共查询到20条相似文献,搜索用时 46 毫秒
1.
In many studies, ErbB4 expression in breast tumor samples correlates with a favorable patient prognosis. Similarly, ErbB4 signaling is coupled to cellular differentiation and growth arrest in a variety of model systems. However, in some studies, ErbB4 expression in breast tumor samples correlates with poor outcome. Likewise, studies using some human mammary tumor cell lines suggest that ErbB4 is coupled to malignant phenotypes. Thus, the roles that ErbB4 plays in human breast cancer are still poorly defined. Here we demonstrate that a constitutively active ErbB4 mutant (ErbB4-Q646C) inhibits colony formation on plastic by two human mammary tumor cell lines (SKBR3 and MCF7) and by the MCF10A immortalized human mammary cell line, but does not inhibit colony formation by the MDA-MB-453 and T47D human mammary tumor cell lines. ErbB4 kinase activity is necessary for ErbB4 function and phosphorylation of ErbB4 Tyr1056 is necessary and appears to be sufficient for ErbB4 function. The inhibition of colony formation by MCF10A cells is accompanied by growth arrest but not cell death. These data suggest that ErbB4 behaves as a mammary tumor suppressor and that loss of ErbB4 coupling to growth arrest may be an important event in mammary tumorigenesis. 相似文献
2.
The ligands of the epidermal growth factor family and their receptors, the ErbB proteins, have been linked to the development of different types of cancer. Particular attention has focused on ErbB2, whose activation may occur by receptor overexpression or by ligand-induced oligomerization with other ErbB receptors. Whether these two modes of ErbB2 activation cause the same biological responses is unknown. Here, we uncovered important differences in the signaling, proliferation rates, and the response to anti-ErbB2 antibodies when comparing MCF7 cells expressing the ligand neuregulin, to MCF7 cells overexpressing ErbB2. Expression of neuregulin caused higher proliferation than ErbB2 overexpression. Transmembrane neuregulin expression was accompanied by constitutive activation of ErbB2, ErbB3, and ErbB4 receptors. ErbB2 overexpression caused tyrosine phosphorylation of ErbB2, whereas ErbB3 and ErbB4 were only slightly tyrosine phosphorylated. Autocrine transmembrane neuregulin also caused constitutive activation of several signaling pathways, such as the Erk1/2, Erk5, and Akt routes, which have been linked to breast cancer cell proliferation. Interestingly, expression of neuregulin increased p21 levels and this was required for the proliferation of MCF7 cells. Treatment with the anti-ErbB2 receptor antibody Herceptin had an inhibitory effect on proliferation only in cells expressing neuregulin but not on cells overexpressing ErbB2, and its inhibitory activity was accompanied by a decrease in p21. These results suggest that Herceptin may also be of help in the treatment of tumors in which neuregulin feeds the tumoral tissue. 相似文献
4.
Purpose: Overexpression of the ErbB family of growth factor receptors is present in a wide variety of human tumors and is correlated with poor prognosis. The purpose of this study was to determine the effects of a novel small molecule ErbB tyrosine kinase inhibitor, CI-1033, in combination with ionizing radiation on breast cancer cell growth and survival. Materials & Methods: Growth assays were performed on ErbB-overexpressing human breast cancer cells developed in our laboratory in the presence of 0.1–1.0 μM CI-1033 (Parke Davis). Clonogenic survival assays were performed in the presence of ionizing radiation with or without CI-1033. For some experiments, clonogen numbers, defined as the product of surviving fraction and total number of cells, were calculated at each time point during a course of multifraction radiation. Results: CI-1033 potently inhibited the growth of ErbB-overexpressing breast cancer cells. A single 48-h exposure of 1 μM CI-1033 resulted in growth inhibition for 7 days, whereas three times weekly administration resulted in sustained growth inhibition. Clonogenic survival was modestly decreased after a 7-day exposure to CI-1033. Exposure to both CI-1033 and radiation (6 Gy) yielded a 23-fold decrease in clonogenic survival compared to radiation alone. In a multifraction experiment, exposure to CI-1033 and three 5-Gy fractions of gamma radiation decreased the total number of clonogens in the population by 65-fold compared to radiation alone. Conclusion: CI-1033 results in potent growth inhibition and modest cytotoxicity of ErbB-overexpressing breast cancer cells, and has synergistic effects when combined with ionizing radiation. These data suggest that CI-1033 may have excellent clinical potential both alone and in combination with radiation therapy. 相似文献
5.
