首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Both brain injury and tacrolimus have been reported to promote the regeneration of injured peripheral nerves. In this study, before transection of rat sciatic nerve, moderate brain contusion was (or was not) induced. After sciatic nerve injury, tacrolimus, an immunosup-pressant, was (or was not) intraperitoneally administered. At 4, 8 and 12 weeks after surgery, Masson's trichrome, hematoxylin-eosin, and toluidine blue staining results revealed that brain injury or tacrolimus alone or their combination alleviated gastrocnemius muscle atrophy and sciatic nerve fiber impairment on the experimental side, simultaneously improved sciatic nerve function, and increased gastrocnemius muscle wet weight on the experimental side. At 8 and 12 weeks after surgery, brain injury induction and/or tacrolimus treatment increased action potential amplitude in the sciatic nerve trunk. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive neurons in the anterior horn of the spinal cord was greatly increased. Brain injury in combination with tacrolimus ex-hibited better effects on repair of injured peripheral nerves than brain injury or tacrolimus alone. This result suggests that brain injury in combination with tacrolimus promotes repair of peripheral nerve injury.  相似文献   

2.
In this study,we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve.BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tuberosity.The successfully generated model mice were treated with 10,5,or 2.5 mg/kg ursolic acid via intraperitoneal injection.Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1-4 weeks after sciatic nerve injury,and significantly decreased at 8 weeks.As such,ursolic acid has the capacity to significantly increase S100 protein expression levels.Real-time quantitative PCR showed that S100 mRNA expression in the L4-6 segments on the injury side was increased after ursolic acid treatment.In addition,the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid.Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid.10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid.Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury.  相似文献   

3.
Scar formation at a site of nerve injury can cause a mechanical barrier to axonal regeneration and lead to the development of multiple axonal sprouts to form a neuroma. We have investigated the hypothesis that the application of a scar-preventing agent to a nerve repair site would enhance regeneration of the nerve and reduce neuroma formation. The left sciatic nerve was exposed under general anaesthesia in 18 adult Sprague-Dawley rats. In 12 animals, the nerve was sectioned and immediately re-approximated using four epineurial sutures, and in 6 of these animals neutralising antibodies to transforming growth factor (TGF)-beta1 and TGF-beta2 were injected into and around the repair site. The six other animals acted as controls. After 7 weeks, the outcome was assessed by recording compound action potential (CAP) ratios, measuring collagen levels using picrosirius red staining, and counting the number of myelinated axons proximal and distal to the repair. After repair alone, the mean percentage of area of staining (PAS) for collagen within the nerve had significantly increased. However, after repair with the administration of antibodies, the PAS was not significantly different from that in the sham controls. After administration of antibodies, the CAP ratios were significantly smaller than in controls but not after repair alone. In both nerve injury groups, the myelinated fibre counts were significantly increased distal to the injury site, but there was no difference between these two groups. We conclude that administration of antibodies to TGF-beta1 and TGF-beta2 reduced scar formation at the repair site but did not enhance regeneration of the nerve or reduce the development of multiple axonal sprouts.  相似文献   

4.
Neutrophil peptide 1 belongs to a family of peptides involved in innate immunity. Continuous intramuscular injection of neutrophil peptide 1 can promote the regeneration of peripheral nerves, but clinical application in this manner is not convenient. To this end, the effects of a single intraoperative administration of neutrophil peptide 1 on peripheral nerve regeneration were experimentally observed. A rat model of sciatic nerve crush injury was established using the clamp method. After model establishment, a normal saline group and a neutrophil peptide 1 group were injected with a single dose of normal saline or 10 μg/mL neutrophil peptide 1, respectively. A sham group, without sciatic nerve crush was also prepared as a control. Sciatic nerve function tests, neuroelectrophysiological tests, and hematoxylin-eosin staining showed that the nerve conduction velocity, sciatic functional index, and tibialis anterior muscle fiber cross-sectional area were better in the neutrophil peptide 1 group than in the normal saline group at 4 weeks after surgery. At 4 and 8 weeks after surgery, there were no differences in the wet weight of the tibialis anterior muscle between the neutrophil peptide 1 and saline groups. Histological staining of the sciatic nerve showed no significant differences in the number of myelinated nerve fibers or the axon cross-sectional area between the neutrophil peptide 1 and normal saline groups. The above data confirmed that a single dose of neutrophil peptide 1 during surgery can promote the recovery of neurological function 4 weeks after sciatic nerve injury. All the experiments were approved by the Medical Ethics Committee of Peking University People's Hospital, China(approval No. 2015-50) on December 9, 2015.  相似文献   

