首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dibenzopyran (Delta(9)-tetrahydrocannabinol) and aminoalkylindole [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrolol[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl) methanone mesylate; (WIN55,212-2)] cannabinoids suppress vomiting produced by cisplatin via cannabinoid CB(1) receptors. This study investigates the antiemetic potential of the "nonclassical" cannabinoid CP55,940 [1alpha,2beta-(R)-5alpha]-(-)-5-(1,1-dimethyl)-2-[5-hydroxy-2-(3-hydroxypropyl) cyclohexyl-phenol] against cisplatin-induced vomiting and assesses the presence and functionality of cannabinoid CB(1) receptors in the least shrew (Cryptotis parva) brain. CP55,940 (0.025-0.3 mg/kg) reduced both the frequency of cisplatin-induced emesis (ID(50)=0.025 mg/kg) and the percentage of shrews vomiting (ID(50)=0.09 mg/kg). CP55,940 also suppressed shrew motor behaviors (ID(50)=0.06- 0.21 mg/kg) at such doses. The antiemetic and motor-suppressant actions of CP55,940 were countered by SR141716A [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide], indicating both effects are cannabinoid CB(1) receptor-mediated. Autoradiographic studies with [3H]-SR141716A and [35S]-GTPgammaS binding revealed that the distribution of the cannabinoid CB(1) receptor and its activation pattern are similar to rodent brain and significant levels are present in brain loci (e.g., nucleus tractus solitarius (NTS)) that control emesis. The affinity rank order of structurally diverse cannabinoid ligands for cannabinoid CB(1) receptor in shrew brain is similar to rodent brain: HU-210=CP55,940=SR141716A>/=WIN55,212-2>/=delta-9-tetrahydrocannabinol>methanandamide=HU-211=cannabidiol=2-arachidonoylglycerol. This affinity order is also similar and is highly correlated to the cannabinoid EC(50) potency rank order for GTPgammaS stimulation except WIN55,212-2 and delta-9-tetrahydrocannabinol potency order were reversed. The affinity and the potency rank order of tested cannabinoids were significantly correlated with their antiemetic ID(50) potency order against cisplatin-induced vomiting (CP55,940>WIN55,212-2=delta-9-tetrahydrocannabinol) as well as emesis produced by 2-arachidonoylglycerol or SR141716A (CP55,940>WIN55,212-2>delta-9-tetrahydrocannabinol).  相似文献   

2.
The behavioral effects evoked by cannabinoids are primarily mediated by the CB(1) and CB(2) cannabinoid receptor subtypes. In vitro pharmacology of cannabinoid receptors has been elucidated using recombinant expression systems expressing either CB(1) or CB(2) receptors, with limited characterization in native cell lines endogenously expressing both CB(1) and CB(2) receptors. In the current study, we report the molecular and pharmacological characterization of the F-11 cell line, a hybridoma of rat dorsal root ganglion neurons and mouse neuroblastoma (N18TG2) cells, reported to endogenously express both cannabinoid receptors. The present study revealed that both receptors are of mouse origin in F-11 cells, and describes the relative gene expression levels between the two receptors. Pharmacological characterization of the F-11 cell line using cannabinoid agonists and antagonists indicated that the functional responses to these cannabinoid ligands are mainly mediated by CB(1) receptors. The non-selective cannabinoid ligands CP 55,940 and WIN 55212-2 are potent agonists and their efficacies in adenylate cyclase and MAPK assays are inhibited by the CB(1) selective antagonist SR141716A (SR1), but not by the CB(2) selective antagonist SR144528 (SR2). The endocannabinoid ligand 2AG, although not active in adenylate cyclase assays, was a potent activator of MAPK signaling in F-11 cells. The analysis of CB(1) and CB(2) receptor gene expression and the characterization of cannabinoid receptor pharmacology in the F-11 cell line demonstrate that it can be used as a tool for interrogating the endogenous signal transduction of cannabinoid receptor subtypes.  相似文献   

