首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In this study we used ligand binding techniques to determine the affinity and selectivity of endothelin receptor agonists and antagonists in human left ventricle which expresses both ETA and ETB receptors, and compared these results with cardiovascular tissues from rat and porcine hearts. 2. The linear tripeptide antagonist, FR139317 competed for [125I]-ET-1 binding to human left ventricle with over 200,000 fold selectivity for the ETA receptor (KD ETA = 1.20 +/- 0.28 nM, KDETB = 287 +/- 93 microM). The ETA-selective non-peptide antagonist, 50235, competed with lower affinity and selectivity (KDETA = 162 +/- 61 nM, KDETB = 171 +/- 42 microM) in this tissue. BQ123 and FR139317 also showed high selectivity (greater than 20,000 fold) and affinity in rat (BQ123: KDETA = 1.18 +/- 0.16 nM, KDETB = 1370 +/- 1150 microM; FR139317: KDETA = 2.28 +/- 0.30 nM, KDETB = 292 +/- 114 microM) and pig heart (BQ123: KDETA = 0.52 +/- 0.05 nM, KDETB = 70.4 +/- 4.0 microM; FR139317: KDETA = 2.17 +/- 0.51 nM, KDETB = 47.1 +/- 5.7 microM) (n > or = 3 individuals +/- s.e.mean). 3. Although BQ3020 competed with over 1000 fold selectivity for the ETB subtype in human heart (KDETB = 1.38 +/- 0.72 nM, KDETA = 2.04 +/- 0.21 microM) the peptide inhibited only the binding of [125I]-ET-1 at concentrations greater than 100 nM in rat and porcine heart. This is in contrast to the data from the ETA-selective antagonists which indicated the presence of ETB sites in these tissues from animal hearts. 4. The peptide antagonist, BQ788, had a low, micromolar affinity (KD = 1.98 +/- 0.13 microM) using human left ventricle and no significant selectivity for the human ETB-subtype in this tissue. 5. The non-peptide ET antagonists, Ro462005 (KD = 50.3 +/- 9.5 microM) and bosentan (Ro470203; KD = 77.9 +/- 7.9 nM) competed monophasically for [125I]-ET-1 binding sites in human left ventricle. 6. The results show that the ETA antagonists, BQ123 and FR139317, are highly selective for ETA receptors in all cardiac tissues tested, whereas BQ788 has a low affinity and no selectivity in this human tissue. Further we showed that there are species differences in the binding of BQ3020 to the ETB receptors in the hearts derived from human, rat and pig.  相似文献   

2.
Two new endothelin receptor radioligands, [125I]-BQ3020 and [125I]-[Ala1,3,11,15]ET-1, were characterized in tissue sections of human right atrium and left ventricle. Both radioligands had high affinity ([125I]-BQ3020 right atrium: KD = 0.145 +/- 0.037 nM, left ventricle: KD = 0.107 +/- 0.004 nM; [125I]-[Ala1,3,11,15]ET-1 right atrium: KD = 0.239 +/- 0.036 nM, left ventricle: KD = 0.199 +/- 0.027 nM). Competition binding experiments were performed in the left ventricle. The selective ETA receptor compound BQ123 competed with low affinity against [125I]-BQ3020 (KD = 28.7 +/- 2.7 microM) and [125I]-[Ala1,3,11,15]ET-1 (KD = 28.5 +/- 4.2 microM). The selective ETB receptor compound BQ3020 competed with high affinity against [125I]-BQ3020 (KD = 40.8 +/- 6.6 pM) and [125I]-[Ala1,3,11,15]ET-1 (KD = 0.276 +/- 0.099 nM). Another selective ETB receptor compound, [Ala1,3,11,15]ET-1 also competed with high affinity against [125I]-BQ3020 (KD = 0.663 +/- 0.120 nM) and [125I]-[Ala1,3,11,15]ET-1 (KD = 0.643 +/- 0.124 nM). These results indicate that [125I]-BQ3020 and [125I]-[Ala1,3,11,15]ET-1 are selective ETB receptor radioligands. [Ala1,3,11,15]ET-1 competed with the non-selective radioligand [125I]-ET-1 in left ventricle and revealed the presence of ETA and ETB receptors in the proportions of 76:24% respectively in the human left ventricle.  相似文献   

3.