5.
The increase in neurotrophic factors after craniocerebral injury has been shown to promote fracture healing. Moreover, neurotrophic factors play a key role in the regeneration and repair of peripheral nerve. However, whether craniocerebral injury alters the repair of peripheral nerve injuries remains poorly understood. Rat injury models were established by transecting the left sciatic nerve and using a free-fall device to induce craniocerebral injury. Compared with sciatic nerve injury alone after 6–12 weeks, rats with combined sciatic and craniocerebral injuries showed decreased sciatic functional index, increased recovery of gastrocnemius muscle wet weight, recovery of sciatic nerve ganglia and corresponding spinal cord segment neuron morphologies, and increased numbers of horseradish peroxidase-labeled cells. These results indicate that craniocerebral injury promotes the repair of peripheral nerve injury.  相似文献   

6.
Previous studies have shown that exogenous gangliosides promote nervous system regeneration and synapse formation.In this study,10 mm sciatic nerve segments from New Zealand rabbits were thawed from cryopreservation and were used for the repair of left sciatic nerve defects through allograft bridging.Three days later,1 m L ganglioside solution(1 g/L) was subcutaneously injected into the right hind leg of rabbits.Compared with non-injected rats,muscle wet weight ratio was increased at 2–12 weeks after modeling.The quantity of myelinated fibers in regenerated sciatic nerve,myelin thickness and fiber diameter were elevated at 4–12 weeks after modeling.Sciatic nerve potential amplitude and conduction velocity were raised at 8 and 12 weeks,while conduction latencies were decreased at 12 weeks.Experimental findings indicate that ganglioside can promote the regeneration of sciatic nerve defects after repair with cryopreserved peripheral nerve allografts.  相似文献   

7.
Purpose : The purpose of this study was to explore and discuss the effects of 660‐nm gallium–aluminum–arsenide low‐energy laser (GaAlAs LEL) irradiation on neural regeneration after acellular nerve allograft repair of the sciatic nerve gap in rats. Methods : Eight male and female Sprague–Dawley rats were used as nerve donors, and 32 healthy Wistar rats were randomly divided into four groups: normal control group, acellular rat sciatic nerve (ARSN) group, laser group, and autograft group. Twelve weeks after surgery, nerve conduction velocity, restoration rate of tibialis anterior wet muscle weight, myelinated nerve number, and calcitonin gene‐related peptide (CGRP) protein and mRNA expression of the spinal cord and muscle at the injury site were quantified and statistically analyzed. Results : Compared with the ARSN group, laser therapy significantly increased nerve conduction velocity, restoration rate of tibialis anterior wet muscle weight, myelinated nerve number, and CGRP protein and mRNA expression of the L4 spinal cord at the injury site. Conclusions : These findings demonstrate that 660‐nm GaAlAs LEL therapy upregulates CGRP protein and mRNA expression of the L4 spinal cord at the injury site and increases the rate of regeneration and target reinnervation after acellular nerve allograft repair of the sciatic nerve gap in rats. Low‐energy laser irradiation may be a useful, noninvasive adjunct for promoting nerve regeneration in surgically induced defects repaired with ARSN. Synapse 64:152–160, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
背景:作者前期已经成功将无细胞神经移植物复合骨髓间充质干细胞构建组织工程人工神经,并证明可以促进周围神经再生。 目的:构建组织工程人工神经,观察和验证桥接大鼠坐骨神经缺损后的神经功能恢复情况。 方法:成年雄性SD大鼠60只构建大鼠坐骨神经15 mm缺损模型。随机分成3组,每组20只。桥接大鼠坐骨神经缺损,实验组采用组织工程人工神经,空白对照组采用无细胞组织工程神经支架,自体神经对照组采用自体神经移植。桥接后12周通过大体观察、胫骨前肌湿质量、组织学等方法分析坐骨神经组织学及功能恢复情况。 结果与结论:桥接术后12周:实验组大鼠肢体可以支撑着地,钳夹大鼠手术侧足底皮肤出现逃避反射,足底皮肤s-100蛋白染色呈阳性反应。实验组与自体神经移植组胫骨前肌湿质量比差异无显著性意义(P > 0.05)。实验组辣根过氧化物酶逆行示踪实验显示脊髓、后根神经节均可见数量不等的辣根过氧化物酶标记阳性细胞。实验组移植物与自体神经移植组有髓神经纤维数、髓鞘厚度、神经组织面积比较差异无显著性意义。实验结果验证了无细胞神经移植物复合骨髓间充质干细胞构建组织工程人工神经修复大鼠坐骨神经缺损,可以促进神经组织学的修复重建和功能的恢复。  相似文献   

