首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
3.
One year ago, the radiology department at Ball Memorial Hospital, a 350-bed facility in Muncie, IN, was completely film-based. The need to support a new all-digital, 35-room emergency department (ED) hastened the facility's transition to a digital environment. Today, with the exception of mammography, the hospital's imaging services are now digital. To develop and implement the project, the hospital formed an internal implementation team. An independent consultant was also hired to evaluate the impact of these new technologies and to provide an estimated cost payback. After research, site visits, and vendor demonstrations, the hospital selected a single vendor for its picture archiving and communication system (PACS), digital radiography (DR), computed radiography (CR), and overall project management. The DR system was installed in the ED to provide digital image capture for a full range of trauma exams. The ED also initially began utilizing a Web-based PACS distribution originally implemented for after-hours teleradiology. The majority of the hospital's imaging studies are captured with 2 multi-cassette CR systems that serve 7 exam rooms in the radiology department. The hospital also installed remote operations panels to expedite entry of patient and exam information. Technologists readily embraced both CR and DR systems. The Web distribution system now transmits images to hospital-based computers and to 150 remote referring physicians. The PACS platform automatically e-mails key images and radiology reports to referring physicians. Authorized physicians can also request reports and images on an as-needed basis. The PACS vendor had previously performed multiple integrations with the radiology information system (RIS) vendor; the integration of PACS and RIS was extremely smooth. One of the critical components of a successful conversion is experienced, dedicated management. The hospital retained professional project management services to facilitate implementation and to ensure adequate training for all users.  相似文献   

4.
Why integrate PACS with the RIS? To improve workflow, of course, but what workflow? Much of the focus is on improving the flow of images for the radiologist, which is certainly a good thing to do, but what about the rest of the order process? Typical PACS system architecture begins with the HIS since this is where the correct patient demographic information and in many cases the orders originate. Correct patient and order information is sent from the HIS to the RIS using HL7 commands for Admission/Discharge/Transfer (ADT) and Order/Entry. HL7 is the communications protocol used in virtually all information systems. For the first step in communicating with PACS, patient and order information from the RIS is sent to a device called a PACS broker. This is necessary because most PACS systems do not support HL7 directly, and a translation is required. Images from each imaging modality are also sent to the broker using the DICOM standard. If an imaging modality does not support DICOM, then an additional box is used to convert the images to a DICOM file. The broker then sends completed DICOM files to the PACS for storage, distribution and viewing. That approach has worked well for the first stage of PACS utilization. However, experienced PACS users have identified the need to improve workflow, and many feel that closer communication with the RIS will solve many of the current limitations. This approach is sometimes called a "brokerless" solution but is probably better described as incorporating broker functions into the RIS. There are several potential advantages of incorporating the broker functions into the RIS: Access to all RIS information on patients, orders and results is available and can be used in many ways to improve workflow. Supporting all DICOM services directly from the RIS ensures that the latest and most complete information is always used. For example, DICOM Modality Worklists can be provided directly from the RIS, which guarantees that they are updated immediately. The RIS can manage the complete order workflow, not just images. License, implementation and support costs can be reduced by eliminating HL7 interfaces to an external broker. Managing workflow is the key to improved productivity and patient care from PACS. However, coordinated management of order workflow from the RIS and image workflow from the PACS is required to get the full benefit. The RIS has immediate and broad access to patient and order information. As a result, it is the natural place to take the lead in managing this coordinated workflow. While many older RIS and PACS systems are not yet capable of some of the integration features described above, several new systems are moving rapidly in that direction.  相似文献   

5.
目的:探讨应用医学影像存档与通信系统(picture archiving and communication system,PACS)在医院放射科工作流程优化中的作用。方法:将放射科数字成像设备纳入PACS系统,将传统放射科工作流程与应用PACS后工作流程比较。结果:应用PACS工作流程后减少工作步骤,缩短报告发出时间,降低错误率。结论:应用PACS后明显提高了放射科的工作效率,方便了医疗、教学、科研和会诊,提高了医院的社会效益和经济效益。  相似文献   