3.
Sphingosine-1-phosphate (S1P) and cannabinoid receptors are G-protein-coupled receptors that mediate the effects of S1P and endocannabinoids, respectively. Cannabinoid receptors also mediate the effects of Delta9-tetrahydrocannabinol, the primary psychoactive ingredient in marijuana, whereas S1P receptors contribute to the immunosuppressant effects of 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720). FTY720 is a sphingosine analog that can prevent renal graft rejections and suppress a variety of autoimmune disorders in animal models and clinical trials. We now report that both FTY720 and sphingosine interact with CB1 but not CB2 cannabinoid receptors. FTY720 and sphingosine inhibited the binding of the CB1-selective antagonist [3H]N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide ([3H]SR141716A) and the cannabinoid agonist [3H](-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol ([3H]CP55,940) in a concentration-dependent manner in both CB1-expressing cell lines and mouse cerebellum. However, these compounds did not significantly alter [3H]CP55,940 binding to CB2 receptors. In G-protein activation assays, FTY720 and sphingosine inhibited the maximal stimulation of guanosine 5'-O-(3-[35S]thio)triphosphate binding by the cannabinoid agonist R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212-2) in a concentration-dependent manner, and this antagonist effect was not mimicked by S1P. FTY720 and sphingosine also inhibited activation of extracellular signal-regulated kinases 1 and 2 and Akt by WIN55,212-2 in intact Chinese hamster ovary (CHO) cells expressing CB1 receptors and attenuated WIN55,212-2-stimulated internalization of a fluorescence-tagged CB1 receptor in CHO cells. Moreover, both FTY720 and sphingosine produced rightward shifts in the concentration-effect curves of cannabinoid agonists for G-protein activation, indicating that they act as competitive CB1 antagonists. These results suggest that the CB1 receptor could be a novel target of FTY720 and that sphingosine could be an endogenous CB11 antagonist.  相似文献   

4.
Excised outside-out patches from HEK293 cells stably transfected with the human (h) 5-HT3A receptor cDNA were used to determine the effects of cannabinoid receptor ligands on the 5-HT-induced current using the patch clamp technique. In addition, binding studies with radioligands for 5-HT3 as well as for cannabinoid CB1 and CB2 receptors were carried out. The 5-HT-induced current was inhibited by the following cannabinoid receptor agonists (at decreasing order of potency): 9-THC, WIN55,212-2, anandamide, JWH-015 and CP55940. The WIN55,212-2-induced inhibition was not altered by SR141716A, a CB1 receptor antagonist. WIN55,212-3, an enantiomer of WIN55,212-2, did not affect the 5-HT-induced current. WIN55,212-2 did not change the EC50 value of 5-HT in stimulating current, but reduced the maximum effect. The CB1 receptor ligand [3H]-SR141716A and the CB1/CB2 receptor ligand [3H]-CP55940 did not specifically bind to parental HEK293 cells. In competition experiments on membranes of HEK293 cells transfected with the h5-HT3A receptor cDNA, WIN55,212-2, CP55940, anandamide and SR141716A did not affect [3H]-GR65630 binding, but 5-HT caused a concentration dependent-inhibition. In conclusion, cannabinoids stereoselectively inhibit currents through recombinant h5-HT3A receptors independently of cannabinoid receptors. Probably the cannabinoids act allosterically at a modulatory site of the h5-HT3A receptor. Thus the functional state of the receptor can be controlled by the endogenous ligand anandamide. This site is a potential target for new analgesic and antiemetic drugs.  相似文献   

5.
We studied whether serotonin release in the CNS is inhibited via cannabinoid receptors. In mouse brain cortex slices preincubated with [3H]serotonin and superfused with medium containing indalpine and metitepine, tritium overflow was evoked either electrically (3 Hz) or by introduction of Ca2+ (1.3 mM) into Ca2+-free K+-rich (25 mM) medium containing tetrodotoxin. The effects of cannabinoid receptor ligands on the electrically evoked tritium overflow from mouse brain cortex slices preincubated with [3H]choline and on the binding of [3H]WIN 55,212-2 and [35S]GTPgammaS to mouse brain cortex membranes were examined as well. In superfused mouse cortex membranes preincubated with [3H]serotonin, the electrically evoked tritium overflow was inhibited by the cannabinoid receptor agonist WIN 55,212-2 (maximum effect of 20%, obtained at 1 microM; pEC50=7.11) and this effect was counteracted by the CB1 receptor antagonist SR 141716 (apparent pA2=8.02), which did not affect the evoked tritium overflow by itself. The effect of WIN 55,212-2 was not shared by its enantiomer WIN 55,212-3 but was mimicked by another cannabinoid receptor agonist, CP-55,940. WIN 55,212-2 also inhibited the Ca2+-evoked tritium overflow and this effect was antagonized by SR 141716. Concentrations of histamine, prostaglandin E2 and neuropeptide Y, causing the maximum effect at their respective receptors, inhibited the electrically evoked tritium overflow by 33, 69 and 73%, respectively. WIN 55,212-2 (1 microM) inhibited the electrically evoked tritium overflow from mouse brain cortex slices preincubated with [3H]choline by 49%. [3H]WIN 55,212-2 binding to mouse cortex membranes was inhibited by CP-55,940, SR 141716 and WIN 55,212-2 (pKi=9.30, 8.70 and 8.19, respectively) but not by the auxiliary drugs indalpine, metitepine and tetrodotoxin (pKi<4.5). [35S]GTPgammaS binding was increased by WIN 55,212-2 (maximum effect of 80%, pEC50=6.94) but not affected by WIN 55,212-3. In conclusion, serotonin release in the mouse brain cortex is inhibited via CB1 receptors, which may be located presynaptically and are not activated by endogenous cannabinoids. The extent of inhibition is smaller than that obtained (1) via another three presynaptic receptors on serotoninergic neurones and (2) via CB1 receptors on cholinergic neurones in the same tissue.  相似文献   