9.
We compared the ability of temporary and permanent tubing to achieve morphological and functional recovery of nerve-muscle units, following experimental nerve transection (8-mm gap) in rat tibial nerve. Electrical stimulation of the sciatic nerve was used to analyze tension output, evoked electromyogram and conduction-transmission time (CTT) of denervated nerve-muscle units. Morphological analysis of the nerve and muscle was also performed. Within 6 weeks, the nerve gap had been bridged by a thin nerve trunk, and a few myelinated fibers were observed, although there was still no functional recovery. The rats were divided into two groups: permanent tubing (PT) and temporary tubing (TT; tubing subsequently removed). At 10 weeks after the operation, the TT group showed apparently greater thickness of regenerated nerve trunks, significantly higher tension output of plantar flexors, shorter CTT, and heavier muscle mass. These results were consistent with the presence of myelinated fibers in the regenerated nerve trunks, as shown histologically. Thus, removal of the silicone chamber results in faster and better recovery than tubing left permanently in place.  相似文献   

10.
背景:有研究表明肌卫星细胞不仅在体外具有较强的增殖能力及适应能力,而且在异体内免疫原性低,免疫排斥反应低,移植后存活时间长。因此设想肌卫星细胞异体移植在促进缺损神经再生等方面可能具有良好的研究和应用前景。 目的:探讨骨骼肌卫星细胞移植对周围神经缺损后再生修复的影响。 方法:将16只Wistar大鼠随机分成移植组与对照组,每组8只,均切断右后肢坐骨神经,并通过生物可降解膜包裹缺损神经断端形成神经再生室。用微量注射器抽取已配制成的肌干细胞悬液0.2 mL注入移植组的神经再生室内。对照组注入等量的生理盐水。术后4,8和12周进行大鼠行步态测定,并用锇酸染色法制片观察缺损神经再生情况。观测大鼠坐骨神经功能指数、腓肠肌湿质量恢复率、再生的有髓神经纤维数量和直径及髓鞘厚度的变化。 结果与结论:大鼠经肌卫星细胞移植后腓肠肌湿质量残存率、再生的有髓神经纤维数目、直径及髓鞘厚度等项检测指标与对照组相比均差异有显著性意义(P < 0.05)。术后8和12周,移植组坐骨神经功能指数恢复情况明显优于对照组(P < 0.05)。实验结果提示在神经再生室中加入肌卫星细胞能促进缺损神经纤维的再生及其结构的成熟。 关键词:肌卫星细胞;生物可降解膜;异体;细胞移植;周围神经缺损;神经再生  相似文献   

