentiviruses may ultimately transduce sufficient numbers of cerebral, brainstem, and spinal cord neurons for therapeutic applications. This could be accomplished by direct injection, transduction of lower motor neurons via retrograde transport after intramuscular injection, or cell-based therapies. Studies using transgenic mice expressing mutant superoxide dismutase 1 (SOD1), a model for one form of ALS, established that several proteins were neuroprotective, including calbindin, bcl-2, and growth factors. These same molecules promoted neuronal survival in other injury models, suggesting general applicability to all forms of ALS. Potentially correctable genetic lesions have also been identified for hereditary spastic hemiplegia, bulbospinal atrophy, and spinal muscular atrophy. Finally, it may be possible to repopulate lost corticospinal and lower motor neurons by transplanting stem cells or stimulating native progenitor populations. The challenge ahead is to translate these basic science breakthroughs into workable clinical practice.  相似文献   

20.
Epstein-Barr virus (EBV)-based vectors can stably maintain large genomic fragments in mammalian cells, offering great potential for the treatment/correction of many acquired and inherited disorders. Numerous studies report marked increases in the transfection efficiency of EBV-based vectors after delivery into cell lines constitutively expressing Epstein-Barr nuclear antigen-1 (EBNA1), compared with cells not expressing EBNA1. We employ a novel strategy, involving the transfection of mRNA encoding EBNA1, to transiently express EBNA1 protein in human cells. Subsequently we show that the transfection efficiency of a 21-kb EBVbased vector is improved significantly when codelivered with mRNA encoding EBNA1. Similar increases in transfection efficiency were observed after delivery of the plasmid into cells constitutively expressing EBNA1. We also investigate the mechanism by which EBNA1 facilitates the transfection of EBV-based vectors, using mRNA encoding modified versions of the protein. Previous studies suggest that the EBNA1 DNA-binding domain (DBD), together with the nuclear localization signal (NLS), may enhance transfection of EBV plasmids by facilitating their nuclear transport. We demonstrate that an EBNA1 derivative comprising only the NLS and DBD does not facilitate transfection of EBV-based vectors. However, cells expressing an EBNA1 derivative devoid of a functional NLS but retaining the chromatin-binding regions, domains A and B, enhances plasmid transfection efficiency by up to 10-fold. Moreover, a variant of EBNA1 comprising two copies of domain A fused to the DBD enhances DNA transfection to an even greater extent than wild-type EBNA1. We therefore propose that EBNA1-mediated transfection of EBV-based vectors is dependent on the presence of chromatin- binding regions and the DBD, but not the NLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号