1. The aim of this study was to investigate the function and characteristics of endothelin receptors in rat main branch renal artery in vitro. 2. Endothelin(ET)-1 (mean EC50 = 9.8 nM) was approximately 12 fold more potent than ET-3 (mean EC50 = 120 nM) as a contractile agonist and produced a greater maximum response. In contrast, neither of the ETB receptor-selective agonists, alanine[1,3,11,15]ET-1 nor sarafotoxin S6c, (0.1 nM-1 microM), induced any contractile effect, or any relaxant effect in endothelium-intact preparations pre-contracted with the thromboxane A2 mimetic, U-46619. Sarafotoxin S6c (30 nM) also failed to induce any further contraction in tissues pre-contracted with an EC50 concentration of ET-1. 3. The ETA receptor-selective antagonist, BQ123, behaved as a weak and variable antagonist of the contractile effects of ET-1 (mean pA2 estimates in the range 5.8-6.3). In contrast, BQ123 antagonized ET-3 with a potency (mean pA2 = 7.6) consistent with its affinity for ETA receptors. Co-incubation of BQ123 (3 microM) with the putative ETB receptor-selective antagonist, IRL1038 (10 microM), produced no greater antagonism of ET-1 responses than was induced by BQ123 (3 microM) alone. 4. In conclusion, ETB receptors do not appear to be present in rat main branch renal artery. The contractile effects of ET-3 in this tissue seem to be mediated by ETA receptors. While ETA receptors partly mediate the contractile effects of ET-1, these data raise the possibility that a population of novel BQ123-insensitive endothelin receptors may also contribute to this response.  相似文献   

4.
1. We performed radioligand binding experiments on rat cerebellar homogenates using [125I]-endothelin-1 ¿[1251]-ET-1¿ and [125I]-BQ3020 to examine the pharmacology of endothelin receptors in rat brain. Saturation experiments demonstrated a single population of binding sites with high affinity for both radioligands ([125I]-ET-1, pKd = 8.94 +/- 0.17; [125I]-BQ3020, pKd = 9.18 +/- 0.14 nM; mean +/- s.e.mean). However, [125I]-BQ3020 only recognised approximately one third the number of endothelin receptors measured with [125I]-ET-1. 2. Saturation binding experiments with [125I]-PD151242 revealed high affinity binding to a single population of ETA receptors in the cerebellar homogenates (pKd = 9.95 +/- 0.14; Bmax = 30 +/- 15 fmol mg-1 protein). 3. Competition experiments were performed with ligands that are either non-selective for endothelin receptor subtypes. The rat cerebellar endothelin receptor displayed a high affinity for endothelin-1 (ET-1), endothelin-3 (ET-3) and sarafotoxin-S6c (STX-6c) although the affinity for ET-3 was slightly higher than the affinity for ET-1 using both radioligands. The selective ETA antagonists, BQ123, BMS-182,874 and JKC-301 all displayed low affinities at the endothelin receptors. In contrast the selective ETB agonists, IRL1620 and [Ala1,3,11,15]ET-1 and the selective ETB antagonist, BQ-788 had moderate affinities at the endothelin receptor, in the low nanomolar range. The ETB agonist, BQ3020, had approximately 10 fold higher affinity than IRL1620 and [Ala1,3,11,15]ET-1 at the rat cerebellar endothelin receptors. The non-selective antagonists, Ro-46,2005, Ro-47,0203 and PD-142,893 displayed moderate affinities at the cerebellar receptor. 4. Since [125I]-BQ3020 recognises only a fraction of the [125I]-ET-1 binding sites, the majority of the endothelin receptors in the cerebellum cannot be classed as ETB. Although [125I]-PD151242 was able to detect ETA receptors in the rat cerebellar homogenates, the small population of ETA receptors (2% of the total endothelin population as measured with [125I]-ET-1) could not account for the non-ETB receptor population. We conclude that the rat brain cerebellar receptor has a profile similar to the ETB1 receptor as it has a high affinity for ET-1, ET-3, STX-6c and was moderately sensitive to PD-142,893. However, as the ETB ligands BQ-788, IRL1620 and [Ala1,3,11,15]ET-1 have only a moderate affinity for the rat cerebellar endothelin receptor and since ET-3 has a higher affinity as compared to ET-1, our findings suggest that the rat cerebellum contains predominately ETc receptors.  相似文献   

5.