6.
Implementation of radiological information systems (RIS) and picture archiving and communicating systems (PACS) results in significant changes of workflow in a radiological department. Additional connection with flat-panel detectors leads to a shortening of the work process. RIS and PACS implementation alone reduces the complete workflow by 21-80%. With flatpanel technology the image production process is further shortened by 25-30%. The workflow-steps are changed from original 17-12 with the implementation of RIS and PACS and to 5 with the integrated use of flatpanels. This clearly recognizable advantages in the workflow need an according financial investment. Several studies could show that the capitalisation-factor calculated over eight years is positive, with a gain range between 5-25%. Whether the additional implementation of flatpanel detectors results also in a positive capitalisation over the years, cannot be estimated exactly, at the moment, because the experiences are too short. Particularly critical are the interfaces, which needs a constant quality control. Our flatpanel detector-system is fixed, special images--as we have them in about 3-5% of all cases--need still conventional filmscreen or phosphorplate-systems. Full-spine and long-leg examinations cannot be performed with sufficient exactness. Without any questions implementation of integrated RIS, PACS and flatpanel detector-system needs excellent training of the employees, because of the changes in workflow etc. The main profits of such an integrated implementation are an increase in quality in image and report datas, easier handling--there are almost no more cassettes necessary--and excessive shortening of workflow.  相似文献   

7.
HIS/RIS/PACS integration: getting to the gold standard   总被引:5,自引:0,他引:5  
Boochever SS 《Radiology management》2004,26(3):16-24; quiz 25-7
The technology for acquiring, storing, retrieving, displaying, and distributing images has advanced dramatically in recent years. The push is toward enterprise-wide image management solutions, where digital images from radiology, cardiology, and other "ologies" are seamlessly linked with information from clinical information systems and other databases, and they are accessed seamlessly from a single point of end-user interaction. The "gold standard" of system integration would provide the platform for improved workflow, patient throughput and patient safety, as well as decreased cost. Unfortunately, the gold standard remains elusive in most healthcare environments, even those with new systems. One of the earliest issues that plagued the progress of hospital information system/radiology information systems/picture archiving and communication systems (HIS/RIS/PACS) integration was a matter of language between Health Level-7 (HL7) and DICOM. This barrier was solved by the broker--a software and hardware device that accepts HL7 messages from the RIS then translates, or maps, the data to produce DICOM messages for transmission to the PACS. Technologist workflow requires patient and exam information from the RIS to flow to the modality. The broker provides support for this by taking advantage of the DICOM Modality Worklist (DMWL). Two primary problems are inherent in most brokered configurations. Workflow is driven by paper, and RIS information flows in 1 direction only, which leads to duplicative databases. Overcoming the limitations of HIS/RIS/PACS connectivity requires industry accepted communication protocols/rules. To facilitate this, the Integrating the Health Care Enterprise (IHE) initiative was developed. The goal of IHE is to provide end-users improved access to critical patient and clinical information across all systems within the healthcare delivery network. While the IHE initiative began to facilitate more efficient, predictable, and functional integration between disparate systems, vendors still had technology hurdles to overcome. System integration continues to be significantly hampered, not by technology limitations, but instead by business and political issues. In response to these challenges, several vendors have begun to offer consolidated RIS/PACS solutions and/or HIS/RIS/PACS solutions. Consequently, the prospect of the gold standard appears to be on the horizon. Single vendor consolidated systems are not, however, feasible for deployment in many healthcare organizations, and they are not necessarily the panacea.  相似文献   

8.
目的:总结开发与使用数字化影像工作站的经验,提出今后的改进与发展方向。方法:通过在普通微机上使用MEDASYS公司的DxMM软件及自行开发的放射信息系统(RIS)软件实现了与旧型号MR机的数字化连接,构建了科室水平的简易网络化工作环境。通过对4a来应用工作的总结,验证了本项工作的临床价值及经济效益,获得了有益的经验。结果:本套系统运行稳定,使用简单、方便,显加快了检查及诊断的速度,提高了患满意度。同时简化了日常工作流程,提高工作效率约25%,每年节约成本约25万元,取得了社会效益与经济效益的双丰收。结论:医疗工作的数字化是当代最前沿的一项实用技术.对提高工作效率、改善服务质量及提高经济效益有着极其重要的作用,是今后医学界需要加大投入人力、财力来尽快全面实施的关键项目。  相似文献   

