首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During myogenesis, muscle precursors become divided into either fast‐ or slow‐twitch fibres, which in the zebrafish occupy distinct domains in the embryo. Genes encoding sarcomeric proteins specific for fast or slow fibres are frequently used as lineage markers. In an attempt to identify and evaluate early definitive markers for cells in the fast‐twitch pathway, we analysed genes encoding proteins contributing to the fast sarcomeric structures. The previously uncharacterized zebrafish alkali‐like myosin light chain gene (myl1) was found to be expressed exclusively in cells in the fast‐twitch pathway initiated at an early stage of fast fibre differentiation. Myl1 was expressed earlier, and in a more fibre type restricted manner, than any of the previously described and frequently used fast myosin light and heavy chain and troponin muscle markers mylz2, mylz3, tnni2, tnnt3a, fMyHC1.3. In summary, this study introduces a novel marker for early differentiating fast muscle cells. Developmental Dynamics 240:1856–1863, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

2.
3.
A 1,934-bp muscle-specific promoter from the zebrafish mylz2 gene was isolated and characterized by transgenic analysis. By using a series of 5' promoter deletions linked to the green fluorescent protein (gfp) reporter gene, transient transgenic analysis indicated that the strength of promoter activity appeared to correlate to the number of muscle cis-elements in the promoter and that a minimal -77-bp region was sufficient for a relatively strong promoter activity in muscle cells. Stable transgenic lines were obtained from several mylz2-gfp constructs. GFP expression in the 1,934-bp promoter transgenic lines mimicked well the expression pattern of endogenous mylz2 mRNA in both somitic muscle and nonsomitic muscles, including fin, eye, jaw, and gill muscles. An identical pattern of GFP expression, although at a much lower level, was observed from a transgenic line with a shorter 871-bp promoter. Our observation indicates that there is no distinct cis-element for activation of mylz2 in different skeletal muscles. Furthermore, RNA encoding a dominant negative form of cAMP-dependent protein kinase A was injected into mylz2-gfp transgenic embryos and GFP expression was significantly reduced due to an expanded slow muscle development at the expense of GFP-expressing fast muscle. The mylz2-gfp transgene was also transferred into two zebrafish mutants, spadetail and chordino, and several novel phenotypes in muscle development in these mutants were discovered.  相似文献   

4.
5.
To test tissue specificity of zebrafish gene promoters in a heterologous fish species, two transgenic medaka lines under two zebrafish promoters were generated. Under the zebrafish skeletal muscle-specific mylz2 promoter, transgenic medaka expressed green fluorescent protein (GFP) exclusively in skeletal muscles, mimicking the endogenous medaka mylz2 mRNA expression and also identical to GFP expression in mylz2:gfp transgenic zebrafish. A madaka mylz2 promoter was also capable of directing skeletal muscle-specific GFP expression in transient transgenic zebrafish embryos. In the krt8:rfp transgenic medaka line with the zebrafish epithelial krt8 promoter, red fluorescent protein was specifically expressed in the skin epithelia as well as the epithelial lining cells of the anterior digestive tract, which was also identical to GFP expression in krt8:gfp transgenic zebrafish. Therefore, the two zebrafish promoters faithfully function in a heterologous fish species, and it is likely that the mechanisms of tissue-specific expression are largely conserved among fish species.  相似文献   

6.
7.
8.
The formation of skeletal muscle: from somite to limb   总被引:34,自引:0,他引:34       下载免费PDF全文
During embryogenesis, skeletal muscle forms in the vertebrate limb from progenitor cells originating in the somites. These cells delaminate from the hypaxial edge of the dorsal part of the somite, the dermomyotome, and migrate into the limb bud, where they proliferate, express myogenic determination factors and subsequently differentiate into skeletal muscle. A number of regulatory factors involved in these different steps have been identified. These include Pax3 with its target c-met, Lbx1 and Mox2 as well as the myogenic determination factors Myf5 and MyoD and factors required for differentiation such as Myogenin, Mrf4 and Mef2 isoforms. Mutants for genes such as Lbx1 and Mox2, expressed uniformly in limb muscle progenitors, reveal unexpected differences between fore and hind limb muscles, also indicated by the differential expression of Tbx genes. As development proceeds, a secondary wave of myogenesis takes place, and, postnatally, satellite cells become located under the basal lamina of adult muscle fibres. Satellite cells are thought to be the progenitor cells for adult muscle regeneration, during which similar genes to those which regulate myogenesis in the embryo also play a role. In particular, Pax3 as well as its orthologue Pax7 are important. The origin of secondary/fetal myoblasts and of adult satellite cells is unclear, as is the relation of the latter to so-called SP or stem cell populations, or indeed to potential mesangioblast progenitors, present in blood vessels. The oligoclonal origin of postnatal muscles points to a small number of founder cells, whether or not these have additional origins to the progenitor cells of the somite which form the first skeletal muscles, as discussed here for the embryonic limb.  相似文献   