11.
Skeletal muscle-derived cells have strong secretory function,while skeletal muscle-derived stem cells,which are included in muscle-derived cells,can differentiate into Schwann cell-like cells and other cell types.However,the effect of muscle-derived cells on peripheral nerve defects has not been reported.In this study,5-mm-long nerve defects were created in the right sciatic nerves of mice to construct a peripheral nerve defect model.Adult female C57BL/6 mice were randomly divided into four groups.For the muscle-derived cell group,muscle-derived cells were injected into the catheter after the cut nerve ends were bridged with a polyurethane catheter.For external oblique muscle-fabricated nerve conduit and polyurethane groups,an external oblique muscle-fabricated nerve conduit or polyurethane catheter was used to bridge the cut nerve ends,respectively.For the sham group,the sciatic nerves on the right side were separated but not excised.At 8 and 12 weeks post-surgery,distributions of axons and myelin sheaths were observed,and the nerve diameter was calculated using immunofluorescence staining.The number,diameter,and thickness of myelinated nerve fibers were detected by toluidine blue staining and transmission electron microscopy.Muscle fiber area ratios were calculated by Masson’s trichrome staining of gastrocnemius muscle sections.Sciatic functional index was recorded using walking footprint analysis at 4,8,and 12 weeks after operation.The results showed that,at 8 and 12 weeks after surgery,myelin sheaths and axons of regenerating nerves were evenly distributed in the muscle-derived cell group.The number,diameter,and myelin sheath thickness of myelinated nerve fibers,as well as gastrocnemius muscle wet weight and muscle area ratio,were significantly higher in the muscle-derived cell group compared with the polyurethane group.At 4,8,and 12 weeks post-surgery,sciatic functional index was notably increased in the muscle-derived cell group compared with the polyurethane group.These criteria of the muscle-derived cell group were not significantly different from the external oblique muscle-fabricated nerve conduit group.Collectively,these data suggest that muscle-derived cells effectively accelerated peripheral nerve regeneration.This study was approved by the Animal Ethics Committee of Plastic Surgery Hospital,Chinese Academy of Medical Sciences(approval No.040)on September 28,2016.  相似文献   

12.
Abstract   Axonal regeneration at a site of peripheral nerve repair can be impeded by the formation of scar tissue, which creates a mechanical barrier and initiates the development of multiple branched axonal sprouts that form a neuroma. We have investigated the hypothesis that the application of a scar-reducing agent to the nerve repair site would permit better axonal regeneration. In anaesthetised C57 Black-6 mice, the left sciatic nerve was sectioned and immediately re-approximated using four epineurial sutures. In five groups of eight mice, we injected transforming growth factor-β3 (50 or 500 ng), interleukin-10 (IL-10) (125 or 500 ng), or saline into and around the repair site, both before and after the nerve section. Another group of eight animals acted as sham-operated controls. After 6 weeks, the outcome was assessed by recording compound action potentials (CAPs), measuring collagen levels using picrosirius red staining, and counting the number of myelinated axons proximal and distal to the repair. CAPs evoked by electrical stimulation distal to the repair were significantly smaller in all repair groups except for the low-dose IL-10 group, where they were not significantly different from that in controls. The area of staining for collagen had significantly increased in all repair groups except for the low-dose IL-10 group, which was not significantly different from that in controls. The myelinated fibre counts were always higher distal to the repair site, but there were no significant differences between groups. We conclude that administration of a low-dose of IL-10 to a site of sciatic nerve repair reduces scar formation and permits better regeneration of the damaged axons.  相似文献   

13.
A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group 〉 chemically extracted acellular nerve graft + ciliary neurotrophic factor group 〉 chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone.  相似文献   