Endothelin receptors in human coronary artery and aorta.   总被引:2,自引:2,他引:0       下载免费PDF全文
1. ETA and ETB-selective and non-selective ligands were used to define the endothelin receptors in the media (vascular smooth muscle layer) of human aorta and coronary artery. Saturation experiments with iodinated endothelin-1 (ET-1), endothelin-2 and sarafotoxin 6b (S6b) identified high affinity binding sites in aorta (KD [125I]-ET-1 0.33 +/- 0.02 nM (n = 9), KD [125I]-ET-2 1.04 +/- 0.23 nM (n = 5), KD [125I]-S6b 0.15 +/- 0.01 nM (n = 9 +/- s.e.mean)) and coronary artery (KD [125I]-ET-1 0.43 +/- 0.10 nM, KD [125I]-ET-2 0.71 +/- 0.17 nM, KD [125I]-S6b 0.27 +/- 0.03 nM (n = 3 +/- s.e.mean)). Hill coefficients (nH) approached unity in each case. 2. No specific binding was detectable with [125I]-ET-3 (4 pM-4 nM) in aorta. Unlabelled ET-3 competed monophasically with [125I]-ET-1 in aorta (KD, 8.21 +/- 1.62 nM, compared to unlabelled ET-1 KD, 0.60 +/- 0.20 nM) (n = 3 +/- s.e.mean). In coronary artery, the KD and Bmax values calculated from [125I]-ET-3 saturation experiments were 2.13 +/- 1.39 nM and 20.6 +/- 12.9 fmol mg-1 protein, respectively (n = 3 +/- s.e.mean). 3. ETA antagonists competed monophasically for [125I]-ET-1 (100 pM) binding sites with nanomolar or subnanomolar affinity in the aorta (KD BQ123, 0.47 +/- 0.13 nM; KD FR139317, 0.40 +/- 0.10 nM; KD PD151242, 2.09 +/- 0.48 nM) and coronary artery (KD FR139317, 0.41 +/- 0.13 nM; KD PD151242, 3.60 +/- 0.74 nM) (n = 3 +/- s.e.mean). However, two site fits were preferred on analysis of competition experiments with ETB-selective agonists versus [125I]-ET-1 in coronary artery (BQ3020: KDETA 0.96 +/- 0.14 microM, KD ETB 1.34 +/- 1.08 nM and sarafotoxin 6c: KD ETA 1.15 +/- 0.14 microM, KD ETB 1.77 +/- 0.72 nM) (n = 3 +/- s.e.mean). The selectivity of the agonists for ETB receptors (700 fold) was lower than reported in other species. 4. Sarafotoxin 6b (2 pM-2 microM) completely inhibited [125I]-ET-1 (100 pM) binding in aorta (KD 1.36 +/- 0.22 nM) (n = 3 +/- s.e.mean). The non-peptide compounds Ro462005 and bosentan, competed with [125I]-ET-1 binding in coronary artery with KD values of 0.19 +/- 0.04 microM and 2.94 +/- 0.95 nM, respectively (n = 3 +/- s.e.mean). 5. Inhibition of [125I]-ET-2 and [125I]-S6b binding by FR139317 was similar to the inhibition of [125I]-ET-1 binding in both arteries, being monophasic with KD values in the same range. 6. ETA receptors in coronary artery media were detected by [125I]-PD151242 (KD 0.23 +/- 0.04 nM, Bmax 10.1 +/- 1.2 fmol mg-1 protein) (n = 3 +/- s.e.mean). [125I]-BQ3020, an ETB-selective radioligand, indicated the presence of a smaller population of ETB receptors in this tissue (KD 0.60 +/- 0.31 nM, Bmax 4.5 +/- 2.1 fmol mg-1 protein) (n = 3 +/- s.e.mean). 7. Autoradiography with [125I]-PD151242 and [125I]-BQ3020 confirmed the predominance of ETA receptors in the media of both arteries. 8. The results of this study indicate that ETA receptors predominate in the vascular smooth muscle of human cardiac arteries, with a small and variable population of ETB receptors detectable in the coronary artery.  相似文献   

6.
7.
[125I]-PD151242: a selective radioligand for human ETA receptors.   总被引:1,自引:0,他引:1       下载免费PDF全文
Our aim was to synthesize a new endothelin ETA selective radioligand, [125I]-PD151242 and characterize the compound in human vascular tissue. Binding of [125I]-PD151242 to sections of human aorta was time-dependent and reached equilibrium after 120 min at 23 degrees C with an association rate constant of 1.26 +/- 0.17 x 10(8) M-1 min-1 (n = 3 individuals +/- s.e.mean). The binding was reversible at 23 degrees C with an observed dissociation rate constant of 0.0025 +/- 0.0006 min-1 (n = 3). Saturation binding assays using [125I]-PD151242 revealed a single population of high affinity ET receptors (n = 3) in aorta (KD = 0.76 +/- 0.17 nM; Bmax = 5.98 +/- 1.56 fmol mg-1 protein), pulmonary (KD = 1.75 +/- 0.20 nM; Bmax = 12.78 +/- 1.39 fmol mg-1 protein) and coronary arteries (KD = 0.51 +/- 0.07 nM; Bmax = 44.9 +/- 1.67 fmol mg-1 protein). ETA selective ligands competed for [125I]-PD151242 binding in aorta with nanomolar affinity (BQ123, KD = 0.41 +/- 0.26 nM; FR139317, KD = 0.55 +/- 0.11 nM) whereas the ETB selective compound, BQ3020, competed with micromolar affinity (KD = 1.36 +/- 0.25 microM). In isolated coronary arteries, PD151242 was a functional antagonist and caused a significant, parallel rightward shift of the ET-1 dose-response curve with a pA2 value of 5.92 (n = 5) and a slope of unity. The high affinity and selectivity of [125I]-PD151242 for ETA receptors will facilitate the characterization of this sub-type in human tissues.  相似文献   

8.