6.
The effect of cannabinoid drugs on peristalsis in the guinea-pig ileum was studied. Peristalsis was induced by delivering fluid into the oral end of an isolated intestinal segment. Longitudinal muscle reflex contraction, threshold pressure and threshold volume to trigger peristalsis, compliance of the intestinal wall during the preparatory phase (a reflection of the resistance of the wall to distension) and maximal ejection pressure during the emptying phase of peristalsis were measured. The cannabinoid agonists WIN 55,212-2 (0.3 - 300 nM) and CP55,940 (0.3 - 300 nM) significantly decreased longitudinal muscle reflex contraction, compliance and maximal ejection pressure, while increased threshold pressure and volume to elicit peristalsis. These effects were not modified by the opioid antagonist naloxone (1 microM) and by the alpha-adrenoceptor antagonist phentolamine (1 microM). The inhibitory effect of both WIN 55,212-2 and CP55,940 on intestinal peristalsis was antagonized by the cannabinoid CB(1) receptor antagonist SR141716A (0.1 microM), but not by the cannabinoid CB(2) receptor antagonist SR144528 (0.1 microM). In absence of other drugs, the CB(1) receptor antagonists SR141716A (0.01 - 1 microM) and AM281 (0.01 - 1 microM) slightly (approximatively 20%) but significantly increased maximal ejection pressure during the empty phase of peristalsis without modifying longitudinal muscle reflex contraction, threshold pressure, threshold volume to trigger peristalsis and compliance. It is concluded that activation of CB(1) receptors reduces peristalsis efficiency in the isolated guinea-pig, and that the emptying phase of peristalsis could be tonically inhibited by the endogenous cannabinoid system.  相似文献   

7.
Affinities and efficacies of several reference cannabinoid ligands were investigated at central and peripheral cannabinoid receptors in three different species (rat, mouse, and human). The tested compounds belong to different chemical classes such as classical and non-classical terpene derivatives (Delta(8)-THC, Delta(9)-THC, HU 210, CP 55,940, CP 55,244, CP 55,243 and CP 47,947), aminoalkylindole (WIN 55,212-2, WIN 55,212-3) and diarylpyrazole cannabinoids (SR 141716A, SR 144528). As cannabinoid receptors have been shown to be mainly coupled to Gi/o type G- proteins, and by using the [(35)S]-GTPgammaS nucleotide binding modulation, we characterized the functional activity of these ligands which can act as agonists (positive intrinsic activity), partial agonists (partial positive intrinsic activity), antagonists (no intrinsic activity), or inverse agonists (negative intrinsic activity). To our knowledge, some derivatives (Delta(8)-THC, WIN 55,212-3, CP 55,243 and CP 47,947) have never been characterized in [(35)S]-GTPgammaS binding assays and up to now, this study represents the largest survey of reference cannabinoids performed in unique experimental conditions and in the same laboratory.  相似文献   

8.
Cannabinoid drugs differ in their rank order of potency to produce analgesia versus other central nervous system effects. We propose that these differences are due to unique agonist-bound cannabinoid CB1 receptor conformations that exhibit different affinities for individual subsets of intracellular signal transduction pathways. In order to test this hypothesis, we have used plasmon-waveguide resonance (PWR) spectroscopy, a sensitive method that can provide direct information about ligand-protein and protein-protein interactions, and can detect conformational changes in lipid-embedded proteins. A recombinant epitope-tagged human cannabinoid CB1 receptor was expressed in insect Sf9 cells, solubilized and purified using two-step affinity chromatography. The purified receptor was incorporated into a lipid bilayer on the surface of the PWR resonator. PWR spectroscopy demonstrated that cannabinoid agonists exhibit high affinity (KD=0.2+/-0.03 nM and 2+/-0.4 nM for CP 55,940 and WIN 55,212-2, respectively) for the purified epitope tagged hCB(1) receptor. Interestingly however, these structurally different cannabinoid agonists shifted the PWR spectra in opposite directions, indicating that CP 55,940 and WIN 55,212-2 binding leads to different hCB1 receptor conformations. Furthermore, PWR experiments also indicated that these CP 55,940-and WIN 55,212-bound hCB1 receptor conformations exhibit slightly different affinities to an inhibitory G protein heterotrimer, Gi1 (KD=27+/-8 nM and KD=10.7+/-4.7 nM, respectively), whereas they strikingly differ in their ability to activate this G protein type.  相似文献   