14.
A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.  相似文献   

15.
Introduction: In this study we evaluated the characteristics of the tibialis anterior muscle after sciatic nerve crush and treatment with low‐level laser therapy (LLLT) or the protein from natural latex (P1). Methods: We studied the following 6 groups of male Wistar rats: control (CG); exposed nerve (EG); injured nerve (IG); injured nerve with LLLT (LG); injured nerve with P1 (PG); and injured nerve with P1 and LLLT (LPG). Results: After 4 weeks, muscle morphology showed improvement in the treated groups; after 8 weeks, the treated groups resembled controls, especially the PG. Morphometry revealed muscle fiber atrophy after nerve injury, with time‐dependent recovery. Histochemical analysis revealed increased intermediate fiber area. The PG was more similar to controls with NADH staining, whereas the LPG more closely resembled controls with SDH staining. Conclusion: Treatment using only P1 proved most efficient, revealing a negative interaction between P1 and LLLT. Muscle Nerve 52 : 869–875, 2015  相似文献   

16.
BACKGROUND: Tacrolimus (FK506) protects peripheral nerves located in damaged regions by inhibiting T lymphocyte proliferation and activation.OBJECTIVE: To evaluate the effect of FK506 on promoting regeneration of rat sciatic nerve. DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Laboratory of the Department of Orthopedic Surgery, Dalian Medical University, China, from September 2007 to September 2008.MATERIALS: A total of 60 adult, male, Sprague-Dawley rats were equally and randomly divided into model, local administration and systemic administration groups. All rats received a neurotomy of bilateral sciatic nerves to establish models of nerve regeneration chambers. The powder and injection of FK506 were supplied by Fujisawa Pharmaceutical, Japan.METHODS: The regeneration chambers of the model group were infused with 0.2 mL saline. The systemic group were injected with 0.2 mL saline, followed by daily subcutaneous injections of FK506 (1 mg/kg), for 14 days. The local administration group was infused with 0.2 mL FK506 (1 μg/mL).MAIN OUTCOME MEASURES: Local immune response was observed using hematoxylin-eosin staining. Myelinated nerve fiber number, myelin sheath and nerve fiber thickness were observed using toluidine blue staining. Wet weight of gastrocnemius was evaluated. Compound muscle action potential amplitude, latency, and conduction time were recorded, and motor nerve conduction velocity was calculated using electrophysiology.RESULTS: The total number of myeiinated nerve fibers in the local and systemic administration groups was significantly higher than in the model group. The density of myelinated nerve fibers, myelin sheath thickness and mean axon diameter were significantly increased in the systemic administration group compared with the model group (P < 0.05). Lymphocyte infiltration was decreased in the local and systemic administration groups compared with the model group. The wet weight of rat gastrocnemius in the local and systemic administration groups were significantly greater compared with the model group (P<0.05). Motor nerve conduction velocity was the fastest in the systemic administration group, and the slowest in the model group. Compound muscle action potential amplitude was larger in the systemic administration group compared with the local administration and model groups (P<0.05).CONCLUSION: Systemic administration of FK506 can promote regeneration of rat sciatic nerve and recovery of neural function. Systemic administration produced better regeneration and recovery of function than local administration of FK506.  相似文献   

17.
Mecobalamin,a form of vitamin B12 containing a central metal element(cobalt),is one of the most important mediators of nervous system function.In the clinic,it is often used to accelerate recovery of peripheral nerves,but its molecular mechanism remains unclear.In the present study,we performed sciatic nerve crush injury in mice,followed by daily intraperitoneal administration of mecobalamin(65 μg/kg or 130 μg/kg) or saline(negative control).Walking track analysis,histomorphological examination,and quantitative real-time PCR showed that mecobalamin significantly improved functional recovery of the sciatic nerve,thickened the myelin sheath in myelinated nerve fibers,and increased the cross-sectional area of target muscle cells.Furthermore,mecobalamin upregulated m RNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury,and of neurotrophic factors(nerve growth factor,brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia.Our findings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.  相似文献   