9.
10.
In newborn Wistar rats the load on the soleus muscle was reduced by removing the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles. Eighteen days later the soleus muscles were removed from both the operated and control legs and examined physiologically and histologically. The time course of twitch contraction of the soleus on the operated side was not significantly different from that of control muscles, but the muscles developed less tension. The decreased tension was consistent with a smaller number of muscle fibres. Histochemical and immunocytochemical examination showed that in the operated muscle, fewer fibres reacted with an antibody against slow myosin, while the number of fibres that reacted for alkali-preincubated ATPase, indicative of neonatal or adult fast myosin, was increased. Some fibres expressed both types of myosin. These findings suggest that a reduced load delays the phenotypic expression of slow myosin isoform in the developing soleus muscle.  相似文献   

11.
Summary Immunocytochemical techniques were used to study changes in myosin gene expression during the regeneration of the cat posterior temporalis muscle transplanted into the bed of either the fast extensor digitorum longus (EDL) or the slow soleus muscle. Strips of the posterior temporalis, a homogeneously superfast muscle, were treated with Marcaine and then transplanted into limb muscle beds which had been completely cleared of host muscle fibres. The regenerates were examined 6 to 224 days after surgery. Early regenerates in both muscle beds reacted with antibodies against the heavy chain of foetal, slow and superfast myosins, but not with antibodies against fast myosin. In the long-term, regenerates innervated by the EDL nerve expressed only superfast myosin whereas in the regenerates innervated by the soleus nerve most fibres expressed only slow myosin and only a few fibres reacted exclusively with the anti-superfast myosin antibody even after 210 days. In contrast, EDL and soleus muscles regenerating in their own beds expressed foetal, slow and fast myosin, but did not express superfast myosin. The isometric contraction times of the various types of regenerates reflected the types of myosin synthesized. It is concluded that jaw and limb muscle cells exist as two distinct allotypes, each having a distinct repertoire for the expression of adult isomyosins, and that within that repertoire isomyosin gene expression can be modulated by the nerve. Thus, myosin gene expression in skeletal muscle fibres is regulated by both myogenic and neurogenic mechanisms.  相似文献   

12.
Summary Immunohistochemistry was used to determine the myosin composition of defined fibre types of three embryologically different adult muscles, the oro-facial, masseter and limb muscles. In addition, the myosin composition in whole muscle specimens was analysed with biochemical methods. Both similarities and differences between muscles in the content of myosin heavy chains and myosin light chains were found. Nevertheless, each muscle had its own distinct identity. Our results indicated the presence of a previously undetected fast myosin heavy chain isoform in the oro-facial type II fibre population, tentatively termed fast F. The masseter contained aberrant myosin isoforms, such as foetal myosin heavy chain and -cardiac myosin heavy chain and unique combinations of myosin heavy chain isoforms which were not found in the limb or oro-facial muscles. The type IM and IIC fibres coexpressed slow and fast A myosin heavy chains in the oro-facial and limb muscles but slow and a fast B like myosin heavy chain in the masseter. While single oro-facial and limb muscle fibres contained one or two myosin heavy chain types, single masseter fibres coexpressed up to four different myosin heavy chain isoforms. Describing the fibres according to their expression of myosin heavy chain isozymes, up to five fibre types could be distinguished in the oro-facial and limb muscles and eight in the masseter. Oro-facial and limb muscles expressed five myosin light chains, MLC1S, MLC2S, MLC1F, MLC2F and MLC3F, and the masseter four, MLC1S, MLC2S, MLC1F, and, in addition, an embryonic myosin light chain, MLCtemb, which is usually not present in normal adult skeletal muscle. These results probably reflect the way the muscles have evolved to meet the specialized functional requirements imposed upon them and are in agreement with the previously proposed concept that jaw and limb muscles belong to two distinct allotypes.  相似文献   

