首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的探讨氯离子通道阻断剂DIDS对十字孢碱诱导心肌细胞凋亡与磷脂酰肌醇3激酶/蛋白激酶B信号及其下游分子一氧化氮合酶/一氧化氮的关系。方法实验分为对照组、十字孢碱组、DIDS组、LY294002(特异性磷脂酰肌醇3激酶抑制剂)组和L-NAME(非特异性一氧化氮合酶抑制剂)组。在十字孢碱诱导心肌细胞凋亡模型上,观察DIDS对心肌细胞存活率、凋亡和磷脂酰肌醇3激酶/蛋白激酶B及其下游分子一氧化氮合酶/一氧化氮的影响。结果与十字孢碱组比,DIDS明显改善了细胞存活率,提高了细胞磷酸化蛋白激酶B活性2.1倍(P<0.01),增加了一氧化氮合酶和磷酸化一氧化氮合酶的水平和一氧化氮水平(P<0.01);LY294002预处理完全抑制了磷酸化蛋白激酶B、一氧化氮合酶和磷酸化一氧化氮合酶水平的升高及升高的一氧化氮,完全阻断了DIDS的抗细胞凋亡作用;L-NAME预处理也使升高的一氧化氮水平下降,但仅部分阻断了DIDS的细胞保护作用。结论DIDS通过激活磷脂酰肌醇3激酶/蛋白激酶B信号通路发挥其抑制十字孢碱诱导的心肌细胞凋亡作用。  相似文献   

2.
目的:探讨西洛他唑(Cilostazol)对乳鼠心肌细胞PI3K-Akt-eNOS信号通路的影响。方法:观察西洛他唑对乳鼠心肌细胞NO影响的时效和量效关系,再用PI3K及eNOS抑制剂进行干预。检测NO的浓度,Western免疫印迹法检测总Akt、磷酸化Akt(p—Akt—ser473)及总eNOS、磷酸化eNOS(p-eNOS-Ser1177)表达水平。结果:西洛他唑升高心肌细胞NO浓度呈剂量和时间依赖性,不同浓度的西洛他唑均能升高Akt和eNOS磷酸化水平,但对Akt及eNOS总蛋白表达无明显影响。eNOS抑制剂L—NAME和P13K抑制剂Wortmannin均能抑制西洛他唑诱导的NO浓度升高,Wortmannin还能阻断西洛他唑诱导的Akt和eNOS的磷酸化。结论:西洛他唑可能激活乳鼠心肌细胞的PI3K—Akt—eNOS信号通路而促进NO的产生。  相似文献   

3.
目的 探讨促红细胞生成素(EPO)对血管紧张素Ⅱ(AngⅡ)诱导的肥大心肌细胞的影响,以及磷脂酰肌醇3激酶(PI3K)/丝氨酸苏氨酸激酶(Akt)-内皮型一氧化氮合酶(eNOS)信号转导通路在其中的作用.方法 分离乳鼠心肌细胞,利用AngⅡ诱导建立心肌细胞肥大模型,以心肌细胞表面积和心钠素(ANF)mRNA表达作为心肌细胞肥大观察指标.观察不同浓度EPO对肥大心肌细胞的影响,并利用PI3K抑制剂LY294002和一氧化氮合酶抑制剂L-NAME对其相关机制进行探讨,I司时对细胞培养液中一氧化氮(NO)浓度进行检测,蛋白免疫印迹法检测磷酸化Akt(p-Akt)、Akt、磷酸化eNOS(p-eNOS)和eNOS蛋白表达情况.结果 20 U/ml EPO能抑制由AngⅡ诱导的心肌细胞肥大,表现为心肌细胞表面积和ANF mRNA表达均减少(P<0.05).EPO能激活Akt,促进eNOS及p-eNOS表达增加(均P<0.05),并使NO合成增加(P<0.01).LY294002和L-NAME能逆转EPO的抗心肌细胞肥大作用,减少NO产最(P<0.05).蛋白免疫印迹法榆测显示,LY294002能够抑制EPO对p-Akt、p-eNOS和eNOS蛋白表达的促进作用,而L-NAME能抑制eNOS的磷酸化(均P<0.05).结论 EPO能够抑制AngⅡ诱导的心肌细胞肥大,该作用可能是通过激活P13K/Akt信号转导通路,促进eNOS表达与活化,从而促进NO的合成来实现的.  相似文献   