Ron, the receptor tyrosine kinase (RTK) for the macrophage stimulating protein (MSP), activates multiple signaling pathways by recruiting several positive regulators to a multifunctional docking site. Here we show that stimulation by MSP also recruits a negative regulator, the c-Cbl ubiquitin ligase, to the multifunctional docking site as well as to a juxtamembrane tyrosine autophosphorylation site. c-Cbl recruitment to these two sites results in polyubiquitylation of Ron molecules, which are subsequently sorted for endocytosis and degradation. Both the phosphotyrosine binding domain of c-Cbl and its RING domain are essential for downregulation of Ron. Although Ron and c-Cbl are found also in physical complexes that include Grb2, these associations are insufficient for productive ubiquitylation of Ron. Our results shed light on the mechanism of receptor desensitization mediated by c-Cbl and its binding partner Grb2. 相似文献
6.
Grb2-associated binder-1 (Gab1) is a pleckstrin homology (PH) domain-containing adapter molecule that is believed to function downstream of receptors for growth factors and cytokines. We previously found that deficiency in the mouse Gab1 gene led to embryonic lethality and defects in ERK activation in response to growth factors and cytokines. Here, we established immortalized Gab1-/- cell lines and analysed roles of Gab1 in growth factor-mediated signaling and oncogenesis. EGF-dependent activation of c-Raf and Mek1/2, which function upstream of ERKs, was perturbed in Gab1-/- cells. EGF-mediated upregulation of GTP-bound form of Ras was also reduced in these cells. EGF-dependent GTP/GDP exchange activity for Ras was suppressed in the Gab1-/- cells and expression of a constitutively active Sos restored ERK activation in these cells, indicating that Gab1 functions upstream of Ras. Furthermore, activated form of ErbB2 (active ErbB2)-mediated transformation, such as colony formation in soft agar and tumor formation in nude mice, was strongly suppressed when the Gab1-/- cells were transfected with active ErbB2, whereas the active Sos efficiently induced transformation of Gab1-/- cells. The data show that Gab1 plays an essential role in EGF-receptor/ErbB-mediated cell proliferation and oncogenesis. 相似文献
8.
Cellular transformation occurs only in cells that express both ErbB1 and ErbB4 receptors, but not in cells expressing only one or the other of these receptors. However, when both receptors are coexpressed and ligand-stimulated, they interact with virtually the same adaptor/effector proteins as when expressed singly. To reveal the underlying regulatory mechanism of the kinase/phosphatase network in ErbB homo- and heterodimer receptor signaling, extracellular signal-regulated kinase (ERK) and Akt activities were evaluated in the presence of several enzyme inhibitors in ligand-induced cells expressing ErbB1 (E1), ErbB4 (E4), and ErbB1/ErbB4 (E1/4) receptor. The PP2A inhibitor okadaic acid showed receptor-specific inhibitory profiles for ERK and Akt activities. Moreover, B-Raf isolated only from E1/4 cells could induce in vitro phosphorylation for MEK; this B-Raf kinase activity was abolished by pretreatment of the cells with okadaic acid. Our study further showed that the E1/4 cell-specific B-Raf activity was stimulated by PLC gamma and subsequent Rap1 activation. The present study suggests that B-Raf kinase, which was specifically activated in the cells coexpressing ErbB1 and ErbB4 receptors, elevates total ERK activity within the cell and, therefore, can induce cellular transformation. 相似文献
9.
Summary Since the mitogenic action of EGF is mediated by ligand-induced autophosphorylation of the EGF receptor (EGFR), and EGFR is commonly overexpressed in solid human tumours, inhibitors of receptor tyrosine kinase activity (RTK) could prove to be effective antitumour agents. Screening of a compound library using an EGF-RTK enzyme prepared from human tumour derived A431 cells identified a series of potent (IC 50<1µM) enzyme inhibitors. These inhibitors are quinazolines bearing a variety of substituted anilines at the 4-position. The most potent 4-anilinoquinazolines (IC 50 20nM) have small non-polar meta substituents on the aniline ring, and are competitive with ATP and non-competitive with substrate. The growth inhibitory activity of these agents was assessed in vitro using KB cells (human oral squamous tumour) grown in the absence or presence of EGF. A selected compound, 4-(3-chloroanilino)quinazoline (CAQ), inhibited EGF-stimulated growth in a concentration dependent manner and complete blockade was observed at concentrations (1–10 µM) which had no effect on basal growth. Selectivity of growth inhibition by CAQ was further exemplified in IGF1-stimulated KB cells where no effect was detected at concentrations which completely blocked EGF-stimulated growth. Similarly, CAQ blocked TGF-stimulated growth in MCF-7 human breast cancer cells without affecting insulin-stimulated growth. These studies define a novel class of EGF-RTK inhibitors which are also potent and selective inhibitors of EGF-stimulated human tumour cell growth in vitro.
