首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence of events involved in the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs) is not yet known. Using a murine scrapie model in which neurodegeneration in the hippocampus is restricted to CA2, we show that pyramidal neuron damage and death by an apoptotic mechanism occur early in the incubation period, prior to the appearance of CA2 disease-specific accumulation of PrP and the onset of clinical disease. We suggest that the initial hippocampal pathological event in this model is dendritic dysfunction and activation of an apoptotic pathway rather than PrP accumulation.  相似文献   

2.
3.
During the neurodegenerative process in several brain diseases, oxidative stress is known to play important roles in disease severity and evolution. Although early events of stress, such as increased lipid peroxidation and decreased superoxide dismutase, are known to characterize early onsets of these diseases, little is known about the events that participate in maintaining the chronic evolving phase influencing the disease progression in neurons. Here, we used differentiated PC12 cells to identify premitochondrial and postmitochondrial events occurring during the oxidative stress cascade leading to apoptosis. Our data indicate that an acute and strong oxidative impulse (500 μM H2O2, 30 min) can induce, in this model, a 24‐hr self‐evolving stress, which advances from a premitochondrial phase characterized by lysosomes and cathepsin B and D translocations to cytosol and early mitochondrial membrane hyperpolarization. This phase lasts for about 5 hr and is followed by a postmitochondrial phase distinguished by mitochondrial membrane depolarization, reactive oxygen species increase, caspase‐9 and caspase‐3 activations, and apoptosis. Inhibition of cathepsins B and D suggests that cells can be protected at the premitochondrial phase of stress evolution and that new cathepsins regulators, such as glycosaminoglycans mimetics, can be considered as new therapeutic prototypes for neurodegeneration. Insofar as early oxidative stress markers have been related to the early onset of neurodegeneration, strategies protecting cells at the premitochondrial phase of oxidative stress may have important therapeutic applications. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Although there is a sizable amount of research focusing on adult neural progenitor cells (NPCs) as a therapeutic approach for many neurodegenerative diseases, including multiple sclerosis, little is known about the pathways that govern NPC survival and apoptosis. Fas, a member of the death receptor superfamily, plays a well‐characterized role in the immune system, but its function in neural stem cells remains uncertain. Our study focuses on the effects of Fas on NPC survival in vitro. Activation of Fas by recombinant Fas ligand (FasL) did not induce apoptosis in murine NPCs in culture. In fact, both an increase in the amount of viable cells and a decrease in apoptotic and dying cells were observed with FasL treatment. Our data indicate that FasL‐mediated adult NPC neuroprotection is characterized by a reduction in apoptosis, but not increased proliferation. Further investigation of this effect revealed that the antiapoptotic effects of FasL are mediated by the up‐regulation of Birc3, an inhibitor of apoptosis protein (IAP). Conversely, the observed effect is not the result of altered caspase activation or FLIP (Fas‐associated death domain‐like interleukin‐1beta‐converting enzyme inhibitory protein) up‐regulation, which is known to inhibit caspase‐8‐mediated cell death in T cells. Our data indicate that murine adult NPCs are resistant to FasL‐induced cell death. Activation of Fas increased cell survival by decreasing apoptosis through Birc3 up‐regulation. These results describe a novel pathway involved in NPC survival. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The trisomy of human chromosome 21 (Down syndrome) is the leading genetic cause of learning difficulties in children, and predisposes this population to the early onset of the neurodegeneration of Alzheimer's disease. Down syndrome is associated with increased interferon (IFN) sensitivity resulting in unexpectedly high levels of IFN inducible gene products including Fas, complement factor C3, and neuronal HLA I which could result in a damaging inflammatory reaction in the brain. Consistent with this possibility, we report here that the trisomy 16 mouse fetus has significantly increased whole brain IFN-gamma and Fas receptor immunoreactivity and that cultured whole brain trisomy 16 mouse neurons have increased basal levels of caspase 1 activity and altered homeostasis of intracellular calcium and pH. The trisomic neurons also showed a heightened sensitivity to the increase in both Fas receptor levels and caspase 1 activity we observed when IFN-gamma was added to the neuron culture media. Because of the autoregulatory nature of IFN activity, and the IFN inducing capability of caspase-1-activated cytokine activity, our data argue in favor of the possibility of an interferon-mediated, self-perpetuating, inflammatory response in the trisomy brain that could subserve the loss of neuron viability seen in this trisomy 16 mouse model for Down syndrome.  相似文献   