4.
Hepatocyte growth factor (HGF) has recently been the focus of attention due to its angiogenic effects, which are similar to those of vascular endothelial growth factor (VEGF); because of these effects, HGF is considered to be a novel therapeutic agent against vascular disorders, including atherosclerotic angiopathies. Although nitric oxide (NO), which is derived from vascular endothelial cells (ECs), is also involved in angiogenesis, little is known regarding the interactions between HGF and NO. We therefore examined the effects of HGF on NO production as well as endothelial NO synthase (eNOS) phosphorylation, and investigated their mechanisms. In bovine aortic ECs, HGF induced a rapid (5 min) increase of NO production measured by diaminofluorescein-2 diacetate. Moreover, HGF rapidly (2.5 min) stimulated eNOS phosphorylation (Ser-1179) as determined by Western immunoblot analyses. Both of these effects were almost completely suppressed by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and were partially suppressed by the mitogen-activated protein kinase (MAPK) kinase 1/2 inhibitor U0126. HGF also stimulated Akt phosphorylation (Ser-473), which was completely suppressed by LY294002 and was partially suppressed by U0126. Moreover, HGF stimulated extracellular signal-regulated kinase 1/2 phosphorylation (Thr-202/Tyr-204), which was completely suppressed by U0126 and was partially suppressed by LY294002. Taken together, these results indicate that HGF not only phosphorylates eNOS through the PI3K/Akt pathway, but also partially through the MAPK pathway, and that these two pathways may interact. Compared with VEGF, HGF was more potent in both NO production and eNOS phosphorylation. Our study thus demonstrates a novel activity of HGF-the stimulation of NO production-which occurs via eNOS phosphorylation that may in turn be mediated by cross-talk between the PI3K/Akt and MAPK pathways.  相似文献   

5.
目的 探讨促红细胞生成素(EPO)对血管紧张素Ⅱ(AngⅡ)诱导的心脏成纤维细胞(CF)中转化生长因子(TGF)-β1蛋白表达和胶原生成的影响,以及磷脂酰肌醇-3-激酶(PD-K)/Akt信号途径和一氧化氮合酶(NOS)在其中的作用.方法 应用胰酶和胶原酶双酶法分离培养新生大鼠CF细胞,应用EPO、Ang Ⅱ、PI3-K抑制剂LY294002、NOS抑制剂L-NAME等不同因素干预.ELISA法检测CF中Ⅰ型和Ⅲ型胶原的浓度.化学酶法检测CF培养液中的NO浓度以及NOS总的活性及其亚型的活性.Western blot检测Akt、p-Akt、内皮型一氧化氮合酶(eNOS)、iNOS和TGF-β1蛋白的表达.结果 EPO剂量依赖性的抑制Ang Ⅱ诱导的CF培养液中Ⅰ型和Ⅲ型胶原表达以及提高NO的浓度.10 U/ml的EPO对Ⅰ型和Ⅲ型胶原浓度的抑制分别达到了28%和46%,同时NO浓度则提高了154%.EPO也显著抑制了Ang Ⅱ促CF中TGF-β1蛋白的表达,同时Akt的磷酸化水平显著提高,并促进eNOS蛋白的表达.应用LY294002使eNOS蛋白表达水平明显下降,培养液中的NO浓度也随之下降.L-NAME不能降低eNOS蛋白表达,但抑制了NO的生成.EPO抑制Ang Ⅱ诱导的CF中TGF-β1蛋白的表达以及Ⅰ型和Ⅲ型胶原合成作用均能被二者阻断.结论 EPO可抑制Ang Ⅱ诱导的新生大鼠CF中TGF-β1的表达以及Ⅰ型和Ⅲ型胶原表达,可能是通过激活PI3-K/Akt信号途径促使CF中eNOS表达,从而促进NO的表达来实现.  相似文献   

6.
In the penis, nitric oxide (NO) can be formed by both neuronal NO synthase and endothelial NOS (eNOS). eNOS is activated by viscous drag/shear stress in blood vessels to produce NO continuously, a process mediated by the phosphatidylinositol 3-kinase (PI3kinase)/Akt pathway. Here we show that PI3-kinase/Akt physiologically mediates erection. Both electrical stimulation of the cavernous nerve and direct intracavernosal injection of the vasorelaxant drug papaverine cause rapid increases in phosphorylated (activated) Akt and eNOS. Phosphorylation is diminished by wortmannin and LY294002, inhibitors of PI3-kinase, the upstream activator of Akt. The two drugs also reduce erection. Penile erection elicited by papaverine is reduced profoundly in mice with targeted deletion of eNOS. Our findings support a model in which rapid, brief activation of neuronal NOS initiates the erectile process, whereas PI3-kinase/Akt-dependent phosphorylation and activation of eNOS leads to sustained NO production and maximal erection.  相似文献   