9.
PROBLEM: This report describes the problems that can occur in the representation of the radiological workplace in a digital environment. On one hand the radiologist can sometimes access good equipment in "stand-alone" surroundings (CT, laser printer, workstations,...); on the other hand, the existing insufficient communication between different components is only rarely qualified to support the radiological workflow. This unsatisfactory framework handicaps the required clinic-wide distribution of radiological information. METHODS: From the beginning we defined user groups requiring different radiological data closely associated with specific hard- and software: The radiological workstation in the department for reporting and image processing. The demonstration workstation in wards/outpatient departments for clinicians involved in treatment. Standard PCs with access to the digital medical document for clinicians involved in treatment. At all workstations the medical as well as the legal unity of digital radiological images and the corresponding report is ensured. RESULTS: Only the first two user groups have unrestricted access to the RIS database and to the PACS archive. We have decided that the RIS should be the master of the RIS/PACS-System. For an effective master/slave relationship between RIS and PACS archive and PACS workstations we suggest to mark images and/or series of images. CONCLUSION: The third user group depends on the information exported by the radiologist from PACS. After the report is written and signed by the radiologist, the digital report is transferred from the RIS to the HIS. The report is automatically attached to these images. Authorized personnel at the wards and outpatient are able to read the combination of validated report and exported radiological images as part of the digital medical record with an intranet browser on standard PCs.  相似文献   

10.
11.
小型医学影像存储与传输系统的临床应用   总被引:14,自引:1,他引:13  
目的 探索小型医学图像存档与通讯系统(minimizing picture archiving and communication system,mini—PACS)在实际工作中的应用,逐步实现科室内的无胶片化管理。方法 建立基于PC机的局域网,连接CT、MR、数字胃肠机、DSA、激光相机等医学影像设备,整合数字图像网络(digital imaging network,DIN)和医学图像诊断系统(medical diagnostic imaging system,MDIS),组成放射科信息管理系统(radiology information system,RIS)。RIS系统通过其中1台安装双网卡的PC工作站与医院信息系统(hospital information system,HIS)相连。结果 系统在2年多的时间内得到连续使用,放射科信息管理系统得以实现和完善。在现有的数字化影像设备上实现了符合医学数字图像传输标准3.0(digital imaging communication in medicine,DICOM3.0)格式的图像采集、储存、传输、打印、浏览功能。图像和诊断报告信息通过Microsoft Access数据库管理,不同设备上保存的在线图像为3~6个月,所有图像用CD—R光盘刻录,作为离线永久保存,已有32700多份诊断报告存入数据库;HIS终端可有限制地从该系统获得图像和诊断信息。结论 mini—PACS系统投入和运行成本低、维护简单、性能可靠,可基本实现PACS的重要功能,在中、小医院具有良好的应用前景。  相似文献   

12.
13.
Due to a host of technological, interface, operational and workflow limitations, teleradiology and PACS/RIS were historically developed as separate systems serving different purposes. PACS/RIS handled local radiology storage and workflow management while teleradiology addressed remote access to images. Today advanced PACS/RIS support complete site radiology workflow for attending physicians, whether on-site or remote. In parallel, teleradiology has emerged into a service of providing remote, off-hours, coverage for emergency radiology and to a lesser extent subspecialty reading to subscribing sites and radiology groups.When attending radiologists use teleradiology for remote access to a site, they may share all relevant patient data and participate in the site's workflow like their on-site peers. The operation gets cumbersome and time consuming when these radiologists serve multi-sites, each requiring a different remote access, or when the sites do not employ the same PACS/RIS/Reporting Systems and do not share the same ownership. The least efficient operation is of teleradiology companies engaged in reading for multiple facilities. As these services typically employ non-local radiologists, they are allowed to share some of the available patient data necessary to provide an emergency report but, by enlarge, they do not share the workflow of the sites they serve.Radiology stakeholders usually prefer to have their own radiologists perform all radiology tasks including interpretation of off-hour examinations. It is possible with current technology to create a system that combines the benefits of local radiology services to multiple sites with the advantages offered by adding subspecialty and off-hours emergency services through teleradiology. Such a system increases efficiency for the radiology groups by enabling all users, regardless of location, to work “local” and fully participate in the workflow of every site. We refer to such a system as SuperPACS.  相似文献   

14.
15.
AIM: The development of new diagnostic techniques and the implementation of a modern quality control management system requires the continuous adaptation of existing data processing tools to the nuclear medicine diagnostic workflow. Furthermore, PACS connected to HIS facilitates and enhances the transfer of data and pictures, and satisfies the legal requirements for data retention as regulated by law. Therefore, the aim of this work is to present the architecture, structure and results of such a system newly installed in a department of nuclear medicine. METHODS: Initially, the nuclear medicine workflow was carefully analyzed and each step was correlated to the corresponding module. The standard SAP R/3 and IS-H/IS-H(*)med based software used for patient administration at the University of Regensburg Hospital was adapted to the needs of the Nuclear Medicine Department. The networking of the imaging systems was done by integration of a PACS. Finally, the PACS was connected to the HIS to allow the attachment of images to the medical report. RESULTS, CONCLUSION: By connecting the HIS to the nuclear medicine PACS, the workflow was significantly improved. The data management sequence starting at the reception desk, continuing through the nuclear medical examination, to the physician's final written and image report is clearly structured. Although high demands exist on technical support and administration the integration of PACS and HIS into the nuclear medicine workflow leads to enhanced efficiency and reduction in hospital costs. Patient and data management are considerably improved in this way.  相似文献   