6.
7.
Neurodegenerative pathology is typical of the transmissible spongiform encephalopathies (TSEs), and is thought to underlie clinical disease. Some morphometric studies have shown early focal neurone loss, but the full extent of TSE induced neuronal loss in the central nervous system is not known, and can only be accurately estimated using intensive morphometric techniques. We have used a murine scrapie model in which we determined the levels of N-acetyl aspartate (NAA), a putative neuronal marker, by both high-performance liquid chromatography and high resolution, proton magnetic resonance spectroscopy in samples taken sequentially from the hippocampus. This scrapie model develops severe neuronal loss in the hippocampus, and the NAA levels showed a significant positive correlation with our previous morphometric estimates of neurone number. NAA measurement may therefore provide a practical alternative to intensive morphometric techniques in the investigation of neurodegeneration in the TSEs.  相似文献   

8.
R. Bolea, P. Hortells, I. Martín‐Burriel, A. Vargas, B. Ryffel, M. Monzón and J. J. Badiola (2010) Neuropathology and Applied Neurobiology 36, 300–311
Consequences of dietary manganese and copper imbalance on neuronal apoptosis in a murine model of scrapie Aims: Copper and manganese levels are altered in mice both lacking PrPc and prion‐infected brains. The aim of this study was to analyse the effects of manganese and copper imbalance on neuronal apoptosis in a scrapie‐infected Tga20 mouse model. Methods: Immunoreactivities for the apoptotic proteins Bax and active caspase‐3 were evaluated in nine regions of the brain of scrapie‐infected and control Tga20 mice treated with one of several diets: depleted cooper (?Cu), loaded manganese (+Mn), depleted copper/loaded manganese (?Cu+Mn) and regular diet. Immunohistochemical determination of NeuN was used to detect possible neuronal loss. Results: Intracellular Bax detection was significantly decreased in animals fed with modified diets, particularly in those treated with copper‐depleted diets. A decrease in active caspase‐3 was primarily observed in animals fed with enhanced manganese diets. Our results show that the ?Cu, ?Cu+Mn and +Mn diets protected against apoptosis in scrapie‐infected mice. However, NeuN immunolabelling quantification revealed that no diet was sufficient to arrest neuronal death. Conclusions: With regard to apoptosis induction, the response of Tga20 mice to prion infection was similar to that reported for other mice models. Our results demonstrate the neuroprotective effects of –Cu, ?Cu+Mn and +Mn diets in a murine model of scrapie. However, neuronal death induced by infection with prions seems to be independent of apoptosis marker signalling. Moreover, copper‐modified diets were neuroprotective against the possible toxicity of the prion transgene in Tga20 control and infected mice even though manganese supplementation could not counteract this toxicity.  相似文献   