1. We investigated the characteristics of endothelin (ET)-induced contraction and changes in intracellular Ca2+ concentration ([Ca2+]i) using the fura-2-loaded and non-loaded rabbit iris dilator. ET-1 and ET-2 (3-100 nM) and ET-3 (30-100 nM) caused contraction in a concentration-dependent fashion. 2. The selective ETB-receptor agonists, IRL1620 and sarafotoxin S6c produced only a small contraction or no contraction at a concentration of 1 microM. The rank order of potencies for the contraction (pD2 value) was ET-1 = ET-2 > ET-3 >> sarafotoxin S6c = IRL1620. 3. The contractile response to ET-3 was antagonized by pretreatment with BQ-123 (10 nM), a selective ETA receptor antagonist. The contractile responses to ET-1 and ET-2 were antagonized by pretreatment with BQ-123 (10 microM), but not at a concentration of 10 nM. 4. ETs increased [Ca2+]i and sustained muscle contraction. ET-1 (100 nM), ET-2 (100 nM), and ET-3 (1 microM) induced an elevation of [Ca2+]i consisting of two components: first a rapid and transient elevation to reach a peak, followed by a second, sustained elevation; a sustained contraction was produced without a transient contraction. The ETB receptor-selective agonist, IRL1620 (1 microM) and sarafotoxin S6c (1 microM) also induced a rapid and transient elevation of [Ca2+]i to reach a peak and a sustained elevation, together with only a small contraction or no contraction. 5. ET-1 (100 nM) induced a transient increase in [Ca2+]i in a Ca(2+)-free, 2 mM EGTA-containing physiological saline solution (Ca(2+)-free PSS), and a small sustained contraction which was significantly different from that induced by ET-1 (100 nM) in normal PSS. The ET-1-induced increase in [Ca2+]i and sustained contraction were not affected by the voltage-dependent Ca2+ channel blocker, nicardipine (10 microM). The ET-1-induced transient increase in [Ca2+]i was significantly reduced by the sarcoplasmic reticulum (SR) Ca(2+)-ATPase inhibitor, cyclopiazonic acid (30 microM); however, the ET-1-induced sustained contraction was not affected by this agent. 6. The selective ETA receptor antagonist, BQ-123 (100 nM) reduced the ET-3 (100 nM)-induced contraction, but did not affect the transient increase or elevation of the second phase of [Ca2+]i. However, this antagonist at 1 microM did not affect the ET-1 (100 nM)- and ET-2 (100 nM)-induced elevation of [Ca2+]i and contractile response, or the IRL1620-induced elevation of [Ca2+]i. 7. The selective ETB receptor antagonist, BQ-788 (1 microM) reduced the transient increase in [Ca2+]i induced by ET-1 (30 nM), ET-2 (30 nM), ET-3 (100 nM) and IRL1620 (1 microM), but did not affect the sustained elevation of [Ca2+]i and contractile responses produced by ET-1, ET-2 and ET-3. 8. Pretreatment with IRL1620 (1 microM) reduced the increase in [Ca2+]i induced by IRL1620 (1 microM) and sarafotoxin S6c (1 microM), as well as the ET-1 (100 nM)-, ET-2 (100 nM)- and ET-3 (1 microM)-induced elevation of [Ca2+]i, whereas in the presence of IRL1620, ET-1-, ET-2- and ET-3-induced contractions were unaltered. 9. These results suggest that ETA and ETB receptor subtypes exist in the rabbit iris dilator muscle, and that the ETA receptor is divided into: (1) BQ-123-sensitive ETA subtypes activated by ET-1, ET-2 and ET-3, and (2) BQ-123-insensitive ETA subtypes activated by ET-1 and ET-2, which cause the sustained increase of [Ca2+]i and contraction; in contrast, ETB receptor subtypes are activated by ET-1, ET-2, ET-3, IRL1620 and sarafotoxin S6c and cause the transient and sustained increase in [Ca2+]i which is not able to contract the smooth muscle.  相似文献   

9.
