首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vigabatrin, a γ-amino butyric acid (GABA) transaminase inhibitor, is known to inhibit partial epilepsy in humans. The spontaneously epileptic rat (SER), a double mutant (zi/zi, tm/tm), exhibits both tonic convulsion and absence-like seizures from the age of 8 weeks. Hippocampal CA3 pyramidal neurons in SER show a long-lasting depolarization shift with accompanying repetitive firing when a single stimulus is delivered to the mossy fibers in slice preparations. The effects of vigabatrin on the abnormal excitability of hippocampal CA3 pyramidal neurons in SER were examined to elucidate the mechanism underlying the antiepileptic action of the drug. Intracellular recordings were performed in 24 hippocampal slice preparations of 20 SER aged 8–17 weeks old. Bath application of vigabatrin (1 mM) inhibited the depolarizing shifts with repetitive firing induced by mossy fiber stimulation in 15 min without affecting the first spike and resting membrane potentials in hippocampal CA3 neurons of SER. A higher dose of vigabatrin (10 mM) sometimes inhibited the first spike. However, vigabatrin at doses up to 10 mM did not significantly affect the single action potential elicited by stimulation of the mossy fibers in the hippocampal CA3 neurons of age-matched Wistar rats. In addition, application of vigabatrin (10 mM) did not significantly affect the firing induced by depolarizing pulse applied in the CA3 neurons of the SER, nor the miniature excitatory postsynaptic potential (mEPSP) recorded in the CA3 neurons of SER. The inhibitory effect of vigabatrin (1 mM) on the mossy fiber stimulation-induced depolarization shift with repetitive firing was blocked by concomitant application of bicuculline (10 μM), a GABAA receptor antagonist. These findings strongly suggested that GABA increased by inhibition of GABA transaminase with vigabatrin inhibits abnormal excitation of hippocampal CA3 neurons of SER via GABAA receptors, although the possibility that the drug acted directly on the GABAA receptors of CA3 neurons could not be completely excluded.  相似文献   

2.
PURPOSE: Hippocampal CA3 neurons of spontaneously epileptic rats (SER; zi/zi, tm/tm), which show both absence-like seizures and tonic convulsions, exhibit a long-lasting depolarization shift with repetitive firing with a single stimulation of mossy fibers. Therefore a whole-cell patch-clamp study using temporarily dissociated hippocampal CA3 neurons from SER was performed to elucidate whether such abnormal excitability was due to abnormalities in voltage-dependent Ca(2+) channels (VDCCs). METHODS: Hippocampal CA3 neurons were temporarily dissociated with enzymatic and mechanical treatments. In a voltage-clamp mode with whole-cell recording, depolarizing step pulses were applied to induce Ca(2+) currents in the presence of tetrodotoxin and tetraethylammonium. RESULTS: The threshold level of the Ca(2+) current induced by depolarizing pulses was found to be lower in hippocampal CA3 neurons of SER compared with those of control Wistar rats. In addition, the Ca(2+) current peak amplitude was greater, and decay of the current was weaker in CA3 neurons of SER than in those of normal Wistar rats. CONCLUSIONS: These findings suggest that enhancements of Ca(2+) influx into hippocampal CA3 neurons due to the easier activation properties of VDCCs, as well as a decrease in decay, are involved in SER epileptic seizures.  相似文献   