9.
Caspase 3 activation has been linked to the acute neurotoxic effects of central nervous system damage, as in traumatic brain injury or cerebral ischaemia, and also to the early events leading to long-term neurodegeneration, as in Alzheimer's disease. However, the precise mechanisms activating caspase 3 in neuronal injury are unclear. RhoB is a member of the Rho GTPase family that is dramatically induced by cerebral ischaemia or neurotrauma, both in preclinical models and clinically. In the current study, we tested the hypothesis that RhoB might directly modulate caspase 3 activity and apoptotic or necrotic responses in neurons. Over-expression of RhoB in the NG108-15 neuronal cell line or in cultured corticohippocampal neurons elevated caspase 3 activity without inducing overt toxicity. Cultured corticohippocampal neurons from RhoB knockout mice did not show any differences in sensitivity to a necrotic stimulus - acute calcium ionophore exposure - compared with neurons from wild-type mice. However, corticohippocampal neurons lacking RhoB exhibited a reduction in the degree of DNA fragmentation and caspase 3 activation induced by the apoptotic agent staurosporine, in parallel with increased neuronal survival. Staurosporine induction of caspase 9 activity was also suppressed. RhoB knockout mice showed reduced basal levels of caspase 3 activity in the adult brain. These data directly implicate neuronal RhoB in caspase 3 activation and the initial stages of programmed cell death, and suggest that RhoB may represent an attractive target for therapeutic intervention in conditions involving elevated caspase 3 activity in the central nervous system.  相似文献   

10.
The protective actions of estrogen have been well evaluated in various models of neurodegeneration. These neuroprotective mechanisms may include a direct neuronal antiapoptotic effect as estrogen modulates actions of key regulators of the mitochondrial/intrinsic apoptotic cascade. We tested the ability of estrogen to protect against apoptotic signaling in cortical cell cultures exposed to Tat 1‐86 (50 nM), and additionally, whether the beneficial actions of estrogen involved an estrogen receptor sensitive mechanism. We demonstrated that estrogen pretreatment significantly delayed Tat‐induced cell death in primary cortical cultures. Pretreatment with 17β‐estradiol (10 nM) attenuated the increased expression of antiapoptotic protein Bcl‐2, proapoptotic protein Bax and activation of caspases linked to mitochondrial apoptotic pathway following Tat exposure. In addition, select components of apoptotic pathway signaling appear more sensitive to estrogen receptor (ER) activation, as the addition of ER antagonist ICI 182780 reversed estrogen downregulation of Bax and caspase 3, while estrogen effects on Tat‐induced Bcl‐2 and caspase 9 expression were maintained. Moreover, the addition of preferential ERα and ERβ antagonists (MPP dihydrochloride and PHTPP) indicated that estrogen effects on caspase 3 may be mediated by both receptor subtypes, whereas, was more involved in estrogen effects on Bax. Our data suggest that estrogen intervenes against HIV‐1 Tat‐induced cortical neuronal dysfunction via intersecting mitochondrial apoptotic pathway signaling in an ER‐sensitive manner. Synapse 64:829–838, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Experimental autoimmune encephalomyelitis (EAE), a widely recognized animal model of multiple sclerosis (MS), is highly useful for studying inflammation, demyelination, and neurodegeneration in the central nervous system (CNS). EAE exhibits many similarities with MS, which is a chronic inflammatory disease affecting CNS white matter in humans. Various studies have indicated that EAE is a particularly useful animal model for understanding both the mechanisms of immune-mediated CNS pathology and also the progressive clinical course of MS. Demyelination and axonal dysfunction have previously been shown in MS and EAE but current evidences indicate that axonal damage and neuron death also occur, demonstrating that these diseases harbor a neurodegenerative component. Recent studies also have shown that the activation of calpain and caspase pathways contribute to the apoptotic death of oligodendrocytes and neurons, promoting the pathological events leading to neurological deficits. Apoptosis is involved in the disease-regulating as well as in the disease-promoting processes in EAE. This review discusses the major involvement of calpain and caspase pathways in causing demyelination and neurodegeneration in EAE animals.  相似文献   