1. The linear tetrapeptide radioligand, [125I]-PD151242 was used to characterize ETA receptors in human kidney which is an ETB-rich tissue. Saturation binding assays with [125I]-PD151242 revealed a single population of high affinity endothelin receptors: KD = 0.75 +/- 0.07 nM and Bmax = 48.4 +/- 1.6 fmol mg-1 protein (n = 3 individuals +/- s.e.mean). Hill slopes were close to unity and a one site fit was preferred to a two site model. 2. ETA-receptor-selective ligands competed for [125I]-PD151242 binding with sub-nanomolar affinity: BQ123 KD = 0.43 +/- 0.10 nM, Bmax = 46.6 +/- 7.9 fmol mg-1 protein; FR139317, KD = 0.37 +/- 0.06 nM, Bmax = 39.5 +/- 6.5 fmol mg-1 protein (n = 3 individuals +/- s.e.mean). In each case, monophasic inhibition curves were obtained and a one site fit was preferred to a two site model. The ETB-selective agonist, BQ3020 at the highest concentration tested (10 microM) inhibited binding by only 50%. The non-selective RO462005 competed for the binding of [125I]-PD151242: KD = 1.31 +/- 1.38 microM, Bmax = 33.0 +/- 9.7 fmol mg-1 protein. Endothelin-2 and sarafotoxin S6B inhibited [125I]-PD151242 binding to renal tissue whereas ET-3 and sarafotoxin S6C were less effective. Non-endothelin and non-sarafotoxin peptides did not compete. 3. No degradation of [125I]-PD151242 was detected following incubation of the ligand with renal tissue under the conditions of the binding assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
1. Using wire myography, we have examined the endothelin (ET) receptor subtypes mediating vasoconstriction to ET peptides in human pulmonary resistance arteries (150-200 microns, i.d.). 2. Cumulative concentration-response curves to ET-1, sarafotoxin 6c (SX6c) and ET-3 were constructed in the presence and absence of the selective antagonists FR 139317 (ETA-selective), BMS 182874 (ETA-selective) and BQ-788 (ETB-selective). 3. All agonists induced concentration-dependent contractions. However, the response curves to ET-1 were biphasic in nature. The first component demonstrated a shallow slope up to 1 nM ET-1. Above 1 nM ET-1 the response curve was markedly steeper. Maximum responses to ET-3 and SX6c were the same as those to 1 nM ET-1 and 30% of those to 0.1 microM ET-1. The order of potency, taking 0.3 microM as a maximum concentration was SX6c >> ET-3 > ET-1 (pEC50 values of: 10.75 +/- 0.27, 9.05 +/- 0.19, 8.32 +/- 0.08 respectively). Taking 1 nM ET-1 as a maximum, the EC50 for ET-1 was 10.08 +/- 0.13 and therefore ET-1 was equipotent to ET-3 and SX6c over the first component of the response curve. 4. Responses to ET-1 up to 1 nM were resistant to the effects of the ETA receptor antagonists, FR 139317 and BMS 182874 but were inhibited by the ETB receptor antagonist, BQ-788. Conversely, responses to ET-1 over 1 nM were inhibited by the ETA receptor antagonists, FR 139317 and BMS 182874 but unaffected by the ETB receptor antagonist, BQ-788. 5. The results suggest that at concentrations up to 1 nM, responses to ET-1 are mediated via the ETB receptor, whilst the responses to higher concentrations are mediated by ETA receptors.  相似文献   

12.
In the rabbit isolated pulmonary artery, neither the ETA receptor antagonist, BQ-123 (10 microM), nor the ETB receptor antagonist, BQ-788 (10 microM), inhibited the contractions induced by 1 nM endothelin-1 (ET-1). However, the combination of BQ-123 and BQ-788 completely inhibited the ET-1-induced contraction. In contrast, the ETB-selective agonist, sarafotoxin S6c (1 nM)-induced contraction was completely inhibited by BQ-788 but not by BQ-123. In receptor binding assays, [125I]-ET-1 specific binding to pulmonary arterial membranes was inhibited by BQ-123 (1 microM) by approximately 20% and additive treatment with BQ-788 (1 microM) completely inhibited the BQ-123-resistant component of [125I]-ET-1 specific binding. The present study demonstrates synergistic inhibition by BQ-123 and BQ-788 of ET-1-induced contraction of the rabbit pulmonary artery and the coexistence of ETA and ETB receptors, suggesting that the activation of either only ETA or only ETB receptors may be sufficient to cause complete vasoconstriction. Therefore, blockade of both receptor subtypes would be necessary for the inhibition of some ETA/ETB composite types of responses.  相似文献   

13.
The purpose of this study was to investigate whether endothelin (ET)-1 activation of ETB1 receptors influences the relative magnitude of ETA/ETB2 receptor-mediated ET-1 constriction in the rabbit basilar artery. Initial challenge of ET-1-constricted vessels with BQ610, an ETA-receptor antagonist, resulted in approximately 60% relaxation, and subsequent addition of BQ788, an ETB1/2-receptor antagonist, relaxed the remaining constriction. To test whether blockade of ETB1 receptors influenced the relative magnitude of ETA/ETB2 receptor-mediated constriction, ET-1-constricted vessels were exposed to RES-701-1, an ETB1-receptor antagonist, before challenge with BQ610 or BQ788. RES-701-1 enhanced the ET-1 constriction by approximately 60%, consistent with blockade of ETB1 receptor-mediated endothelium-dependent relaxation. In ET-1-constricted vessels treated with RES-701-1, BQ610 challenge resulted in complete relaxation, whereas BQ788 was without effect. However, when 10 nM acetylcholine was added to RES-701-1-treated ET-1-constricted vessels, (a) BQ610 challenge resulted in only approximately 30% relaxation, and subsequent BQ788 addition relaxed the remaining constriction; and (b) BQ788 challenge resulted in approximately 35% relaxation, and subsequent BQ610 addition relaxed the remaining constriction. Acetylcholine induced approximately 10% relaxation of RES-701-1-treated ET-1-constricted vessels. It is speculated that a dynamic relation exists between ETA and ETB2 receptor-mediated constriction, such that ET-1-induced ETB2 receptor-mediated constriction of the basilar artery is dependent on ETB1 receptor activation and, in the absence of this activation, the constriction reverts to completely ETA receptor mediated.  相似文献   

14.