7.
目的观察罗格列酮(RGZ)对高胰岛素培养的人脐静脉内皮细胞(HUVEC)NO浓度和内皮型一氧化氮合酶(eNOS)、磷酯酰肌醇3激酶(P13K)和蛋白激酶B(PKB)表达的影响,探讨RGZ改善高胰岛素状态下内皮功能障碍的信号转导机制。方法高浓度胰岛素培养HUVEC72h,并用不同浓度的RGZ进行干预。检测NO浓度,PI3K mRNA的表达,PKB、eNOS总蛋白和PKB丝氨酸473(PKB-Ser473)、eNOS丝氨酸1177(eNOS-Ser1177)的磷酸化表达。结果高浓度胰岛素培养HUVEC能呈剂帚和时间依赖性地降低N0的浓度,抑制内皮细胞P13KmRNA表达和PKB-Ser473、eNOS-Ser1177的磷酸化。用RGZ干预能硅著升高高胰岛素培养的内皮细胞NO的浓度和PKB、eNOS的磷酸化,增强PI3KmRNA表达;eNOS和P13K阻断剂均能阻断RGZ对高胰岛素培养的内皮细胞中NO浓度的升高,PI3K阻断剂还能阻断RGZ对高胰岛素培养内皮细胞PKB、eNOS的磷酸化。结论高胰岛素能下调P13K/PKB/eNOs信号通路而抑制内皮细胞NO的产生,RGZ能通过上调PI3K/PKB通路而增强高胰岛素培养的内皮细胞eNOS的活性和NO的产生。  相似文献   

8.
Thrombin has been shown to activate endothelial NO synthase (eNOS) leading to endothelium-dependent vasorelaxation. In addition to its activation by Ca2+/calmodulin, eNOS has several regulatory sites. Ser1179 phosphorylation of eNOS by the phosphatidylinositol 3-kinase-dependent Akt stimulates its catalytic activity. In this study, we have elucidated the signaling mechanism of thrombin-induced phosphorylation of eNOS in the regulation of NO production. Immunoblot analysis showed that thrombin rapidly phosphorylates eNOS at Ser1179 in cultured bovine aortic endothelial cells. Also, thrombin was unable to stimulate eNOS if the Ser1179 was mutated to Ala. Akt is phosphorylated in response to thrombin at Ser473 at a later time point than eNOS. In this regard, a phosphatidylinositol 3-kinase inhibitor, LY294002, blocked Akt phosphorylation without affecting eNOS phosphorylation and cGMP production by thrombin. The Ca2+ ionophore A23187 stimulated eNOS phosphorylation, as well as cGMP production, and pretreatment with intracellular or extracellular Ca2+ chelators inhibited thrombin-induced eNOS phosphorylation and cGMP production. Moreover, infection of bovine aortic endothelial cell with adenovirus encoding dominant-negative mutants of protein kinase C (PKC) and PKC or pretreatment of bovine aortic endothelial cells with PKC inhibitors revealed that PKC is indispensable for thrombin-induced eNOS phosphorylation and activation. From these data, we concluded that thrombin induces the Ser1179 phosphorylation-dependent eNOS activation through a Ca2+-dependent, PKC-sensitive, but phosphatidylinositol 3-kinase/Akt-independent pathway.  相似文献   