Presented at the symposium "New Approaches in the Therapy of Breast Cancer", Georgetown University Medical Center, Washington DC, October 1994, generously supported by an education grant from Bristol-Myers Squibb. 相似文献
11.
The expression of the NH2 terminally truncated ErbB2 receptor (p95ErbB2) in breast cancer correlates with metastatic disease progression compared with the expression of full-length p185ErbB2. We now show that heregulin (HRG), but not EGF, stimulates p95ErbB2 phosphorylation in BT474 breast cancer cells. Furthermore, phospho-p95ErbB2 forms heterodimers with ErbB3, but not EGFR, while p185ErbB2 heterodimerizes with both EGFR and ErbB3. The predilection of p95ErbB2 to heterodimerize with ErbB3 provides an explanation for its regulation by HRG, an ErbB3 ligand. GW572016, a reversible small molecule inhibitor of EGFR and ErbB2 tyrosine kinases, inhibits baseline p95ErbB2 phosphorylation in BT474 cells and tumor xenografts. Inhibition of p95ErbB2, p185ErbB2, and EGFR phosphorylation by GW572016 resulted in the inhibition of downstream phospho-Erk1/2, phospho-AKT, and cyclin D steady-state protein levels. Increased phosphorylation of p95ErbB2 and AKT in response to HRG was abrogated to varying degrees by GW572016. In contrast, trastuzumab did not inhibit p95ErbB2 phosphorylation or the expression of downstream phospho-Erk1/2, phospho-AKT, or cyclin D. It is tempting to speculate that trastuzumab resistance may be mediated in part by the selection of p95ErbB2-expressing breast cancer cells capable of exerting potent growth and prosurvival signals through p95ErbB2-ErbB3 heterodimers. Thus, p95ErbB2 represents a target for therapeutic intervention, and one that is sensitive to GW572016 therapy. 相似文献
12.
Coexpression of the epidermal growth factor receptor (EGFR) family receptors is found in a subset of colon cancers, which may cooperatively promote cancer cell growth and survival, as heterodimerization is known to provide for diversification of signal transduction. Recently, efforts have been made to develop novel 4-anilinoquinazoline and pyridopyrimidine derivatives to inhibit EGFR and ErbB2 kinases simultaneously. In this study, we tested the efficacy of a novel reversible dual inhibitor GW572016 compared with the selective EGFR and ErbB2 tyrosine kinase inhibitors (TKI) AG1478 and AG879 and their combination, using the human colon adenocarcinoma GEO mode. GEO cells depend on multiple ErbB receptors for aberrant growth. A synergistic effect on inhibition of cell proliferation associated with induction of apoptosis was observed from the combination of AG1478 and AG879. Compared with AG1478 or AG879, the single TKI compound GW572016 was a more potent inhibitor of GEO cell proliferation and was able to induce apoptosis at lower concentrations. Western blot analysis revealed that AG1478 and AG879 were unable to suppress both EGFR and ErbB2 activation as well as the downstream mitogen-activated protein kinase (MAPK) and AKT pathways as single agents. In contrast, GW572016 suppressed the activation of EGFR, ErbB2, MAPK, and AKT in a concentration-dependent manner. Finally, in vivo studies showed that GW572016 treatment efficiently blocked GEO xenograft growth at a dose range of 30 to 200 mg/kg with a twice-daily schedule. In summary, our study indicates that targeting both EGFR and ErbB2 simultaneously could enhance therapy over that of single agents directed at EGFR or ErbB2 in cancers that can be identified as being primarily heterodimer-dependent. 相似文献
13.
c-Src non-receptor tyrosine kinase is an important component of the platelet-derived growth factor (PDGF) receptor signaling pathway. c-Src has been shown to mediate the mitogenic response to PDGF in fibroblasts. However, the exact components of PDGF receptor signaling pathway mediated by c-Src remain unclear. Here, we used stable isotope labeling with amino acids in cell culture (SILAC) coupled with mass spectrometry to identify Src-family kinase substrates involved in PDGF signaling. Using SILAC, we were able to detect changes in tyrosine phosphorylation patterns of 43 potential c-Src kinase substrates in PDGF receptor signaling. This included 23 known c-Src kinase substrates, of which 16 proteins have known roles in PDGF signaling while the remaining 7 proteins have not previously been implicated in PDGF receptor signaling. Importantly, our analysis also led to identification of 20 novel Src-family kinase substrates, of which 5 proteins were previously reported as PDGF receptor signaling pathway intermediates while the remaining 15 proteins represent novel signaling intermediates in PDGF receptor signaling. In validation experiments, we demonstrated that PDGF indeed induced the phosphorylation of a subset of candidate Src-family kinase substrates – Calpain 2, Eps15 and Trim28 – in a c-Src-dependent fashion. 相似文献
16.