1. Endothelin-1 binds with high affinity to heart where it acts as a potent positive inotropic agent. Our aim was to characterize the labelled and unlabelled ETA-selective antagonist PD151242 in heart tissues derived from man, rat and pigs by use of radioligand binding techniques. 2. Binding of [125I]-PD151242 to sections of human left ventricle was time-dependent and reached equilibrium after 120 min at 23 degrees C with an association rate constant of 0.0235 min-1 nM-1. The binding was reversible at 23 degrees C with a dissociation rate constant of 0.00144 min-1. 3. Saturation binding assays with [125I]-PD151242 revealed a single population of high affinity ET receptors in human left ventricle (KD = 1.07 +/- 0.08 nM; Bmax = 29.8 +/- 4.2 fmol mg-1 protein), porcine left ventricle (KD = 1.92 +/- 0.27 nM; Bmax = 493 +/- 248 fmol mg-1 protein), and rat heart (KD = 0.64 +/- 0.08 nM; Bmax = 82.34.7 fmol mg-1 protein). 4. Unlabelled PD151242 competed with specific [125I]-ET-1 binding to human left ventricle tissue in a biphasic manner with high affinity binding to the ETA-site (KD = 7.21 +/- 2.83 nM) and lower affinity for the ETB-subtype (KD = 104 +/- 23 microM), indicating a greater than 10000 fold selectivity to the high affinity site. 5. The ETA-selective ligand FR139317 competed for [125I]-PD151242 binding in human left ventricle with nanomolar affinity (KD = 0.37 +/- 0.10 nM), whereas the ETB-selective compound, BQ3020, competed with only micromolar affinity (KD = 1.5 +/- 0.26 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. Quantitative autoradiographic, biochemical and functional studies were performed to investigate the endothelin receptor subtypes and signal transduction systems that mediate endothelin-1 (ET-1)-induced contraction in rat isolated tracheal smooth muscle. 2. Specific binding of 0.5 nM [125I]-ET-1 to tracheal smooth muscle was inhibited by at least 40% in the presence of either the ETA receptor selective ligand BQ-123 (1 microM) or the ETB receptor-selective ligand sarafotoxin S6c (30 nM), indicating the presence of both ETA and ETB receptors in this tissue. 3. ET-1 and sarafotoxin S6c were both potent spasmogens of rat isolated tracheal smooth muscle preparations. Sarafotoxin S6c-induced contractions were unaffected in the presence of the ETA receptor antagonist BQ-123 (10 microM), but were markedly attenuated in tissue previously exposed to 100 nM sarafotoxin S6c to induce ETB receptor desensitization. ET-1-induced contractions were, at most, only partially attenuated either by blocking the ETA receptor-effector system (with 10 microM BQ-123) or by desensitizing the ETB receptor-effector system with sarafotoxin S6c. However, ET-1-induced contractions were markedly attenuated by blocking both receptor-effector systems simultaneously. These findings suggest that ET-1 could induce contraction by stimulating either ETA or ETB receptors. 4. ET-1 (10 microM) induced a 7 fold increase in intracellular [3H]-inositol phosphate accumulation over basal levels in rat isolated tracheal smooth muscle. In contrast, sarafotoxin S6c (2.5 microM) increased intracellular [3H]-inositol phosphate accumulation by only 2 fold. ET-1-induced accumulation of [3H]-inositol phosphates was abolished by 10 microM BQ-123.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. The relative roles of ETA and ETB receptor activation on cholinergic nerve-mediated contraction and acetylcholine (ACh) release were examined in sheep isolated tracheal smooth muscle. 2. Electrical field stimulation (EFS; 90 V, 0.5 ms duration, 1 Hz, 10 s train) applied to sheep isolated tracheal smooth muscle strips induced monophasic contractile responses that were abolished by either 1 microM tetrodotoxin or 0.1 microM atropine, but were insensitive to 10 microM hexamethonium and 100 microM L-NAME. Thus, EFS-induced contractions resulted from the spasmogenic actions of ACh released from parasympathetic, postganglionic nerves. 3. As expected, sheep isolated tracheal smooth muscle preparations did not contract in response to the ETB receptor-selective agonist, sarafotoxin S6c (0.1-100 nM). However, sarafotoxin S6c caused a concentration-dependent and transient inhibition of EFS-induced contractions. The inhibitory effect induced by a maximally effective concentration of sarafotoxin S6c (10 nM; 72.1 +/- 5.7%, n = 6) was abolished in the presence of the ETB receptor-selective antagonist BQ-788 (1 microM). Contractile responses to exogenously administered ACh (10 nM-0.3 mM) were not inhibited by sarafotoxin S6c (1 or 10 nM; n = 7). 