9.
Our earlier studies demonstrated that in the hippocampus, cannabinoids suppress inhibitory synaptic transmission via CB(1) cannabinoid receptors, whereas a novel cannabinoid-sensitive receptor modulates excitatory synapses (Katona, I. et al., Journal of Neuroscience 19 (1999) 4544; Hájos, N. et al., European Journal of Neuroscience 12 (2000) 3239; Hájos, N. et al., Neuroscience 106 (2001) 1). The novel receptor does not correspond to CB(2), since this receptor type is not expressed in the brain (Munro, S. et al., Nature 365 (1993) 61). Recent binding experiments revealed that the synthetic cannabinoid WIN 55,212-2 binds with lower affinity to brain membranes of CB(1) receptor-knockout mice indicating that pharmacological differences exist between these two types of cannabinoid receptors in the hippocampus (Breivogel et al., Molecular Pharmacology 60 (2001) 155). To analyze this difference in detail, we first determined the EC(50) values of WIN 55,212-2 for excitatory and inhibitory transmission in rat hippocampal slices using whole-cell patch-clamp recordings. The estimated EC(50) value for inhibitory postsynaptic currents (IPSC) evoked by electrical stimulation in CA1 pyramidal cells was 0.24 microM, whereas for excitatory postsynaptic currents (EPSC) it was 2.01 microM, respectively. The cannabinoid antagonist, AM251, blocked the WIN 55,212-2-induced inhibition of evoked IPSCs, but not of EPSCs, providing evidence for its selectivity for CB(1). We then tested the hypothesis of whether the cannabinoid effect on hippocampal excitatory neurotransmission is mediated via receptors with an affinity for vanilloid ligands. Co-application of the vanilloid receptor antagonist capsazepine (10 microM) with cannabinoids (WIN55,212-2 or CP55,940) prevented the reduction of EPSCs, but not of IPSCs. The amplitude of evoked EPSCs was also suppressed by superfusion of the vanilloid receptor agonist capsaicin (10 microM), an effect which could also be antagonized by capsazepine. In contrast, capsaicin did not change the amplitude of evoked IPSCs.These results demonstrate that WIN 55,212-2 is an order of magnitude more potent in reducing GABAergic currents via CB(1) than in inhibiting glutamatergic transmission via the new CB receptor. The sensitivity of the new CB receptor (and EPSCs) to vanilloid ligands, but not to the cannabinoid antagonist AM251, represents another pharmacological tool to distinguish the two receptors, since CB(1) (and its effect on IPSCs) is not modulated by vanilloids, but is antagonized by AM251.  相似文献   

10.
BACKGROUND AND PURPOSE: Noradrenaline and ATP are sympathetic co-transmitters. In the rat perfused mesenteric bed cannabinoids have been shown to modify the overall response to sympathetic nerve stimulation. This study has assessed whether cannabinoid receptor activation modulates differentially the noradrenergic and purinergic components of sympathetic vasoconstriction. EXPERIMENTAL APPROACH: Rat mesenteric beds were perfused with physiological salt solution and the effects of cannabinoids on responses to nerve stimulation, or exogenous noradrenaline or alpha,beta-methylene ATP (alpha,beta-meATP; P2X receptor agonist) were determined after raising tone with U46619. The effects of cannabinoids on the noradrenaline and ATP components of sympathetic neurotransmission were assessed using the alpha 1-adrenoceptor antagonist, prazosin, or after P2X receptor desensitization with alpha,beta-meATP. KEY RESULTS: Anandamide, WIN 55,212-2 and CP55,940 attenuated sympathetic neurogenic vasoconstrictor responses. The inhibitory actions of anandamide and WIN 55,212-2 were blocked by LY320135, a CB1 receptor antagonist, but not by SR144528, a CB2 receptor antagonist. The inhibitory actions of CP55,940 were unaffected by LY320135 and SR144528. WIN 55,212-3, the inactive S(-) enantiomer of WIN 55,212-2, had no effect on sympathetic neurogenic responses. None of the cannabinoids affected contractile responses to exogenous noradrenaline or alpha,beta-meATP. Anandamide and WIN 55,212-2 inhibited both the noradrenaline and ATP components of the sympathetic neurogenic contractile responses, with effects on the ATP component being most marked. CONCLUSIONS AND IMPLICATIONS: These results indicate that prejunctional CB1-like receptors mediate the sympathoinhibitory action of anandamide and WIN 55,212-2, but not CP55,940, in the rat mesenteric bed. Cannabinoids inhibit both the noradrenergic and purinergic components of sympathetic neurotransmission.  相似文献   