3.
Levetiracetam (LEV) is a widely used antiepileptic agent for partial refractory epilepsy in humans. LEV has unique antiepileptic effects in that it does not inhibit electroshock- or pentylenetetrazol-induced convulsion, but does inhibit seizures in kindling animal and spontaneously epileptic rat (SER: zi/zi, tm/tm) that shows both tonic convulsion and absence-like seizures. LEV also has unique characteristics in terms of its antiepileptic mechanism; it has no activity on Na+ and K+ channels or on glutamate and GABAA receptors. Recently, we found that LEV inhibits the depolarization shift and accompanying repetitive firing induced by mossy fiber stimulation in CA3 neurons of SER hippocampal slices. Therefore, this study was performed to determine whether LEV could inhibit the voltage-activated L-type Ca2+ current of hippocampal CA3 neurons obtained from SER and the non-epileptic Wistar rat. As previously reported, SER CA3 neurons were classified into type 1 and type 2 neurons. The application of LEV (100 μM) elevated the threshold for activation of the Ca2+ current, which was lowered in SER type 1 neurons and reduced the current size. Type 2 neurons of SER have a similar current–voltage relationship to Wistar rat neurons and the decay component of Ca2+ current during depolarization pulse in type 2 neurons was found to be smaller than that in Wistar rat neurons. LEV (100 μM) also reduced Ca2+ current in SER type 2 neurons. The effects of LEV were examined on such type 2 SER hippocampal CA3 neurons, compared with those on Wistar rat CA3 neurons. Application of LEV (10 μM) produced a significant decrease of amplitude of the Ca2+ current in SER neurons, although at this concentration of LEV there was no statistically significant decrease in the amplitude of Ca2+ current in Wistar rat neurons. Furthermore, LEV (100 nM–1 mM) reduced the Ca2+ current in a concentration-dependent manner in both SER and Wistar rat neurons, but the inhibition was much more potent in the former neurons than in the latter. Under the condition that the Ca2+ current had already been inhibited by LEV (10 μM), the addition of nifedipine (10 μM) did not cause further inhibition. Conversely, LEV had no effects on the current that had already been decreased by nifedipine (10 μM) given before LEV treatment (10 μM), indicating that LEV could act on the L-type Ca2+channel. LEV elevated the threshold potential level for activation of the Ca2+ current and reduced the L-type Ca2+ current in type 1 neurons of SER, and the inhibitory action in type 2 neurons was much more potent than that in Wistar rat neurons, suggesting that these effects contribute, at least partly, to the antiepileptic action of LEV.  相似文献   

4.
This study was performed to determine whether the intracellular Ca2+ concentration ([Ca2+]i) is increased in hippocampal CA3 neurons of spontaneously epileptic rats (SER) which show both absence-like and convulsive seizures using hippocampal slices loaded with Calcium Green-1 when a weak single stimulation is given to the mossy fiber. [Ca2+]i in the CA3 area was significantly increased after a single stimulus to mossy fibers in SER, while no changes were detected in normal Wistar rats. These findings suggest the existence of an abnormality in the Ca2+ channel in the SER CA3 region and that this is probably responsible for epileptic seizures.  相似文献   

5.
6.
Topiramate, a novel antiepileptic drug, inhibits the seizures of spontaneously epileptic rat (SER), a double mutant (zi/zi, tm/tm) which exhibits both tonic convulsion and absence-like seizures from the age of 8-weeks. Hippocampal CA3 pyramidal neurons in SER show a long-lasting depolarization shift with accompanying repetitive firing when a single electrostimulation is delivered to the mossy fibers in vitro. The effects of topiramate on the excitability of CA3 pyramidal neurons in SER were examined to elucidate the mechanism underlying the antiepileptic action. Intracellular recordings were performed in 23 hippocampal slice preparations of 16 SER aged 8–17 weeks. Topiramate (10–100 μM) dose-dependently inhibited the depolarizing shifts with repetitive firing induced by mossy fiber stimulation without affecting the first spike and resting membrane potentials in hippocampal CA3 neurons of SER. Higher dose of topiramate (100 μM) sometimes inhibited the first spike, and decreased excitatory postsynaptic potentials in the SER CA3 neurons. However, topiramate up to 100 μM did not affect the single action potential elicited by the stimulation in the hippocampal CA3 neurons of age-matched Wistar rat devoid of the seizure. Application of topiramate (100 μM) did not significantly affect the firing induced by depolarizing pulse applied in the CA3 neurons of the SER. In addition, topiramate (100 μM) had no effects on the Ca2+ spike induced by intracellularly applied depolarizing pulse in the presence of tetrodotoxin and tetraethylammonium. In contrast, a dose-dependent inhibition of depolarization and repetitive firing induced by bath application of glutamate in CA3 pyramidal neurons was obtained with topiramate (10–100 μM). Furthermore, topiramate (100 μM) decreased the number of miniature postsynaptic potential of CA3 pyramidal neurons of SER. In patch clamp whole cell recording using acutely dissociated hippocampal CA3 neurons from SER aged 8-weeks and age-matched normal Wistar rats, there were no remarkable effects on voltage dependent Ca2+ current with topiramate up to 300 μM in either animal; the current was completely blocked by Cd2+ at a concentration of 1 mM. These findings suggest that topiramate inhibits release of glutamate from the nerve terminals and/or abnormal firing of the CA3 pyramidal neurons of SER by mainly blocking glutamate receptors in the neurons.  相似文献   