9.
Phosphatidylinositol 3-kinase (PI3-K) has been shown to mediate insulin and insulin-like growth factor-1 (IGF-1)-induced nitric oxide (NO) generation and, thus, vascular tone. A role for PI3-K in G-protein-coupled receptor signal transduction has also been reported. As beta2 -adrenergic vascular actions are partly dependent on NO, this study the role of PI3-K on in vitro isoproterenol (Iso)-induced endothelial cell (EC) nitric oxide synthase (NOS) activation and rat aortic vascular relaxation. Cell lysates of rat aortic EC (RAEC), exposed to Iso (10 micromol/L) for 5 minutes, were immunoprecipitated with an antiphosphotyrosine antibody prior to assay for Western blot for the p85-kd regulatory subunit of PI3-K. Endothelial NOS activity was determined by measuring nitrite production. Endothelium-intact aortic rings from male Wistar rats were preincubated with the PI3-K inhibitors, wortmannin (WT), or LY294002 (LY), precontracted with phenylepinephrine (PE), and relaxation to graded doses of Iso was measured. NO contribution to vascular relaxation was assessed by L-N(G)-nitroarginine methyl ester (L-NAME), a NOS inhibitor. Both Iso and IGF-1 induced an increase in p85 subunit phosphorylation as demonstrated by Western analysis, effects inhibited by preincubation with WT. Iso also enhanced association of p85 with the Triton X-100-insoluble fraction of RAEC, reflecting translocation of this enzyme to a cytoskeletal fraction. In addition, Iso as well as IGF-1 significantly increased eNOS activity measured by nitrite production. Both WT and LY markedly inhibited relaxation to Iso, while L-NAME nearly abolished this beta-adrenergic-mediated vasorelaxation. These data indicate that both Iso and IGF-1 activate the EC PI3-K pathway which mediates, in part, the release of NO and subsequent vasorelaxation in response to this beta-agonist Iso as well as to IGF-1.  相似文献   

10.
AimThe endothelium, mainly via nitric oxide (NO) release, adjusts the coronary flow. Cardiac function is closely linked to blood flow; thus, we tested the hypothesis that NO modulation in coronary arteries could be differentially adjusted after myocardial infarction (MI) in the presence or absence of heart failure (HF).Methods and resultsFour weeks after coronary occlusion, the infarcted rats were subdivided into rats without (MI) or with HF signs according to haemodynamic parameters. The septal coronary arteries were subsequently used to perform functional and molecular experiments. Acetylcholine (ACh)-induced relaxation was decreased in the coronary arteries following HF, whereas it was enhanced in the arteries of the MI compared with those of SHAM-operated (SO) rats. The relaxation induced by the NO donor was similar among the groups. NO production, which was evaluated by 4,5-diaminofluorescein diacetate, was reduced in the coronary arteries of the HF group and increased in the arteries with MI after ACh-induced stimulation. HF coronary arteries exhibited oxidative stress, which was evaluated via ethidium bromide-positive nuclei, whereas it was decreased in MI. To evaluate the mechanisms involved in the enhanced ACh-induced relaxation in the arteries following MI, certain septal coronary arteries were pre-incubated with L-NAME (a nonselective NO synthase (NOS) inhibitor), 7-NI (a selective neuronal NOS (nNOS) inhibitor) or LY294002 (a PI3-kinase inhibitor). L-NAME and LY294002 reduced ACh-induced relaxation in the MI and SO rats; however, these effects were greater in the MI arteries. 7-NI reduced only the ACh-relaxation in MI. In addition, the eNOS, nNOS, Akt, and superoxide dismutase isoform protein expressions were greater in the coronary arteries of the MI than in those of the SO groups.ConclusionOur data suggested that endothelial function was closely related to cardiac function after coronary occlusion. The coronary arteries from the HF rats exhibited reduced NO bioavailability, whereas the MI rats exhibited increased NO bioavailability because of increased eNOS/nNOS/PI3-kinase/Akt pathway and a reduction in ROS generation. These results suggest that enhanced NO modulation can prevent the onset of HF.  相似文献   

11.
Sudo T  Ito H  Kimura Y 《Platelets》2003,14(6):381-390
Vasodilator-stimulated phosphoprotein (VASP) is a regulator of actin dynamics in platelets and a common substrate of both cAMP- and cGMP-dependent protein kinases (PKA and PKG). Elevations of the cAMP and cGMP concentration have been shown to inhibit platelet aggregation. Intracellular levels of cAMP and cGMP are regulated by the synthesizing system of adenylate cyclases, and hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). The present study examined the effect of the anti-platelet drug, cilostazol, which inhibits PDE3 activity, on VASP phosphorylation in platelets. VASP phosphorylation was examined by immunoblotting with an anti-VASP antibody, M4, and an anti-phospho-VASP antibody, 16C2. Cilostazol phosphorylated VASP at both Ser157 and Ser239 in a concentration-dependent manner, but EHNA (PDE2 inhibitor), dipyridamole and zaprinast (PDE5 inhibitors) did not. Forskolin (adenylate cyclase activator) and sodium nitroprusside (SNP, NO donor) resulted in the VASP phosphorylation, with increase in the cAMP and cGMP level, respectively. Cilostazol increased cAMP, but not cGMP levels, in platelets. EHNA, zaprinast and dipyridamole, had no effect on cAMP and cGMP levels. The PKA/PKG inhibitor, H-89, inhibited VASP phosphorylation by cilostazol. These results demonstrated that cilostazol phosphorylates VASP through the PDE3 inhibition, increase of cAMP level, and PKA activation in platelets.  相似文献   