18.
Chen ZY  Chai YF  Cao L  Lu CL  He C 《Brain research》2001,902(2):363-276
Adult rat sciatic nerve was transected and sutured with an entubulation technique. The nerve interstump gap was filled with either collagen gel (COL) or collagen gel mixed with glial cell line-derived neurotrophic factor (COL/GDNF). Four weeks after nerve transection, horseradish peroxidase (HRP)-labelled spinal cord motoneurons and the myelinated distal stump axons were quantified. Compared with the COL group, the percentages of labeled spinal somas and axon number were significantly increased after topically applied glial cell line-derived neurotrophic factor (GDNF). The functional recovery of the transected nerve was improved in COL/GDNF group. GAP-43 expression was also significantly higher in COL/GDNF group 1 and 2 weeks after sciatic nerve axotomy vs. COL group. These data provide strong evidence that GDNF could promote axonal regeneration in adult rats, suggesting the potential use of GDNF in therapeutic approaches to peripheral nerve injury and neuropathies.  相似文献   

19.
The cytokine leukemia inhibitory factor (LIF) favors the survival and growth of axons in vitro and in vivo. Fibronectin has been shown to enhance nerve regeneration when added in combination with various growth factors including LIF. The goal of this study was to evaluate the effect of LIF plus fibronectin on the regeneration of transected nerve and functional recovery of reinnervated skeletal muscle, in one experimental model of peripheral nerve repair, at two recovery times. The rat sciatic nerve was cut at mid-thigh level and a silicone cuff containing either saline (control), LIF, or LIF plus fibronectin (L + F) was used to bridge the proximal and distal nerve stumps leaving a 1 cm gap between them. Rats were then explored at 6 or 12 weeks following the initial surgery. Regenerating nerves were assessed by measuring the diameter of myelinated axons, conduction velocity, and number of myelinated fibers. Muscle reinnervation was assessed by measuring muscle mass, force of contraction, and histologically for changes in muscle fiber type (type I and type II). In this report we demonstrate that at 6 weeks there were significant increases in 1) nerve conduction velocity, 2) myelinated axon diameter, and 3) number of myelinated axons over that of control (saline-treated) animals. Both LIF groups demonstrated a shift in type II muscle fiber area compared to saline-treated controls, with the L + F group having a significant increase in muscle mass. At 12 weeks there was an improved recovery over and above that demonstrated at 6 weeks. Muscle mass was 65% and 42% greater than control for LIF and L + F, respectively. Force of contraction, conduction velocity, myelinated fiber number, and diameter were also significantly greater for both LIF- and L + F- treated rats than saline-treated rats. These results demonstrate that LIF significantly improves the regeneration of damaged peripheral nerves and the preservation of muscle viability, resulting in greatly enhanced recovery of skeletal muscle function. J. Neurosci. Res. 47:208–215, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
In this study, we constructed tissue-engineered nerves with acellular nerve allografts in Sprague-Dawley rats, which were prepared using chemical detergents-enzymatic digestion and mechanical methods, in combination with bone marrow mesenchymal stem cells of Wistar rats cultured in vitro, to repair 15 mm sciatic bone defects in Wistar rats. At postoperative 12 weeks, electrophysiological detection results showed that the conduction velocity of regenerated nerve after repair with tissue-engineered nerves was similar to that after autologous nerve grafting, and was higher than that after repair with acellular nerve allografts. Immunohistochemical staining revealed that motor endplates with acetylcholinesterase-positive nerve fibers were orderly arranged in the middle and superior parts of the gastrocnemius muscle; regenerated nerve tracts and sprouted branches were connected with motor endplates, as shown by acetylcholinesterase histochemistry combined with silver staining. The wet weight ratio of the tibialis anterior muscle at the affected contralateral hind limb was similar to the sciatic nerve after repair with autologous nerve grafts, and higher than that after repair with acellular nerve allografts. The hind limb motor function at the affected side was significantly improved, indicating that acellular nerve allografts combined with bone marrow mesenchymal stem cell bridging could promote functional recovery of rats with sciatic nerve defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号