7.
Noda epileptic rat (NER), originally found in a colony of Crj; Wistar rats, shows spontaneous tonic–clonic convulsion characterized by the appearance of high voltage polyspikes in cortical and hippocampal EEG once every 2–3 days after 2–4 months of age. Electrophysiological studies using hippocampal slice preparations of NER were performed to determine whether hippocampal neurons have abnormal excitability. When a single stimulus (1–25 V) was delivered to the mossy fibers of NER at 4–6 weeks old before they showed any seizures, a long-lasting depolarization shift (DS) accompanied by repetitive firings and after-hyperpolarization following the abnormal firing was observed in seven of 14 hippocampal CA3 neurons. A lower stimulation intensity evoked DS and abnormal firing in three of nine CA3 neurons of NER at 10–15 weeks old which had already showed seizures at 10–15 weeks of age. However, the abnormal firing was not observed in any 10 neurons of the animals at more than 20 weeks old nor in Wistar rats. The input impedances of CA3 neurons in NER with abnormal firing were lower than those without abnormal firing and those in Wistar rats. The abnormal excitability obtained in NER at an age when it did not display any seizures suggests that the hippocampus may play a role in epileptogenicity in NER.  相似文献   

8.
The monosynaptic EPSP between cultured hippocampal neurons is mediated by activation of 2 classes of excitatory amino acid receptors. Kainate or quisqualate receptors generate a fast conventional EPSP, while NMDA receptors mediate a slow, voltage-sensitive EPSP. Recently, 2 substances have been shown to modulate the activity of the NMDA receptor-channel complex: glycine increases the probability of channel opening, while zinc acts as a noncompetitive antagonist. Since these substances are present in the CNS and thus may function as neuromodulators, we have examined their role in excitatory synaptic transmission in hippocampal cultures using the whole-cell-patch-recording technique. The slow, NMDA-receptor-mediated EPSP was strikingly dependent on the presence of a conditioning substance that gradually accumulated in the extracellular fluid during a 30 min incubation in physiological saline. Washout of the conditioned medium eliminated the slow EPSP, and perfusion with physiological saline containing 1 microM glycine restored the slow EPSP to control levels. Furthermore, conditioned medium collected from astroglial-only cultures also potentiated the response to NMDA. Zinc (20-50 microM) overcame the potentiation of the response by glycine and resulted in a reversible block of the slow EPSP, providing the first evidence for a direct action of zinc on excitatory synaptic transmission. Our results show that the expression of the slow EPSP may be subject to regulation by several endogenous substances: positive modulation by glycine (or a glycine-like substance), which can be released from astroglial cells, and negative modulation by physiological levels of zinc.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The mechanisms underlying the generation of febrile seizures are poorly understood. We suggest that high temperature contributes to febrile seizures and specifically tested the hypothesis that hyperthermia suppressed GABAA-receptor-mediated inhibition in hippocampal neurons using whole-cell patch clamp recordings. We found that heating from a baseline temperature of 32 degrees C to 40 degrees C suppressed the peak amplitude of GABAA-receptor-mediated inhibitory postsynaptic currents (IPSCs) by 50+/-4.7% and decreased the decay time constant of IPSCs by 60.6+/-6.7% in immature CA1 neurons in the rat hippocampus. This inhibitory effect partly results from reduced IPSC conductance and increased GABA uptake, as demonstrated by the fact that GABA uptake blocker N-(4,4-diphenyl-3-butenyl)-3-piperidinecarboxylic acid (SKF89976A) significantly reduced the peak suppression and decay time decrease of the IPSC during hyperthermia. In addition, hyperthermia (40 degrees C) produced a significantly larger depression of the IPSC peak than the slope or peak of the excitatory postsynaptic current (EPSC), and IPSCs recovered slower than EPSCs after hyperthermia. The larger decrease in GABAA-receptor-mediated inhibition during and after hyperthermia, as compared with excitation, may shift the excitation/inhibition balance and contribute to the generation of febrile seizures.  相似文献   