12.
17beta-Estradiol (E(2)) is a rapid activator of endothelial nitric oxide synthase (eNOS). The product of this activation event, NO, is a fundamental determinant of cardiovascular homeostasis. We previously demonstrated that E(2)-stimulated endothelial NO release can occur without an increase in cytosolic Ca(2+). Here we demonstrate for the first time, to our knowledge, that E(2) rapidly induces phosphorylation and activation of eNOS through the phosphatidylinositol 3 (PI3)-kinase-Akt pathway. E(2) treatment (10 ng/mL) of the human endothelial cell line, EA.hy926, resulted in increased NO production, which was abrogated by the PI3-kinase inhibitor, LY294002, and the estrogen receptor antagonist ICI 182, 780. E(2) stimulated rapid Akt phosphorylation on serine 473. As has been shown for vascular endothelial growth factor, eNOS is an E(2)-activated Akt substrate, demonstrated by rapid eNOS phosphorylation on serine 1177, a critical residue for eNOS activation and enhanced sensitivity to resting cellular Ca(2+) levels. Adenoviral-mediated EA.hy926 transduction confirmed functional involvement of Akt, because a kinase-deficient, dominant-negative Akt abolished E(2)-stimulated NO release. The membrane-impermeant E(2)BSA conjugate, shown to bind endothelial cell membrane sites, also induced rapid Akt and consequent eNOS phosphorylation. Thus, engagement of membrane estrogen receptors results in rapid endothelial NO release through a PI3-kinase-Akt-dependent pathway. This explains, in part, the reduced requirement for cytosolic Ca(2+) fluxes and describes an important pathway relevant to cardiovascular pathophysiology.  相似文献   

13.
Zheng H  Dai T  Zhou B  Zhu J  Huang H  Wang M  Fu G 《Atherosclerosis》2008,201(1):36-42
Recent studies have demonstrated that stromal cell-derived factor-1alpha (SDF-1alpha)/CXCR4 interaction regulates multiple cell signal pathways and a variety of cellular functions such as cell migration, proliferation, survival and angiogenesis. In present study, we aimed to determine the effect of SDF-1alpha on endothelial progenitor cells (EPCs) apoptosis induced by serum deprivation and the implication of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinases (MAPKs) signaling in this effect. EPCs were isolated and characterized. SDF-1alpha decreased EPCs apoptosis induced by serum deprivation in a dose-dependent manner and the inhibitory effect was CXCR4 dependent as confirmed by the total abolishment by AMD3100, a CXCR4-specific peptide antagonist. SDF-1alpha treatment also significant decreased caspase-3 expression and activity. The inhibitory effect of SDF-1alpha on EPCs apoptosis was nearly completely abolished by PI3K inhibitors (either Wortmannin or LY294002) and partially abolished by NOS inhibitor, N(G)-nitro-arginine methyl ester, whereas inhibitors of MAPKs had no significant effect on this inhibitory effect. The treatment of EPCs with SDF-1alpha resulted in time-dependent Akt, eNOS, extracellular-regulated kinase (ERK1/2), p38 MAPK and c-Jun N-terminal kinase (JNK) phosphorylations. These findings suggest that PI3K/Akt/eNOS activation, but not MAPKs activation, is required for the inhibitory effect of SDF-1alpha on EPCs apoptosis.  相似文献   