12.
Kim HS  Park CK 《Brain research》2005,1057(1-2):17-28
Neuronal cells undergo apoptosis when deprived of neurotrophic factors due to injury, trauma, or neurodegenerative disease. This study examined cell death in the retina after chronic elevation of intraocular pressure (IOP) in an experimental rat model of human glaucomatous disease. Three episcleral veins on the ocular surface of rats were cauterized. Activation of several cell death programs represented by Fas ligand, FADD (Fas Associated Death Domain/Mort1) and the caspase cascade (caspase-8 and -3) and survival programs represented by phosphorylated protein kinase B (PKB/Akt), Bcl-2 associated death domain (BAD), and cAMP responsive element binding protein (CREB) were examined using immunohistochemistry and Western blotting. Following injury, two major events occurred simultaneously in the retina: activation of programmed cell death pathways and activation of survival mechanisms to maintain the cellular homeostasis of the retina. At the later stage of injury, markers of an activated cell death program appeared to be concentrated in the retinal ganglion cells. In conclusion, we suggest that endogenous cell survival factors triggered at the early stage of injury play a critical role in control of the death or survival of retinal ganglion cells and that the manipulation of this decision phase is one of the therapeutic targets for glaucoma.  相似文献   

13.
Previously, we identified proteins released from degenerating cultured cortical neurons as novel cerebrospinal fluid (CSF) markers for acute brain injury in the rat. Here, we investigate relationships between CSF changes in these novel markers and the severity of acute ischemic brain injury. Rats underwent sham surgery or 3,6,8, or 10 mins of transient global forebrain ischemia. At 48 h after insult, CSF levels of 14-3-3beta, 14-3-3zeta, and calpain cleavage products of alpha-spectrin and tau were quantified. Regional acute neurodegeneration was assessed by Fluoro-Jade and silver impregnation staining, and confirmed by immunohistochemical detection of the activation of calpain and caspase, cysteine proteases involved in neurodegenerative signaling. Ischemic neurodegeneration and activation of at least one cysteine protease were observed in the hippocampal CA1 sector, dentate hilus, caudate nucleus, parietal cortex, thalamus, and inferior colliculus. As expected, the total number of degenerating cells increased as a function of ischemia duration. Cerebrospinal fluid levels of the four marker proteins increased markedly after ischemia, and rose in proportion with its duration. Irrespective of the length of ischemia, CSF levels of the neuron-enriched proteins 14-3-3beta and calpain-cleaved tau correlated significantly with the magnitude of acute ischemic neurodegeneration. Additionally, CSF levels of the two proteins correlated with one another. These results show that certain proteins released from degenerating neurons are CSF markers for brain injury in the rat whose levels reflect the severity of acute ischemic neurodegeneration. Measurement of 14-3-3beta and calpain-cleaved tau may be useful for the minimally invasive diagnosis, prognosis, and therapeutic evaluation of acute brain damage.  相似文献   

14.
Abnormal synaptic protein expression and cell death in murine scrapie   总被引:6,自引:0,他引:6  
Reduced expression of synaptophysin p38, synaptic-associated protein of molecular weight 25,000 (SNAP-25), syntaxin-1, synapsin-1, and alpha- and beta-synuclein, matching the distribution of spongiform degeneration, was found in the neurological phase of scrapie-infected mice. In addition, synaptophysin and SNAP-25 were accumulated in isolated neurons, mainly in the thalamus, midbrain and pons, and granular deposits of alpha- and beta-synuclein were present in the neuropil of the same areas. No modifications in the steady state levels of Bcl-2, Bax, Fas and Fas ligand were observed following infection. Yet antibodies against the c-Jun N-terminal peptide, which cross-react with products emerging after caspase-mediate proteolysis, recognize coarse granular deposits in the cytoplasm of reactive microglia. In situ end-labeling of nuclear DNA fragmentation showed positive nuclei with extreme chromatin condensation in the thalamus, pons, hippocampus and, in particular, the granular layer of the cerebellum. More importantly, expression of cleaved caspase-3, a major executioner of apoptosis, was seen in a few cells in the same regions, thus indicating that cell death by apoptosis in scrapie-infected mice is associated with caspase-3 activation. The present findings support the concept that synaptic pathology is a major substrate of neurological impairment and that caspase-3 activation may play a pivotal role in apoptosis in experimental scrapie. However, there is no correlation between decreased synaptic protein expression and caspase-3-associated apoptosis, which suggests that in addition to abnormal prion protein deposition, there may be other factors that distinctively influence synaptic vulnerability and cell death in murine scrapie.  相似文献   