10.
Argiotoxin 636, (AR636), a synaptic antagonist from orb weaver spider venom, is shown produce reversible blockade of excitatory transmission in CA1 pyramidal neurons of the in vitro rat hippocampus. Microtopical applicationof AR636 (5–50 nM) resulted in a concentration-dependent suppression of the amplitude of the dendritic field EPSP recorded from stratum radiatum, and the amplitude of the population spike recorded from stratum pyramidale in response to stimulation of the Schaffer collaterals. The maximum effect of AR636 occured at about 15–25 min. These effects were reversible after washing with toxin-free physiological solution with the rate of recovery having an inverse relationships to the concnetration of AR636. In contrast to the effects observed with orthodromic stimulation, the amplitude of the antidromic spike was not affected by exposure to AR636. The temporal pattern GABAergic paired-pulse inhibition was unaffected by exposure to AR636. Neuronal discharge elicited by pressure injection of -glutamate was abolished by AR636, whereas, responses to -aspartate were not significantlu affected. These data suggest that AR636 functionsas a selective antagonist of glutamate-mediated synaptic transmission in rat hippocampus.  相似文献   

11.
In rat hippocampal CA1 neurons, excitatory synaptic transmission is depressed following a 20 Hz, 30 s stimulation in the stratum radiatum. This depression lasts for at least 25 min post-tetanus (long-term depression, LTD). The LTD is significantly enhanced by about 20% if rats were sleep-deprived for 12 h prior to recording. The increase in LTD following sleep-deprivation is a new finding which can have implications for hippocampal neuronal excitability, network activity, and induction of long-term potentiation and may account for post-sleep deprivation amnesia.  相似文献   

12.
Glutamate is the major excitatory transmitter in CNS although it causes severe brain damage by pathologic excitotoxicity. Efficient neurotransmission is controlled by powerful protection and support afforded by specific high-affinity glutamate transporters in neurons and glia, clearing synaptic glutamate. While the role of glial cells in glutamate uptake is well defined, the role of neuronal transporters remains poorly understood. The evaluation of impact of neuronal transporters on spontaneous and evoked EPSC in hippocampal CA1 neurons within a model ‘single bouton preparation’ by pre- and postsynaptic uptake was addressed.In whole-cell patch clamp experiments the influence of blocking, pre- or both pre- and postsynaptic glutamate transporters (GluT) on spontaneous and evoked postsynaptic currents (sEPSC and eEPSC), was examined by manipulating the content of intracellular solution. Suppressing GluT by non-transportable inhibitor TBOA (10 μM) led to remarkable alteration of glutamate uptake process and was reflected in measurable changes of general properties of synaptic currents.Elimination of intracellular K+ concentration required for glutamate transporter operation by using Cs+-based internal solution (postsynaptic GluTs are non-functional apriori), causes the deficient of presynaptic glutamate transporters. Applied in such conditions glutamate transporter inhibitor TBOA (10 μM) affected the occurrence of synaptic event and thus unregulated the transmitter release. eEPSCs were generally suppressed both in amplitude (to 48.73 ± 7.03% vs. control) and in success rate (Rsuc) by TBOA (from 91.1 ± 7.5% in control to 79.57 ± 13.2%). In contrast, with K+-based solution in patch pipette (pre- and postsynaptic GluT are intact), amplitude of eEPSC was substantially potentiated by pre-treatment with TBOA (152.1 ± 11%), whereas (Rsuc) was reduced to 79.8 ± 8.3% in average. The identical reduction of event success rate as well as increased pair-pulse ratios (PPF ratio) for eEPSC in both cases indicates the effect of TBOA on presynaptic uptake. sEPSCs simultaneously recorded from neurons, showed the same pattern of regulation but with less potency, indicating the similar processes in most of excitatory synapses.In conclusion, presynaptic transporters are suggested to act mainly as negative feedback signal on presynaptic release and/or referred to vesicle refilling processes.  相似文献   