14.
15.
16.
Sullivan JA  Grummer MA  Yi FX  Bird IM 《Endocrinology》2006,147(5):2442-2457
During pregnancy, vascular remodeling and vasoactive agents such as nitric oxide (NO) increase blood flow to the uteroplacental unit. Using our uterine artery endothelial cell (UAEC) culture model, based on cells from pregnant (P-UAEC) and nonpregnant (NP-UAEC) ewes, we investigate the relative physiological roles of Ca(2+) vs. kinase in the regulation of endothelial NO synthase (eNOS) activity. When Ca(2+) mobilization is fully inhibited using inhibitors of phospholipase C (PLC) (U73122) and the inositol triphosphate (IP3) receptor (IP3-R) (2-APB), significant residual eNOS activity remains in both P- and NP-UAEC. No change in ATP-stimulated ERK2, Akt, or eNOS phosphorylation is observed with U73122 (0.01-1 microM) or 2-APB (1-50 microM). The MAPK kinase (MEK) 1/2 inhibitor U0126 (10 microM) did not alter ATP-stimulated eNOS activity in P-UAEC, but potentiated the ATP response in NP-UAEC. Using two phosphatidylinositol 3-kinase (PI3-K) inhibitors, we observed no effect with LY294002 (10 microM) on eNOS activity in P- and NP-UAEC, but wortmannin (10 microM) inhibited both P- and NP-UAEC eNOS activation. Expression of constitutively active Akt (ca-Akt) in UAEC resulted in slight elevation of basal eNOS activity, but relative ATP-stimulated eNOS activation was not altered by ca-Akt. Wortmannin continued to inhibit eNOS activation by ATP in the presence of ca-Akt; LY294002 still had no inhibitory effect. Our data indicate both [Ca(2+)](i) and multiple kinases are involved in the regulation of eNOS activity in our model. We report that pregnancy adaptation of eNOS activation includes the reduced sensitivity to ERK-mediated attenuation of eNOS activity and enhanced stimulation of eNOS activity through a wortmannin-sensitive, LY294002-insensitive, Akt-independent mechanism.  相似文献   

17.
It has been suggested that serine (Ser) phosphorylation of insulin receptor substrate-1 (IRS-1) decreases the ability of IRS-1 to be phosphorylated on tyrosine, thereby attenuating insulin signaling. There is evidence that angiotensin II (AII) may impair insulin signaling to the IRS-1/phosphatydilinositol 3-kinase (PI 3-kinase) pathway by enhancing Ser phosphorylation. Insulin stimulates NO production by a pathway involving IRS-1/PI3-kinase/Akt/endothelial NO synthase (eNOS). We addressed the question of whether AII affects insulin signaling involved in NO production in human umbilical vein endothelial cells and tested the hypothesis that the inhibitory effect of AII on insulin signaling was caused by increased site-specific Ser phosphorylation in IRS-1. Exposure of human umbilical vein endothelial cells to AII resulted in inhibition of insulin-stimulated production of NO. This event was associated with impaired IRS-1 phosphorylation at Tyr612 and Tyr632, two sites essential for engaging the p85 subunit of PI3-kinase, resulting in defective activation of PI 3-kinase, Akt, and eNOS. This inhibitory effect of AII was reversed by the type 1 receptor antagonist losartan. AII increased c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 activity, which was associated with a concomitant increase in IRS-1 phosphorylation at Ser312 and Ser616, respectively. Inhibition of JNK and ERK1/2 activity reversed the negative effects of AII on insulin-stimulated NO production. Our data suggest that AII, acting via the type 1 receptor, increases IRS-1 phosphorylation at Ser312 and Ser616 via JNK and ERK1/2, respectively, thus impairing the vasodilator effects of insulin mediated by the IRS-1/PI 3-kinase/Akt/eNOS pathway.  相似文献   

18.
OBJECTIVE: To examine if adenosine prevents oxidant-induced mitochondrial dysfunction by producing nitric oxide (NO) in cardiomyocytes. METHODS AND RESULTS: Adenosine significantly enhanced the fluorescence of DAF-FM, a dye specific for NO, implying that adenosine induces synthesis of NO. Adenosine-induced NO production was blocked by both the nonspecific NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) and N(5)-(1-Iminoethyl)-l-ornithine dihydrochloride (l-NIO), an inhibitor of endothelial NOS (eNOS), but not by N(6)-(1-Iminoethyl)-l-lysine hydrochloride (l-NIL), an inhibitor of inducible NOS (iNOS), indicating that adenosine activates eNOS. Adenosine also enhances eNOS phosphorylation and its activity. The adenosine A(2) receptor antagonist 8-(3-chlorostyryl)caffeine but not the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine prevented the increase in NO production. CGS21680, an adenosine A(2) receptor agonist, markedly increased NO, further supporting the involvement of A(2) receptors. Adenosine-induced NO production was blocked by 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine (PP2), a selective Src tyrosine kinase inhibitor, suggesting that Src tyrosine kinase is crucial for adenosine-induced NO production. Adenosine-induced NO production was partially reversed by both wortmannin and Akt inhibitor indicating an involvement of PI3-kinase/Akt. Pretreatment of cells with adenosine prevented H(2)O(2)-induced depolarization of mitochondrial membrane potential (DeltaPsi(m)). The protective effect was blocked by l-NAME and l-NIO but not by l-NIL, indicating that eNOS plays a role in the action of adenosine. The protective effect of adenosine was further suppressed by KT5823, a specific inhibitor of protein kinase G (PKG), indicating the PKG may serve as a downstream target of adenosine. CONCLUSION: Adenosine protects mitochondria from oxidant damage through a pathway involving A(2) receptors, eNOS, NO, PI3-kinase/Akt, and Src tyrosine kinase.  相似文献   