15.
Mild hypothermia is considered to have a protective effect during ischemic neuronal cell death. The present study provides experimental evidence for this beneficial role of mild hypothermia using reversible middle cerebral artery occlusion (MCAo) in a Sprague–Dawley (SD) rat model. MCAo was induced in rats for 1 h followed by reperfusion at different periods. Hematoxylin–eosin (HE) staining in normothermic (NT) 37°C and hypothermic (HT) 33°C groups of rats confirmed cerebral infarcts. The mean per cent infarct area was significantly reduced in the HT group of rats. Immunohistochemical analysis was done using anti‐Fas and caspase‐3 antibodies. The immunohistochemical expression of Fas and caspase‐3 was demonstrable as early as 5 h after reperfusion, but the expression pattern maximized at 24 h after reperfusion. The expression of Fas and caspase‐3 proteins showed a clear decrease in the HT group over the NT group. In situ detection of DNA fragmentation was done using the terminal deoxy‐nucleotidyl transferase‐mediated dUTP‐biotin nick end‐ labeling method (TUNEL). TUNEL‐positive cells were first observed at 5 h after reperfusion and progressively increased by 24 h. A higher number of TUNEL‐positive cells was found in the NT group, but they were significantly decreased in the HT group. Further, DNA fragmentation was confirmed by size fractionation in agarose gel. These findings demonstrate a positive relation between the expression of Fas, caspase‐3 and TUNEL‐positive cells. Mild expression of Fas and caspase‐3 proteins and a reduced number of TUNEL‐positive cells in the HT group is clear evidence for the protective role of hypothermia in ischemia‐induced cell death.  相似文献   

16.
The experimental and clinical study of degenerative brain disorders would benefit from new surrogate markers for brain damage. To identify novel candidate markers for acute brain injury, we report that rat cortical neurons release over 60 cytoskeletal and other proteins, as well as their proteolytic fragments into the medium during neuronal death. The profiles of released proteins differ for necrosis and apoptosis, although a subset of proteins is released generally during neurodegeneration. The value of this approach was established by immunodetection of the released proteins 14-3-3 zeta and 14-3-3 beta, as well as calpain and caspase derivatives of tau and alpha-spectrin in cerebrospinal fluid (CSF) following traumatic brain injury (TBI) or transient forebrain ischemia in the rat. These results indicate that proteins and their proteolytic fragments released from degenerating neurons are cerebrospinal fluid markers for acute brain damage and suggest that efflux of proteins from the injured brain may reflect underlying mechanisms for neurodegeneration.  相似文献   

17.
Evidence for apoptosis in the fetal Down syndrome brain.   总被引:3,自引:0,他引:3  
In Down syndrome, enhanced apoptosis (programmed cell death) may play a role in the pathogenesis of characteristic early mental retardation and precocious neurodegeneration of Alzheimer type. Various apoptosis-associated proteins (Bax, Bcl-2, Fas, p53, Hsp70, neuronal apoptosis inhibitory protein-like immunoreactivity) were investigated in four different cortical regions and the cerebellum of one fetal Down syndrome (35 weeks' gestation) postmortem brain sample compared with a control brain sample. The most impressive finding was an at least fivefold elevation of Bax protein together with decreased Bcl-2 values in all Down syndrome cerebral regions investigated. In addition, antiapoptotic, presumably caspase-inhibitory, principles like heat shock protein 70 and neuronal apoptosis inhibitory protein were also reduced. Whereas Fas protein, an important member of receptor-mediated apoptosis, was inconsistently altered, a rather surprising finding was reduced proapoptotic, regulatory protein p53 in four of five regions. The findings are in good agreement with the proposed role of the Bcl-2 protein family in regulating developmental (naturally occurring) apoptotic neuronal death and further suggest that developmental apoptosis may be inappropriately commandeered by so far undefined pathologic processes in Down syndrome.  相似文献   