4. In contrast to sarafotoxin S6c, endothelin-1 induced marked contractions in sheep isolated tracheal smooth muscle. These contractions were inhibited by BQ-123, consistent with an ETA receptor-mediated response. In the presence of BQ-123 (3 microM), endothelin-1 produced a concentration-dependent inhibition of EFS-induced contractions (30 nM endothelin-1, 68.9 +/- 10.2% inhibition, n = 5). These responses were inhibited by 1 microM BQ-788, indicative of an ETB receptor-mediated process. Endothelin-1 was about 3 fold less potent than sarafotoxin S6c. 5. EFS (90 V, 0.5 ms duration, 1 Hz, 15 min train) induced the release of endogenous ACh (1.94 +/- 0.28 pmol mg-1 tissue, n = 12), as assayed by h.p.l.c. with electrochemical detection. EFS-induced release of ACh was inhibited to a similar extent by 100 nM endothelin-1 (47 +/- 4%, n = 9) and 10 nM sarafotoxin S6c (46 +/- 9%, n = 3). These effects of endothelin-1 on ACh release were inhibited by 1 microM BQ-788 alone (n = 4), by BQ-788 in the presence of 3 microM BQ-123 (n = 4), but not by 3 microM BQ-123 alone (n = 5). 6. In summary, sheep isolated tracheal smooth muscle contains two anatomically and functionally distinct endothelin receptor populations. ETA receptors located on airway smooth muscle mediate contraction, whereas ETB receptors appear to exist on cholinergic nerves that innervate tracheal smooth muscle cells and mediate inhibition of ACh release. The inhibitory effect of ETB receptor stimulation on cholinergic neurotransmission is in stark contrast to the enhancing effects hitherto described in the airways.  相似文献   

17.
125I-Endothelin (ET)-1 and 125I-ET-3 displayed specific, saturable, and high affinity binding to membranes prepared from rat kidney cortex. Saturation binding experiments using 125I-ET-1 and 125I-ET-3 revealed that 125I-ET-3 binding sites were 40-50% less abundant than 125I-ET-1 binding sites. The dissociation constants (Kd) and maximum binding (Bmax) for 125I-ET-1 and 125I-ET-3 with these membranes were 218 +/- 23 pM and 275 +/- 20 fmol/mg of protein and 207 +/- 19 pM and 113 +/- 17 fmol/mg of protein, respectively. In the presence of 10 nM sarafotoxin 6c, a selective agonist for ETb receptors, 125I-ET-1 binding was decreased by 45-50% and 125I-ET-3 binding was totally abolished, suggesting that approximately 40-50% of kidney cortex ET receptors are of the ETB subtype and that 125I-ET-1 binds to both ETA and ETB receptors with the same high affinity, whereas 125I-ET-3 binds to only ETB receptors with high affinity. In addition, in the presence of BQ123 [cyclo(D-Trp,D-Asp,L-Pro,D-Val,L-Leu)], a selective antagonist for ETA receptors, 125I-ET-1 binding was decreased by 50%, whereas 125I-ET-3 binding was unaffected. Our results strongly suggest that rat kidney cortex contains ETA and ETB receptors in a 50:50 ratio and that sarafotoxin 6c and BQ123 are valuable tools in identifying the subtypes of ET receptors in various tissues.  相似文献   

18.
In isolated guinea-pig bronchial preparations the selective endothelin ETB agonist, IRL 1620 caused a concentration-dependent contraction. The pD2 value (7.16 +/- 0.09, n = 6) was significantly increased in the presence of peptidase inhibitors (thiorfan 1 microM, captopril 1 microM, bestatin 1 microM) (pD2 = 7.75 +/- 0.09, n = 6). Indomethacin (5 microM) did not appear to influence the ETB-agonist pD2 value (6.92 + 0.11, n = 6) but potentiated its maximal response significantly (67.23 +/- 4.81% vs. 53.37 +/- 4.80%). The concentration-response curve for the contractile response to IRL 1620 (pD2=7.83 +/- 0.01, n=16); was reproducible, although not completely, since the second curve to this selective ETB agonist was shifted significantly to the right (pD2 = 7.34 +/- 0.09, n = 16) and a decrease in the maximal response was observed (20.0 +/- 2.0%). BQ 788, a selective antagonist for ETB receptors, employed in concentrations ranging from 1.5 to 150 nM, caused a dose-dependent shift to the right of the concentration-response curve to IRL 1620, with a pIC50 value of 8.11 +/- 0.03; this action was not influenced by adding enzyme inhibitors (pIC50 = 8.17 +/- 0.29). Our data show that IRL 1620 undergoes a hydrolytic metabolism in guinea-pig bronchial preparations, which could influence the calculation of the pD2. Pretreatment of the tissue with peptidase inhibitors and indomethacin is consequently significant in the evaluation of IRL 1620 activity, while it does not influence the action of the antagonist, BQ 788.  相似文献   

19.