13.
Paul J  Gottmann K  Lessmann V 《Neuroreport》2001,12(12):2635-2639
BDNF and NT-3 can modulate the development and plasticity of central synaptic transmission. Although the expression of NT-3 and BDNF in the rodent hippocampus coincides during perinatal development, little is known about possible functional interactions between both neurotrophins in synaptic development. Here, we have investigated the effects of combined long-term application of NT-3 and BDNF on excitatory glutamatergic (mEPSC) and inhibitory GABAergic miniature synaptic currents (mIPSC) in cultured embryonic hippocampal neurons. Our results show that the BDNF-induced twofold increase in mEPSC frequency is abolished by pre-treatment with NT-3. In addition, the NT-3-induced twofold downregulation of mIPSC frequency is reversed by BDNF. Finally, the BDNF-induced increase in c-fos expression is reduced by 50% after pre-treatment with NT-3. In summary, these data suggest an NT-3 controlled modulation of BDNF signalling in differentiating hippocampal neurons.  相似文献   

14.
The modulatory action of substance P on synaptic transmission of CA1 neurons was studied using intra‐ or extracellular recording from the mouse hippocampal slice preparation. Bath‐applied substance P (2–4 μ m ) or the selective NK1 receptor agonist substance P methylester (SPME, 10 n m –5 μ m ) depressed field potentials (recorded from stratum pyramidale) evoked by focal stimulation of Schaffer collaterals. This effect was apparently mediated via NK1 receptors since it was completely blocked by the selective NK1 antagonist SR 140333. The field potential depression by SPME was significantly reduced in the presence of bicuculline. Intracellular recording from CA1 pyramidal neurons showed that evoked excitatory postsynaptic potentials (EPSPs) and evoked inhibitory postsynaptic potentials (IPSPs) were similarly depressed by SPME, which at the same time increased the frequency of spontaneous GABAergic events and reduced that of spontaneous glutamatergic events. The effects of SPME on spontaneous and evoked IPSPs were prevented by the ionotropic glutamate receptor blocker kynurenic acid. In tetrodotoxin (TTX) solution, no change in either the frequency of spontaneous GABAergic and glutamatergic events or in the amplitude of responses of pyramidal neurons to 4 μ m α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) or 10 μ m N ‐methyl‐ d ‐aspartate (NMDA) was observed. On the same cells, SPME produced minimal changes in passive membrane properties unable to account for the main effects on synaptic transmission. The present data indicate that SPME exerted its action on CA1 pyramidal neurons via a complex network mechanism, which is hypothesized to involve facilitation of a subset of GABAergic neurons with widely distributed connections to excitatory and inhibitory cells in the CA1 area.  相似文献   