11.
Rats with a previous history of heroin self-administration were studied to assess interactions occurring between cannabinoids and opioids in an animal model of reinstatement of heroin-seeking behaviour. Rats were trained to self-administer heroin and after a long-term extinction were primed with one of the following non-contingent non-reinforced drug administrations: saline (or vehicle), heroin, synthetic cannabinoid CB1 receptor agonists (WIN 55,212-2 or CP 55,940), opioid antagonist (naloxone) or CB1 antagonist (SR 141716A), alone or in combination. After primings, lever-pressing activity was recorded and compared to those observed during previous phases of training and extinction. Results of this study showed that (i) priming injections of heroin (0.1 mg/kg) as well as CB1 agonists WIN 55,212-2 (0.15 or 0.30 mg/kg) and CP 55,940 (0.05 or 0.1 mg/kg) completely restore heroin-seeking behaviour; (ii) primings of naloxone (1 mg/kg) and SR 141716A (0.3 mg/kg) had no effect when administered alone; (iii) heroin-induced reinstatement was fully prevented by pre-treatment with either naloxone or SR 141716A; (iv) pre-treatment with SR 141716A significantly reduced WIN 55,212-2 and CP 55,940 priming effects. These results suggest that cannabinoid CB1 receptors play an important role in the mechanisms underlying relapse to heroin-seeking and depict CB1 antagonists as possible therapeutic agents for use in the prevention of relapse to heroin abuse.  相似文献   

12.
1. CP 50,556, CP 55,940, nabilone, CP 56,667, delta 9 -tetrahydrocannabinol (THC) and cannabinol each inhibited electrically-evoked contractions of the myenteric plexus-longitudinal muscle preparation of guinea-pig small intestine in a concentration-related manner. The IC50 values of these cannabinoids, respectively 3.45, 3.46, 30.61, 162.94, 214.63, and 3913.5 nM, correlate well with previously obtained potency values for displacement of [3H]-CP 55,940 from cannabinoid binding sites. 2. Electrically-evoked contractions of the myenteric plexus-longitudinal muscle preparation were also inhibited by AM 630 (6-iodo-pravadoline) and by WIN 55,212-2 (IC50 = 1923.0 and 5.54 nM, respectively). The present finding that AM 630 is an agonist, contrasts with a previous observation that it behaves as a cannabinoid receptor antagonist in the mouse isolated vas deferens. 3. SR141716A produced dose-related parallel rightward shifts in the log concentration-response curves of CP 55,940, WIN 55,212-2, THC and AM 630 for inhibition of electrically-evoked contractions of the myenteric plexus-longitudinal muscle preparation. SR141716A (1 microM) did not reverse the inhibitory effects of normorphine and clonidine on electrically-evoked contractions or potentiate the contractile response to acetylcholine. 4. Doses of naloxone and yohimbine that reversed the inhibitory effects of normorphine or clonidine on electrically-evoked contractions of the myenteric plexus-longitudinal muscle preparation did not affect the inhibitory response to WIN 55,212-2. 5. Electrically-evoked release of acetylcholine from strips of myenteric plexus-longitudinal muscle was decreased by 200 nM CP 55,940 and this inhibitory effect was almost completely reversed by 1 microM SR141716A. Acetylcholine-induced contractions were not affected by 200 nM CP 55,940. 6. These results support the hypothesis that guinea-pig small intestine contains prejunctional cannabinoid CB1 receptors through which cannabinoids act to inhibit electrically-evoked contractions by reducing release of the contractile transmitter, acetylcholine. 7. THC was found to be more susceptible to antagonism by SR141716A than CP 55,940 or AM 630, raising the possibility that guinea-pig small intestine contains more than one type of cannabinoid receptor. 8. At concentrations of 10 nM and above, SR141716A produced small but significant increases in the amplitude of electrically-evoked contractions of the myenteric plexus-longitudinal muscle preparation suggesting that this tissue may release an endogenous cannabinoid receptor agonist or that some cannabinoid receptors in this tissue are precoupled and that SR141716A can reduce the number of receptors in this state.  相似文献   