13.
Carbonic anhydrase (CA) accelerates contractile function, particularly in fast-twitch skeletal muscles. Since the extraocular muscles are considered to be amongst the fastest skeletal muscles in mammals, this study tested two hypotheses: (1) CA is expressed at higher levels in rat extraocular muscles than in extensor digitorum longus (EDL, a fast limb muscle), and (2) inhibition of CA activity increases twitch duration and force in the extraocular muscles to a greater extent than in EDL. By real-time quantitative PCR we determined that the expression of CA3 isoform, typically high in skeletal muscles, is significantly depressed in extraocular muscles. Message levels for the CA2 and CA4 isoforms were higher in the extraocular muscles, while CA5 expression was equivalent in both muscles. Strong CA activity was demonstrated by histochemistry in frozen EDL muscle sections, in particular along the sarcolemma and in capillaries. By contrast, extraocular muscle had very low sarcolemmal or cytosolic CA activity. CA inhibition with 6-ethoxyzolamide (ETZ) reversibly increased twitch duration and force in EDL muscle bundles. In the extraocular muscles, ETZ did not alter twitch kinetics. Based on these results, we reject our initial hypotheses and conclude that CA does not influence the fast contractile kinetics characteristic of the extraocular muscles.  相似文献   

14.
Obscurin/obscurin-MLCK is a giant sarcomere-associated protein with multiple isoforms whose interactions with titin and small ankyrin-1 suggest that it has an important role in myofibril assembly, structural support, and the sarcomeric alignment of the sarcoplasmic reticulum. In this study, we characterized the zebrafish orthologue of obscurin and examined its role in striated myofibril assembly. Zebrafish obscurin was expressed in the somites and central nervous system by 24 hours post-fertilization (hpf) and in the heart by 48 hpf. Depletion of obscurin using two independent morpholino antisense oligonucleotides resulted in diminished numbers and marked disarray of skeletal myofibrils, impaired lateral alignment of adjacent myofibrils, disorganization of the sarcoplasmic reticulum, somite segmentation defects, and abnormalities of cardiac structure and function. This is the first demonstration that obscurin is required for vertebrate cardiac and skeletal muscle development. The diminished capacity to generate and organize new myofibrils in response to obscurin depletion suggests that it may have a vital role in the causation of or adaptation to cardiac and skeletal myopathies.  相似文献   

15.
In this paper, a combined-method study has been made on the lateral muscle of the teleost olive flounder Paralichthys olivaceus in just-hatched and adult stages. In just-hatched stage, both slow and fast muscle fibres were detected: (1) in situ hybridization analysis indicated that slow and fast myosin heavy chain genes were specifically expressed in the superficial and deep part of the myotomal muscle, respectively; (2) immunohistochemistry analysis showed that fibres in the deep part reacted with anti-fast myosin antibody F310; (3) western blot analysis detected a weak expression of slow myosin and a strong expression of fast myosin. In adult stage, the slow and fast muscle fibres had their own distribution characteristics: (1) hematoxylin/eosin staining showed the histological characteristics of the muscle fibre composition; (2) histochemical observations showed that the deep muscle fibres, and some fibres near the epidermis, contain alkali-stable myofibrillar ATPase activity; (3) immunohistochemistry analysis indicated that all the deep muscle fibres reacted with F310 antibody and some fibres in the superficial layer of muscle also reacted with F310; (4) western blot analysis showed that fast myosin was expressed both in the blended muscles (the mix of superficial and deep muscles) and deep muscles, while slow myosin was mainly expressed in the blended muscles. These findings suggested that both slow and fast muscle fibres existed in the musculature of the olive flounder in just-hatched and adult stages. Notably, the adult fast fibres also exist in the superficial layer of the muscle.  相似文献   