19.
OBJECTIVES: Hepatocyte growth factor (HGF) is an angiogenic mitogen which stimulates migration in various cell types and has been shown to induce the production of nitric oxide (NO) in epithelial cells. Conflicting data exist on the effect of NO on endothelial cell migration. The aim of this study was to investigate a possible role for NO in HGF-stimulated endothelial cell motility. METHODS: The study was performed primarily using an endothelial cell line derived from adult human saphenous vein. Transient transfection experiments were additionally performed using an adult human coronary artery endothelial cell line. Nitric oxide synthase expression was examined by western blot analysis. Time-lapse digital image microscopy was used to measure cell motility. A DNA construct was used in transient transfections to over-express inducible nitric oxide synthase (iNOS) as an N-terminal fusion to enhanced green fluorescent protein (EGFP). RESULTS: HGF upregulated the expression of iNOS but not constitutive endothelial nitric oxide synthase (eNOS). Treatment of cells with the specific iNOS inhibitor 1400 W revealed that functional iNOS was required for HGF-stimulated endothelial cell motility. HGF-induced iNOS expression was partially abrogated in the presence of the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor LY294002, but not the Src kinase inhibitor, PP1. Endothelial cell motility increased significantly (P<0.0001) in the presence of the exogenous NO donor spermine-NO and cells expressing the iNOS-EGFP fusion protein exhibited significantly greater (P=0.0038) motility than those expressing EGFP alone. CONCLUSIONS: These combined data show that elevated NO production is sufficient to stimulate endothelial cell motility and link HGF and NO, both previously implicated in modulating motility, in a common signalling pathway.  相似文献   

20.
OBJECTIVES: Physical activity has been well known to benefit heart function. The improved autonomic nervous activity is considered to be mainly responsible for this beneficial effect. However, the precise mechanism behind the intrinsic myocardial responsiveness to exercise is still unclear. This study was designed to examine the effect of swim training on myocardial response to insulin with a special focus on the endogenous endothelial nitric oxide synthase (eNOS)-nitric oxide (NO) cascade. METHODS: Adult male Sprague-Dawley (SD) rats were subjected to a 10-week free-loading swim training (3 h/day, 5 days/week). Contractile response to insulin at the levels of cardiomyocytes and isolated perfused heart, myocardial glucose uptake and post-insulin receptor signaling cascades were evaluated. RESULTS: Swim training enhanced cardiac contractile response to insulin in cardiomyocytes and isolated perfused heart, respectively. The improved cardiac response was accompanied by facilitated insulin-stimulated glucose uptake, GLUT4 translocation and upregulation of Akt and eNOS expression (p<0.01). Treatment with insulin resulted in a 3.6- and 2.2-fold increase of eNOS phosphorylation (p<0.01), as well as a 3.0- and 1.9-fold increase of Akt phosphorylation in exercise and sedentary groups, respectively (p<0.01). In addition, exercise significantly facilitated insulin-induced myocardial NO production (p<0.01 vs. sedentary). Moreover, pretreatment with either LY294002, a phosphatidylinositol-3 kinase (PI-3K) inhibitor or L-NAME, a NOS inhibitor, abolished the exercise-induced sensitization of myocardial contractile response to insulin, insulin-induced NO production and phosphorylation of Akt and eNOS. CONCLUSION: These results demonstrate that swim training is capable of sensitizing myocardial contractile response to insulin via upregulation of Akt- and eNOS signaling cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号