Receptor tyrosine kinases (RTK) are therapeutic targets for the treatment of malignancy. However, tumor cells develop resistance to targeted therapies through the activation of parallel signaling cascades. Recent evidence has shown that redundant or compensatory survival signals responsible for resistance are initiated by nontargeted glycoprotein RTKs coexpressed by the cell. We hypothesized that disrupting specific functions of the posttranslational machinery of the secretory pathway would be an effective strategy to target both primary and redundant RTK signaling. Using the N-linked glycosylation inhibitor, tunicamycin, we show that expression levels of several RTKS (EGFR, ErbB2, ErbB3, and IGF-IR) are exquisitely sensitive to inhibition of N-linked glycosylation. Disrupting this synthetic process reduces both cellular protein levels and receptor activity in tumor cells through retention of the receptors in the endoplasmic reticulum/Golgi compartments. Using U251 glioma and BXPC3 pancreatic adenocarcinoma cell lines, two cell lines resistant to epidermal growth factor receptor-targeted therapies, we show that inhibiting N-linked glycosylation markedly reduces RTK signaling through Akt and radiosensitizes tumor cells. In comparison, experiments in nontransformed cells showed neither a reduction in RTK-dependent signaling nor an enhancement in radiosensitivity, suggesting the potential for a therapeutic ratio between tumors and normal tissues. This study provides evidence that enzymatic steps regulating N-linked glycosylation are novel targets for developing approaches to sensitize tumor cells to cytotoxic therapies. 相似文献
18.
Epidermal growth factor receptor (EGFR) and ErbB2 are currently recognized as validated target molecules in cancer treatment strategies. MP-412 (AV-412) is a potent dual inhibitor of EGFR and ErbB2 tyrosine kinases, including the mutant EGFR L858R,T790M, which is clinically resistant to the EGFR-specific kinase inhibitors erlotinib and gefitinib. In an enzyme assay, MP-412 inhibited the EGFR variants and ErbB2 in the nanomolar range with over 100-fold selectivity compared with other kinases, apart from abl and flt-1, which were both moderately sensitive to the compound. In cells, MP-412 inhibited autophosphorylation of EGFR and ErbB2 with IC 50 of 43 and 282 nM, respectively. It also inhibited epidermal growth factor (EGF)-dependent cell proliferation with an IC 50 of 100 nM. Moreover, MP-412 abrogated EGFR signaling in the gefitinib-resistant H1975 cell line, which harbors a double mutation of L858R and T790M in EGFR . In animal studies using cancer xenograft models, MP-412 (30 mg/kg) demonstrated complete inhibition of tumor growth of the A431 and BT-474 cell lines, which overexpress EGFR and ErbB2, respectively. MP-412 suppressed autophosphorylation of EGFR and ErbB2 at the dose corresponding to its antitumor efficacy. When various dosing schedules were applied, MP-412 showed significant effects with daily and every-other-day schedules, but not with a once-weekly schedule, suggesting that frequent dosing is preferable for this compound. Furthermore, MP-412 showed a significant antitumor effect on the ErbB2-overexpressing breast cancer KPL-4 cell line, which is resistant to gefitinib. These studies indicate that MP-412 has potential as a therapeutic agent for the treatment of cancers expressing EGFR and ErbB2, especially those resistant to the first generation of small-molecule inhibitors. ( Cancer Sci 2007; 98: 1977–1984) 相似文献
19.
We have determined the 3.2 A X-ray crystal structure of the extracellular domain of the human epidermal growth factor receptor 2 (ErbB2 or HER2) in a complex with the antigen binding fragment of pertuzumab, an anti-ErbB2 monoclonal antibody also known as 2C4 or Omnitarg. Pertuzumab binds to ErbB2 near the center of domain II, sterically blocking a binding pocket necessary for receptor dimerization and signaling. The ErbB2-pertuzumab structure, combined with earlier mutagenesis data, defines the pertuzumab residues essential for ErbB2 interaction. To analyze the ErbB2 side of the interface, we have mutated a number of residues contacting pertuzumab and examined the effects of these mutations on pertuzumab binding and ErbB2-ErbB3 heterodimerization. We have also shown that conserved residues previously shown to be necessary for EGF receptor homodimerization may be dispensible for ErbB2-ErbB3 heterodimerization. 相似文献
|