16.
The installation of a Radiology Information System (RIS) connected to a Hospital Information System (HIS) and a Picture Archiving and Communications System (PACS) seems mandatory for a nuclear medicine department in order to guarantee a high patient throughput. With these systems a fast transmission of reports, images to the in- and out-patients' wards and private practitioners is realized. Therefore, since April 2000, at the department of nuclear medicine of the university of Würzburg a completely DICOM based PACS has been implemented in addition to the RIS. With this system a DICOM based workflow is realized throughout the department of nuclear medicine for reporting and archiving. The PACS is connected to six gamma-cameras, a PET scanner, a bone densitometry system and an ultrasound device. The volume of image data archived per month is 4 GByte. Patient demographics are provided to the modalities via DICOM-Worklist. With these PACS components a department specific archive purely based on DICOM can be realized. During the installation process problems occurred mainly because of the complex DICOM standard for nuclear medicine. Related to that is the problem that most of the software implementations still contain bugs or are not adopted to the needs of a nuclear medicine department (particularly for PET). A communication software for the distribution of nuclear medicine reports and images based on techniques used for the worldwide web is currently tested.  相似文献   

17.
放射科工作流集成的应用实践   总被引:2,自引:1,他引:1  
探讨综合性大型医院RIS/PACS建设中放射科工作流集成方案。采用I HE radiology工作流相关的4个集成模式,并根据国内需求优化应用,达到改善预定工作流、报告工作流、简化纠错流程、提高工作诊疗效率及质量的要求。重视I HE radiology集成模式应用,兼顾本土化需求,完善数字化医疗影像工作环境。  相似文献   

18.
Memorial Hospital is located in-North Conway, New Hampshire. Year round, the 35-bed hospital serves mainly tourists and retirees to the area. The imaging department wanted to integrate its services within an existing community network, meet the needs of a transient population and resolve staff utilization and storage problems. Conversion from film to digital in the radiology department took advantage of digital x-ray and PACS. Since the hospital was already using digital technology for CT, MR, ultrasound and fluoroscopy, it made sense to include plain film imaging in the digitization process Memorial Hospital faced a number of challenges. Those in decision-making positions lacked a general knowledge about PACS, and, in particular, about PACS in similarly sized facilities. The hospital also lacked experience working with vendors. A timeline was critical as Memorial Hospital prepared for winter, its busiest season. The facility decided on a phased-in project with no immediate HIS/RIS interface, and computerized radiography with hard-copy films was implemented immediately. The facility has made the transition from a conventional imaging department to a PACS environment. It attributes its success to the way it involved those who would be affected by any future changes in the planning and decision-making processes. Memorial Hospital expects to expand its services and streamline its archival capabilities in the near future.  相似文献   

19.
During peak hours of operation, it was not uncommon for the radiology department at St. Luke's Episcopal Hospital in Houston, Texas, to have a backlog of six to ten patients. While some of this was due to competing schedules from the emergency department (ED) and inpatients, the major problem was an inefficient workflow, especially for emergency department patients. Our staff in the radiology department worked with the hospital management to include plans for a new radiology room in an ED renovation project. In designing the new radiology room the most important issues under consideration were the physical location of the room and the type of radiography system to be installed. With plans to implement PACS, we evaluated computed radiography and digital radiography options. At St. Luke's, we had had our first experience with digital radiography after the purchase of a dedicated digital chest system. As a beta test site for the manufacturer, we had an opportunity to test--what was at the time--a new digital radiography system. The powerful impact of digital radiography became most evident by the decreased patient backlog. Even without PACS, workflow became dramatically more efficient. Images now are available for review within seconds after exposure, since there are no films to process. This has reduced our average exam time from ten minutes to one and a half minutes, not including patient transport time. The efficiency demonstrated with the digital chest system provided evidence that digital systems could handle significantly more patients than computed radiography or screen-film systems, without a compromise in image quality. Therefore, we decided to put a digital radiography system in the new ED radiology room. We estimate that the new unit will pay for itself in less than three years.  相似文献   

20.
PACS support: the radiology approach   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号