15.
Yip S  Sastry BR 《Brain research》2000,864(1):1-12
During head injuries and hemorrhagic stroke, blood is released into the extravascular space. The pooled erythrocytes get lysed and hemoglobin is released into the intracranial cavities. Therefore, neurons may be exposed to hemoglobin and/or its breakdown products, hemin and iron, for long periods of time. In this study, the electrophysiological actions of these agents on synaptic transmission in rat hippocampal CA1 pyramidal neurons were studied using extracellular field- and whole cell patch-recordings. Previously our laboratory reported that commercially available hemoglobin produced a dose dependent suppression of synaptic transmission in hippocampal CA1 neurons. In the present study, however, we found that this depression was caused by impurities present in the hemoglobin samples. Commercially available hemoglobin and methemoglobin did not have a significant effect on synaptic transmission. Although, reduced-hemoglobin prepared using a method described by Martin et al. [J. Pharm. Exp. Ther. 232 (1985) 708], produced a significant depression of synaptic transients, these effects were due to contamination with bisulfite that was present due to the reducing procedure. Therefore, the technique of Martin et al. was inadequate in removing the reducing agents or their breakdown products. A number of studies in literature used commercial samples of hemoglobin or reduced hemoglobin prepared using the method of Martin et al. Our observations indicate that it would be important to determine if contaminants, rather than hemoglobin, are responsible for the observed effects in these studies. Unlike hemoglobin, its breakdown products, ferrous chloride and hemin, produced an irreversible and significant depression of field excitatory postsynaptic potentials. The relevance of these effects in neurological complications that follow head injuries and hemorrhagic stroke awaits further investigation.  相似文献   

16.
目的观察海人酸(KA)诱导的癫痫持续状态(SE)大鼠海马CA,区神经元线粒体与细胞核超微结构的损伤及caspase-3表达的变化。方法用KA诱导大鼠SE2h。分别于SE终止后第3h、12h、24h取海马CA,区制作切片,光镜下观察神经元的变化,电镜下观察线粒体和细胞核的超微结构;免疫组化方法检测相同部位caspase-3的表达变化。结果光镜下SE后24h神经元出现排列散乱、胞体皱缩、胞浆红染以及胞核固缩。电镜下SE后3h,可见线粒体嵴肿胀及膜的崩解;SE后24h细胞核染色质明显边聚。Caspase-3平均阳性细胞数及灰度值于SE后12h较正常对照组显著增加(均P〈0.05);24h出现极显著增加(均P〈0.01)。结论SE后早期海马神经元线粒体损伤可能是神经元损伤的关键环节。  相似文献   

17.
PURPOSE: Some evidence suggests that levetiracetam (LEV) possesses antiepileptogenic characteristics. The purpose of this study was to investigate the time course of seizure protection by LEV compared with that of phenytoin (PHT), phenobarbital (PB), valproate (VPA), and carbamazepine (CBZ) in the spontaneously epileptic rat (SER). The SER is a double mutant (tm/tm, zi/zi) showing both tonic convulsions and absence-like seizures. METHODS: The effect of single (40, 80, and 160 mg/kg, i.p.) and 5-day (80 mg/kg/day, i.p.) administration of LEV on tonic convulsions and absence-like seizures in SERs were studied. Tonic convulsions induced by blowing air onto the animal's head at 5-min intervals for 30 min and spontaneous absence-like seizures characterized by 5- to 7-Hz spike-wave-like complexes in the cortical and hippocampal EEG were recorded for 30 min. In the single-administration study, observations for seizure activity were performed once before and 3 times (45, 75, and 135 min) after drug administration. In the 5-day administration study, seizure observation was performed 4 times for 30 min (once before and 3 times after drug administration) during the 5-day drug-administration period, and continued once a day until 8 days after the final administration. The antiepileptic effects of 5-day administration of conventional AEDs (PHT, PB, VPA, and CBZ) were examined by using similar methods. RESULTS: Tonic convulsions and absence-like seizures were inhibited by a single administration of LEV at 80 and 160 mg/kg, i.p., but not significantly at 40 mg/kg, i.p. When LEV was repeatedly administered at 80 mg/kg/day, i.p., for 5 days to SERs, the inhibitory effects on seizures increased with administration time. The number of tonic convulsions and absence-like seizures were significantly reduced to 39.1% and 38.4% compared with previous values, respectively, after 5-day LEV administration. Furthermore, significant inhibition of tonic convulsions was detected 相似文献   