13.
The vascular effects of cannabinoids have been compared in the rat isolated aorta. Delta9-Tetrahydrocannabinol (THC), anandamide and N-arachidonoyl-dopamine (NADA) all caused vasorelaxation to similar degrees in pre-constricted aortae. Vasorelaxation to THC was inhibited by in vivo pre-treatment with pertussis toxin (10 microg/kg) or with the synthetic cannabinoid CP55,940 (((-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol), acutely or chronically), exposure to capsaicin in vitro (10 microM for 1 h), and de-endothelialisation. Vasorelaxation to anandamide was only inhibited by pertussis toxin and chronic CP55,940 pre-treatment (0.4 mg/kg for 11 days). Vasorelaxation to NADA was inhibited by pertussis toxin and chronic CP55,940 pre-treatment, and by de-endothelialisation. The vasorelaxant effects of the cannabinoids were not inhibited by cannabinoid CB1 receptor antagonism; however, vasorelaxation to both CP55,940 and THC was inhibited by cannabinoid CB2 receptor antagonism. Vasorelaxation to all cannabinoids was enhanced in the presence of indomethacin (10 microM). THC also caused vasoconstriction of the aorta while anandamide, NADA, CP55,940 and WIN 55,212-2 (R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4benzoxazin-yl]-(1-naphthalenyl)methanone mesylate) did not. The vasoconstrictor effects of THC were inhibited by in vivo pre-treatment with pertussis toxin or CP55,940, acute exposure to CP55,940, cannabinoid CB1 receptor antagonism and cyclooxygenase inhibition. These results demonstrate the opposing vascular effects of cannabinoids in the rat aorta, and although vasorelaxation to each of the cannabinoids is of similar magnitude, it is mediated through different pathways. This gives further indication of the different vascular actions of cannabinoid compounds.  相似文献   

14.
BACKGROUND AND PURPOSE: The ability of cannabinoids to suppress mechanical hypersensitivity (mechanical allodynia) induced by treatment with the chemotherapeutic agent vincristine was evaluated in rats. Sites of action were subsequently identified. EXPERIMENTAL APPROACH: Mechanical hypersensitivity developed over the course of ten daily injections of vincristine relative to groups receiving saline at the same times. Effects of the CB1/CB2 receptor agonist WIN55,212-2, the receptor-inactive enantiomer WIN55,212-3, the CB2-selective agonist (R,S)-AM1241, the opiate agonist morphine and vehicle on chemotherapy-induced neuropathy were evaluated. WIN55,212-2 was administered intrathecally (i.t.) or locally in the hindpaw to identify sites of action. Pharmacological specificity was established using competitive antagonists for CB1 (SR141716) or CB2 receptors (SR144528). KEY RESULTS: Systemic administration of WIN55,212-2, but not WIN55,212-3, suppressed vincristine-evoked mechanical allodynia. A leftward shift in the dose-response curve was observed following WIN55,212-2 relative to morphine treatment. The CB1 (SR141716) and CB2 (SR144528) antagonists blocked the anti-allodynic effects of WIN55,212-2. (R,S)-AM1241 suppressed vincristine-induced mechanical hypersensitivity through a CB2 mechanism. Both cannabinoid agonists suppressed vincristine-induced mechanical hypersensitivity without inducing catalepsy. Spinal sites of action are implicated in cannabinoid modulation of chemotherapy-induced neuropathy. WIN55,212-2, but not WIN55,212-3, administered i.t. suppressed vincristine-evoked mechanical hypersensitivity at doses that were inactive following local hindpaw administration. Spinal coadministration of both the CB1 and CB2 antagonists blocked the anti-allodynic effects of WIN55,212-2. CONCLUSIONS AND IMPLICATIONS: Cannabinoids suppress the maintenance of vincristine-induced mechanical allodynia through activation of CB1 and CB2 receptors. These anti-allodynic effects are mediated, at least in part, at the level of the spinal cord.  相似文献   

15.
We have studied the effects of the cannabinoid receptor agonists (R)-(+)[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2, 3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (WIN 55,212-2, 0. 3-5 mg/kg, i.p.) and (-)-cis-3-[2-hydroxy-4-(1, 1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol) (CP 55,940, 0.03-1 mg/kg, i.p.), the cannabinoid CB(1) receptor antagonist (N-piperidin-1-yl)-5-(4-chlorophenyl)-1-2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A, 0. 3-5 mg/kg, i.p.) and the cannabinoid CB(2) receptor antagonist N-[-(1S)-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazo le- 3-carboxamide (SR144528, 1 mg/kg, i.p.) on intestinal motility, defaecation and castor-oil (1 ml/100 g rat, orally)-induced diarrhoea in the rat. SR141716A, but not SR144528, increased defaecation and upper gastrointestinal transit, while WIN 55,212-2 and CP 55,940 decreased upper gastrointestinal transit but not defaecation. WIN 55,212-3 (5 mg/kg), the less active enantiomer of WIN 55,212-2, was without effect. A per se non-effective dose of SR141716A (0.3 mg/kg), but not of SR144528 (1 mg/kg) or the opioid receptor antagonist, naloxone (2 mg/kg i.p.), counteracted the inhibitory effect of both WIN 55,212-2 (1 mg/kg) and CP 55,940 (0.1 mg/kg) on gastrointestinal motility. WIN 55,212-2 did not modify castor-oil-induced diarrhoea, while CP 55,940 produced a transient delay in castor-oil-induced diarrhoea at the highest dose tested (1 mg/kg), an effect counteracted by SR141715A (5 mg/kg). These results suggest that (i) intestinal motility and defaecation could be tonically inhibited by the endogenous cannabinoid system, (ii) exogenous activation of cannabinoid CB(1) receptors produces a reduction in intestinal motility in the upper gastrointestinal tract but not in defaecation, (iii) endogenous or exogenous activation of cannabinoid CB(2) receptors does not affect defaecation or intestinal motility and (iv) the cannabinoid receptor agonist, CP 55, 940, possesses a weak and transient antidiarrhoeal effect while the cannabinoid receptor agonist, WIN 55,212-2, does not possess antidiarrhoeal activity.  相似文献   