18.
Oxidative stress has been shown to be involved in the pathogenesis of neurodegenerative diseases including prion diseases. Although a growing body of evidence suggests direct involvement of oxidative stress in the pathogenesis of prion diseases, it is still not clear whether oxidative stress is a causative early event in these conditions or a secondary phenomenon commonly found in the progression of neurodegenerative diseases. Using a mouse scrapie model, we assessed oxidative stress in the brain at various stages of the disease progression and observed significantly increased concentration of lipid peroxidation markers, malondialdehyde and 4-hydroxyalkenals, and mRNA level of an oxidative stress response enzyme, heme oxygenase-1, at early preclinical stages of scrapie. The changes preceded dramatic synaptic loss demonstrated by immunohistochemical staining of a synaptic protein, synaptophysin. These findings imply that the brain undergoes oxidative stress even from an early stage of prion invasion into the brain. Given the well-known deleterious effects of reactive-oxygen-species-mediated damage in the brain, it is considered that the oxidative stress at the preclinical stage of prion diseases may predispose the brain to neurodegenerative mechanisms that characterize the diseases.  相似文献   

19.
Recent studies have suggested that autoimmune inflammation elicited in the central nervous system (CNS) is subsided by apoptotic cell death of inflammatory cells. To elucidate the molecular mechanism of apoptosis of infiltrating T and other cells occurring in the CNS during autoimmune encephalomyelitis, we determined the type of apoptotic cells and the localization of apoptosis-related molecules (Fas, FasL, Bax, Bcl-2 and active caspase 3) by immunohistochemistry. Double labeling with the TUNEL method and cell-type markers showed that infiltrating T cells and microglia/macrophages underwent apoptosis, while astrocytes and neurons did not. Staining for apoptosis-related molecules revealed that infiltrating T cells and microglia/macrophages, but not astrocytes and neurons, expressed both Fas-FasL and Bax. The distribution and cell type of active caspase 3-positive cells were essentially the same as those of TUNEL-positive cells. These findings suggest that coexpression of Fas/FasL and Bax is closely associated with apoptotic cell death of infiltrating T cells and microglia in the CNS. Furthermore, astrocytes which express Fas and FasL, but not Bax, may play an important role in regulating inflammation in the CNS by inducing apoptotic cell death of infiltrating T cells and microglia, both of which have an inflammation-promoting nature.  相似文献   

20.
Kim NH  Park SJ  Jin JK  Kwon MS  Choi EK  Carp RI  Kim YS 《Brain research》2000,884(1--2):98-103
Scrapie is a transmissible neurodegenerative disease of sheep and goats. The neuropathological changes include vacuolation, astrocytosis, the development of amyloid plaques in some instances, and neuronal loss. The mechanisms involved in neuronal cell death in scrapie are not known. Recently, we reported the presence of oxidative stress in the brains of scrapie-infected animals and suggested that this is the main mechanism that induces neuronal cell loss. It is known that oxidative stress induced by free radicals is associated with iron accumulation; this association led to an examination of the levels of iron (total iron, Fe(2+) and Fe(3+)) in the brains of control and scrapie-infected mice by biochemical methods. In the scrapie-infected group, both the level of total iron and the Fe(3+) level were significantly increased in cerebral cortex, striatum, and brainstem as compared to the values in the control group. A shift in the ratio of Fe(2+)/Fe(3+) was observed in the same regions of infected mice. Additionally, in this scrapie model, we confirmed the presence of oxidative stress, as evidenced by the increase of free malondialdehyde. These results suggest that iron metabolism is changed and that iron-induced oxidative stress partly contributes to neurodegeneration in scrapie infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号