18.
Pyridostigmine, a carbamate acetylcholinesterase (AChE) inhibitor, is routinely employed in the treatment of the autoimmune disease myasthenia gravis. Due to its positively charged ammonium group, under normal conditions pyridostigmine cannot cross the blood-brain barrier (BBB) and penetrate the brain. However, several studies have suggested that under conditions in which the BBB is disrupted, pyridostigmine enters the brain, changes cortical excitability, and leads to long-lasting alterations in gene expression. The aim of this study was to characterize the mechanisms underlying pyridostigmine-induced changes in the excitability of central neurons. Using whole cell intracellular recordings in hippocampal neurons we show that pyridostigmine decreases repetitive firing adaptation and increases the appearance of excitatory postsynaptic potentials. In voltage clamp recordings, both pyridostigmine and acetylcholine (ACh) increased the frequency but not the amplitude of excitatory postsynaptic currents. These effects were reversible upon the administration of the muscarinic receptor antagonist, atropine, and were not blocked by tetrodotoxin. We conclude that pyridostigmine, by increasing free ACh levels, causes muscarinic-dependent enhancement of excitatory transmission. This mechanism may explain central side effects previously attributed to this drug as well as the potency of AChE inhibitors, including nerve-gas agents and organophosphate pesticides, in the initiation of cortical synchronization, epileptic discharge, and excitotoxic damage.  相似文献   

19.
目的 观察大鼠海马神经元在激活物作用下γ-氨基丁酸(GABA。)受体的表达,进一步探讨癫痫发病机制。方法 将大鼠海马神经尢被戊四氮(PTZ)作用后的激活物(实验组)及无血清培养基(对照组)注入大鼠侧脑室后观察其行为、脑电图(EEG)及脑组织GABA,受体表达的变化。结果 实验组大鼠注射后15~30min出现Ⅱ~Ⅲ级惊厥反应,EEG呈短程中高幅尖波、尖慢复合波;对照组的行为及EEG未见异常;各时点实验组大鼠脑组织GABA、免疫反应阳性细胞表达明显低于对照组(均P〈0.05),对照组GABA,免疫反应阳性细胞广泛分布于大脑皮质、海马回、齿状回。结论 海马神经元激活物具有明显致痫作用,其致痫效应与GABAA受体含量下降有关。  相似文献   

20.
Masako Isokawa 《Brain research》1998,810(1-2):241-250
Visualization of neurons during patch clamp recordings from slices provides concurrent neuroanatomical information for physiological studies. Although, the technique becomes increasingly popular in immature brains, it has not been fully utilized in aged/adult and diseased brains including post-surgical human specimen. In the present study, glutamatergic modulation of GABAA receptor-mediated inhibition was investigated by whole-cell patch clamp recordings from visualized hippocampal dentate granule cells (DGCs) in slices that were prepared from surgically-removed human medial temporal lobe specimens and the rat pilocarpine model of temporal lobe epilepsy. GABAA receptor-mediated synaptic inhibition was recorded by isolating inhibitory postsynaptic currents (IPSCs) at a membrane potential of 0 mV where glutamatergic excitatory postsynaptic currents are near equilibrium. Peak amplitude of GABAA IPSC was not different between epileptic DGCs of both human and pilocarpine-treated rat hippocampi and those in the control rat DGCs. However, when high frequency stimulation (30 Hz for 10 s) preceded immediately before the generation of a GABAA IPSC, its peak amplitude was significantly reduced in epileptic DGCs. The application of an NMDA receptor antagonist prevented this decrease indicating that the high frequency stimulation activated the NMDA receptor and that this activation is involved in the induction of response-decrement of GABAA IPSCs in epileptic DGCs. In addition, intracellular application of a calcium chelator, BAPTA through a patch pipette was found effective in preventing the response-decrement of GABAA IPSCs suggesting that postsynaptic calcium-increase is also involved in this process. It is proposed that activation of the NMDA receptor in epileptic DGC may trigger an epileptogenic increase of intracellular free calcium, and this calcium-increase plays a crucial role for the induction of the response-decrement of GABAA IPSCs in epileptic hippocampus, which possibly leads to the initiation of epileptic seizures and ictal events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号