16.
We have investigated the binding site of the subtype specific antagonist SR 144528, (N-[(1S)-endo-1,3,3-trimethyl bicyclo [2.2. 1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methoxybenzyl)- pyrazo le-3-carboxamide) on the human cannabinoid CB(2) receptor based on functional studies with mutated receptors. Two serine residues in the fourth transmembrane region, Ser(161) and Ser(165), were singly mutated to the cognate cannabinoid CB(1) receptor residue, alanine, and each gave receptors with wild-type properties for the cannabinoid agonists CP 55,940 (1R,3R,4R)-3-[2-hydroxy-4-(1, 1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol) and WIN 55212-2 (R)-(+)[2, 3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1, 4-benzoxazin-6-yl](1-naphthalenyl) methanone, which SR 144528 completely failed to antagonise. Molecular modelling studies show that SR 144528 interacts with residues in transmembrane domains 3, 4, and 5 of the cannabinoid CB(2) receptor through a combination of hydrogen bonds and aromatic and hydrophobic interactions. In addition, the replacement by serine of a nearby cannabinoid CB(2) receptor-specific residue, Cys(175) resulted in wild-type receptor properties with CP 55,940, loss of SR 144528 binding and eight-fold reduced binding and activity of WIN 55212-2, a result compatible with a recently-proposed binding site model for WIN 55212-2.  相似文献   

17.
RATIONALE: Recent studies have shown that the cannabinoid CB1 receptor antagonist, SR 141716, is capable of reducing voluntary ethanol intake in rodents, suggesting the involvement of the CB1 receptor in the neural circuitry mediating the positive reinforcing properties of ethanol. OBJECTIVES: The present study extended to the agonists the investigation on the pharmacological manipulation of ethanol intake by cannabinoid agents. METHODS: Selectively bred, Sardinian alcohol-preferring (sP) rats were offered ethanol and water under the two-bottle free choice procedure with unlimited access for 24 h/day. RESULTS: The acute administration of WIN 55,212-2 (0.5-2 mg/kg; IP) and CP 55,940 (3-30 microg/kg; IP) induced a significant, dose-dependent increase in ethanol intake. Conversely, water consumption and intake of regular food and a highly palatable sucrose solution were not affected by treatment with WIN 55,212-2 and CP 55,940. The stimulatory effect of WIN 55,212-2 and CP 55,940 on ethanol intake was completely prevented by administration of SR 141716 (0.3 mg/kg; IP) and the opioid receptor antagonist, naloxone (0.1 mg/kg; IP). CONCLUSIONS: Administration of WIN 55,212-2 and CP 55,940 promoted voluntary ethanol intake in sP rats. This effect was mediated by stimulation of the cannabinoid CB1 receptor and required the activation of the endogenous opioid system. The results of the present study add further support to the hypothesis that the cannabinoid CB1 receptor is part of the neural substrate regulating ethanol intake. These results are also discussed in terms of WIN 55,212-2 and CP 55,940 administration possibly fixing to a higher level the hedonic set-point mechanism regulating ethanol drinking behavior in sP rats.  相似文献   