1. The present study characterizes the receptors responsible for endothelin-1-induced release of thromboxane A2 from the guinea pig lung and of endothelium-derived nitric oxide from the rabbit perfused kidney, by the use of the selective ETA receptor antagonist, BQ-123, and a novel selective ETB receptor antagonist, BQ-788. 2. In the guinea pig perfused lung, endothelin-1 (ET-1) (5 nM) induced a marked increase of thromboxane A2 which was reduced by 17 +/- 5.0, 70 +/- 1.0 and 93 +/- 1.2% by BQ-788 infused at concentrations of 1, 5 and 10 nM respectively. In contrast, BQ-123 (0.1 and 1.0 microM) had little or no effect on the ET-1-induced release of thromboxane A2. 3. In the same perfused model, the selective ETB agonist, IRL 1620 (50 nM), stimulated the release of thromboxane A2, but not prostacyclin. The eicosanoid-releasing properties of IRL 1620 were abolished by BQ-788 at 10 nM, yet were unaffected by BQ-123 (1 microM). 4. In the rabbit perfused kidney, BQ-788 (10 nM) potentiated the increase of perfusion pressure induced by endothelin-1 (1, 5 and 10 nM) by approximately 90%, but not that induced by angiotensin II (1 microM). Furthermore, the selective ETB receptor antagonist did not reduce the release of prostacyclin triggered by either peptide. 5. In another series of experiments, pretreatment of the perfused kidney with a nitric oxide synthase inhibitor, L-NAME (100 microM), potentiated the pressor responses to both endothelin-1 and angiotensin II. Under L-NAME treatment, BQ-788 did not further potentiate the pressor response to endothelin-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
1. We measured the ratio of ETA and ETB sub-types in the media (containing mainly smooth muscle) of human cardiac arteries (aorta, pulmonary and coronary), internal mammary arteries and saphenous veins. 2. In saturation experiments, [125I]-endothelin-1 ([125I]-ET-1) bound with high affinity to the media of each vessel (n = 3 individuals or homogenate preparations +/- s.e. mean): coronary artery, KD = 0.14 +/- 0.02 nM, Bmax = 71.0 +/- 21.0 fmol mg-1 protein; pulmonary artery, KD = 0.85 +/- 0.25 nM, Bmax = 15.2 +/- 10.3 fmol mg-1 protein; aorta, KD = 0.51 +/- 0.02 nM, Bmax = 9.4 +/- 4.4 fmol mg-1 protein; internal mammary artery. KD = 0.34 +/- 0.31 nM, Bmax = 2.0 +/- 0.5 fmol mg-1 protein and saphenous vein, KD = 0.28 +/- 0.05 nM, Bmax = 52.8 +/- 1.0 fmol mg-1 protein. In each vessel, over the concentration-range tested, Hill slopes were close to unity and a one site fit was preferred to a two site model. 3. In competition binding assays, the ETA selective ligand, BQ123 inhibited the binding of 0.1 nM [125I]-ET-1 to the media in a biphasic manner. In each case, a two site fit was preferred to a one or three site model: coronary artery, KDETA = 0.85 +/- 0.03 nM, KDETB = 7.58 +/- 2.27 microM, ratio = 89:11%; pulmonary artery, KDETA = 0.27 +/- 0.05 nM, KDETB = 24.60 +/- 5.34 microM, ratio = 92:8%; aorta, KDETA = 0.80 +/- 0.40 nM, KDETB = 2.67 +/- 2.60 microM ratio = 89:11%; saphenous vein, KDETA = 0.55 +/- 0.17 nM, KDETB = 14.4 +/- 0.26 microM, 85:15% (n = 3 individuals or homogenate preparations +/- s.e. mean). BQ123 showed up to 18000 fold selectivity for the ETA over the ETB sub-type. The ETA-selective ligand, [125I]-PD151242 labelled 85% of the receptors detected by a fixed concentration of [125I]-ET-1 in media of internal mammary artery, measured by quantitative autoradiography. In contrast, the density of ETB receptors detected with [125I]-BQ3020 was 7.0 +/- 1.5 amol mm-2, representing about 8% of [125I]-ET-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号