16.
17.
OBJECTIVES: Cardiac ankyrin repeat protein, CARP, is a protein that is restrictedly expressed in the heart but barely expressed in skeletal muscles. Since CARP is induced by pressure overload to the heart, it is proposed to be a genetic marker for cardiac hypertrophy. We recently identified a novel protein, ankyrin repeat protein with PEST and proline-rich region (ARPP), which is homologous to CARP and is preferentially expressed in type 1 skeletal muscle fibers (cf. slow fibers). We also found that both ARPP and CARP expression is induced in experimentally denervated skeletal muscles in mice. Based on these findings, we hypothesized that their expression may be induced in skeletal muscles in neurodegenerating disease. This work aimed to determine the expression pattern of ARPP and CARP in amyotrophic lateral sclerosis (ALS). METHODS: In this study, we immunohistochemically analyzed the expression of ARPP and CARP in skeletal muscles of 9 ALS cases. RESULTS: We found that CARP was aberrantly expressed in atrophic skeletal muscle fibers in ALS. Although ARPP-positive fibers were randomly scattered in a checkerboard-like pattern in normal skeletal muscle, this pattern was absent in ALS muscles. Furthermore, we also found that ARPP was expressed in fast myosin heavy chain-positive fibers (cf. type 2 fiber). CONCLUSION: These findings suggest that type-specific expression patterns of ARPP and CARP are altered in skeletal muscles of ALS.  相似文献   

18.
The lumbosacral spinal cords of 14.5-day gestation mice (E14.5) were ablated. The number of molecules of each of the four myogenic regulatory factor (MRF) mRNAs per nanogram of total RNA were evaluated in innervated and aneural fetal crural muscles. Accumulation of all four MRF mRNAs was affected in aneural muscle, but was never more than threefold different than in innervated muscles, considerably less than after adult denervation. The effect of the nerve varied with the MRF, the fetal age, and with the muscle (extensor digitorum longus muscle [EDL] vs. soleus muscle), with the nerve having multiple effects including down-regulation of certain MRF genes at specific periods (e.g., myoD and myogenin [E16.5-E18.5] and MRF4 in the EDL only [E18.5-E19.5]); limiting the up-regulation of certain genes, which occurred in the absence of innervation (e.g., myf-5 [E18.5-E19.5] and myogenin [E14.5-E16.5]); and even enhancing the accumulation of MRF4 mRNA (E14.5-E16.5). We hypothesize that factors other than nerve contribute to the down-regulation of myf-5 and myogenin mRNAs to adult levels. Innervation was required for the emergence of the slow, but not the fast, MRF mRNA profile at birth. MyoD, found in both the nuclear and cytoplasmic protein extracts of innervated fetal muscle, increased by approximately 5-fold in the nuclear extracts (approximately 2.5-fold in the cytoplasmic) of E19.5 aneural muscles, significantly less than the 12-fold increase found in the nuclear extract of 4-day denervated adult muscle. This increase in aneural fetal muscle was due primarily to an increased concentration of myoD in muscle lineage nuclei, rather than to the presence of additional myoD(+) muscle lineage nuclei.  相似文献   

19.
Effect of anabolic steroid nandrolone (Phenobolin) on fast (plantar) and slow (soleus) skeletal muscles was studied in guinea pigs with impaired neurotrophic regulation (denervation, axonal transport blockade) or after tenotomy. Immunohistochemical analysis with monoclonal antibodies to fast myosin heavy chains showed that injection of anabolic steroid did not modify the relative content of fast and slow muscle fibers in the studied muscles under all experimental conditions. Injection of anabolic steroid did not modify the weight of the studied muscles and did not prevent its drop after denervation or tenotomy. Axonal transport blockade by colchicine application on the nerve induced the appearance of fast muscle fibers in the slow soleus muscle and an increase in its weight; in the slow muscle, nandrolone did not prevent the induction of fast myosin synthesis. Under conditions of axonal transport blockade, the agent exerted a catabolic effect and considerably reduced the muscle weight. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol.127, No. 5, pp. 569–572, May, 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号