18.
Active cannabimimetic drugs are known to bind to two receptor subtypes: one, called CB1, is mainly localised in the central nervous system while the other (CB2) is expressed preferentially in the immune system. SR 141716A has been demonstrated to have a nanomolar affinity for CB1 receptor subtypes and a micromolar affinity for CB2 receptors. Moreover, it is an effective antagonist at these receptors both in vitro (antagonism of cannabinoid activity in vas deferens) and in vivo (suppression of the hypothermia elicited by WIN 55,212-2). The present experiments were thus undertaken to investigate the role of CB1 receptors in cannabinoid discrimination. Rats were trained to discriminate WIN 55,212-2 (0.3mg/kg s.c.) from saline in a standard operant (FR10) food rewarded discrimination procedure. Acquisition of the discrimination required 16 days on average and the ED(50) of WIN 55,212-2 was 0.032mg/kg s.c. CP55,940 and delta-9-tetrahydrocannabinol (Delta(9)-THC) generalised to the WIN 55,212-2 stimulus with the respective ED(50)s of 0.007mg/kg (s.c.) and 0.64mg/kg (p.o.). Pretreatment with SR 141716A antagonised the cue elicited by WIN 55,212-2 (ED(50) = 1.6mg/kg) as well as the generalisation to CP 55,940 (ED(50) = 0.08mg/kg) and to Delta(9)-THC (ED(50) = 0.15mg/kg). SR 140098 is a CB1 antagonist as potent as SR 141716A in vitro. This compound is unlikely to pass into the brain since it failed to displace [(3)H]-CP55, 940 from rat brain membranes ex vivo, and to reverse WIN 55,212-2-induced hypothermia. SR 140098, in contrast to SR 141716A, did not antagonise the WIN 55,212-2 stimulus. Taken together, the present results demonstrate that the brain CB1 receptor subtype mediates the cannabinoid cue.  相似文献   

19.
We have investigated the effects of cannabinoid agonists and antagonists on tumour necrosis factor-alpha (TNF-alpha)-induced secretion of interleukin-8 from the colonic epithelial cell line, HT-29. The cannabinoid receptor agonists [(-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)-phenyl]4-[3-hydroxypropyl]cyclo-hexan-1-ol] (CP55,940); Delta-9-tetrahydrocannabinol; [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl) methyl] pyrrolo[1,2,3-de]1,4-benzoxazin-6-yl](1-naphthyl) methanone mesylate] (WIN55,212-2) and 1-propyl-2-methyl-3-naphthoyl-indole (JWH 015) inhibited TNF-alpha induced release of interleukin-8 in a concentration-dependent manner. The less active enantiomer of WIN55212-2, [S(-)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]1,4-benzoxazin-6-yl](1-naphthyl) methanone mesylate (WIN55212-3), and the cannabinoid CB(1) receptor agonist arachidonoyl-2-chloroethylamide (ACEA) had no significant effect on TNF-alpha-induced release of interleukin-8. The cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1,4-pyrazole-3-carboxamide hydrochloride (SR141716A; 10(-6) M) antagonised the inhibitory effect of CP55,940 (pA(2)=8.3+/-0.2, n=6) but did not antagonise the inhibitory effects of WIN55212-2 and JWH 015. The cannabinoid CB(2) receptor antagonist N-(1,S)-endo1,3,3-trimethylbicyclo(2,2,1)heptan-2-yl)-5(4-chloro-3-methyl-phenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; 10(-6) M) antagonised the inhibitory effects of CP55,940 (pA(2)=8.2+/-0.8, n=6), WIN55212-2 (pA(2)=7.1+/-0.3, n=6) and JWH 015 (pA(2)=7.6+/-0.3, n=6), respectively. Western immunoblotting of HT-29 cell lysates revealed a protein with a size that is consistent with the presence of cannabinoid CB(2) receptors. We conclude that in HT-29 cells, TNF-alpha-induced interleukin-8 release is inhibited by cannabinoids through activation of cannabinoid CB(2) receptors.  相似文献   

20.
Immunologic activation of mast cells through the cross-linking of high affinity IgE receptors results in the release of inflammatory mediators which are important in the pathogenesis of allergic reactions. Early studies investigating the effects of palmitoylethanolamide on animal models of inflammation and on rat mast cells led to the hypothesis that endogenous cannabinoids might act as local autacoids which suppressed inflammation by reducing the activation of mast cells. However, more recent studies produced contradicting results. In order to evaluate if cannabinoid receptors are present in mast cells, we studied the effects of endocannabinoids (anandamide and palmitoylethanolamide) and synthetic cannabimimetics (CP 55,940, WIN 55,212-2 and HU-210) on histamine release from rat peritoneal mast cells. When incubated with mast cells alone, only anandamide could induce significant level of histamine release at concentrations higher than 10(-6) M. When mast cells were activated with anti-IgE, the histamine release induced was not affected by anandamide, palmitoylethanolamide and CP 55,940. In contrast, both WIN 55,212-2 and HU-210 enhanced anti-IgE-induced histamine release at 10(-5) M and preincubation did not increase the potency. The histamine releasing action of anandamide and the enhancing effects of WIN 55,212-2 and HU-210 on anti-IgE-induced histamine release were not reduced by the cannabinoid receptor antagonists, AM 281 and AM 630. In conclusion, the present study does not support the hypothesis that cannabinoids suppress mast cell activation. Instead, some of the cannabinoid receptor-directed ligands tested enhanced mast cell activation. However, the high concentrations required and the failure of cannabinoid receptor antagonists to reverse such effects also question the existence of functional cannabinoid receptors in mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号