首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Evidence supporting a circadian control of natural killer cell function   总被引:4,自引:0,他引:4  
Natural killer (NK) cells participate in the immune response against infection and cancer. An emerging body of epidemiological data supports that circadian homeostasis may constitute a factor risk for cancer development. Physiological rhythms under circadian control persist in the absence of light entrainment and ultimately rely on a molecular clock. We have previously shown that NK cell cytolytic activity follows a daily rhythm and that NK cells enriched from light-entrained rats present 24-h oscillations of clock genes, cytolytic factors, and cytokines. To investigate whether these oscillations are under a genuine circadian control, we assessed the daily expression of clock genes (Per1, Per2, Clock, and Bmal1), a clock-controlled gene (Dbp), cytolytic factors (granzyme B and perforin), and cytokines (IFN-gamma and TNF-alpha) in NK cells enriched from rats maintained in constant darkness (DD). In addition, we investigated whether the disruption of the NK cell clock by RNA interference (RNAi) affects the expression of cytolytic factors and cytokines. Persistent 24-h oscillations were found in the expression levels of clock genes, cytolytic factors, and cytokines in NK cells enriched from DD rats. In addition, RNAi-mediated Per2 knockdown caused a significant decrease of granzyme B and perforin levels in the rat derived NK cell line RNK16. Taken together, these results provide evidence supporting that NK cell function is under circadian regulation.  相似文献   

2.
3.
We examined the effects of norepinephrine (NE), isoproterenol (ISO) and metaproterenol (MP) on natural killer (NK) cell cytolytic activity and on the protein and mRNA levels of the regulatory factors perforin and granzyme B and interferon-gamma (IFN-gamma) in splenocytes. NE, the beta-adrenergic agonist ISO, and the beta 2-selective-agonist MP all inhibited the protein and mRNA levels of perforin, granzyme B and mRNA levels of IFN-gamma. NE inhibited NK cell cytolytic activity as well. Furthermore, MP inhibition of granzyme B mRNA was blocked by the beta-antagonist nadolol. These data suggest that NE and beta-adrenergic agonists may inhibit NK cell cytolytic activity by regulating the production of perforin, granzyme B, and IFN-gamma in splenocytes.  相似文献   

4.
Natural killer (NK) cells are specialized innate lymphocytes important in the early defense against tumor and virus bearing cells. Many factors influence the immune system’s effectiveness against pathogens, including stress. Social disruption (SDR) “primes” macrophages/monocytes and dendritic cells thereby enhancing their anti-microbial function. What remains unclear is whether similar responses are evident in NK cells. Current studies investigated the cellular distribution and activation/inhibitory phenotypes of NK cells in the spleen, lung, and blood of C57BL/6 male mice following SDR. Furthermore, cytolytic activity and anti-viral cytokine production of splenic NK cells were determined. Lastly, β-adrenergic receptor (β-AR) signaling was investigated to determine possible mechanisms behind the SDR-induced NK cell alterations. Results indicated NK cells from SDR mice have increased expression of CD16 and CD69 and reduced NKG2a and Ly49a expression on splenic CD3?/DX5+ NK cells indicative of an activated phenotype, both immediately and 14 h post-SDR. Administration of propranolol (10 mg/kg; non-selective β-adrenergic receptor antagonist) was shown to block these “priming” effects at the 14 h time-point. In the lung, SDR had similar effects on activation and inhibitory receptors 14 h post-SDR, however no alterations were evident in the blood besides increased NK cells directly after SDR. Additionally, splenic NK cells from SDR mice had increased CD107a surface expression, cytolytic activity, and IFN-γ production was increased upon costimulation with IgG and IL-2 ex vivo. Collectively, these data suggest that social stress “primes” NK cells in the spleen and lung to be more proficient in their cytolytic and anti-viral/tumor effecter functions through β-adrenergic receptor dependent signaling.  相似文献   

5.
6.
It is well established that the circadian clock of the suprachiasmatic nuclei (SCN) is entrained by light. More recently, the potent effects of arousing, non-photic cues on the clock have been recognized. The neural mediators of non-photic entrainment are yet to be identified. To examine the contribution of the thalamic intergeniculate leaflet (IGL) and its NPY-immunopositive projection, the geniculo-hypothalamic tract to non-photic entrainment by arousal, male Syrian hamsters received lesions of the IGL (IGLX) which ablated NPY-immunoreactivity in the SCN. Their circadian responses to both photic and non-photic cues were then tested. Lesions resulted in a delay in the timing of activity onset following lights out, but had no effect on the behavioural or cellular circadian responses to phase-advancing light pulses presented at circadian time (CT) CT19 (where CT12 represents the time of activity onset). Injection with a benzodiazepine (chlordiazepoxide, 100 mg/kg) at CT6 suppressed wheel-running, increased general locomotion of intact controls and induced large phase advances of the circadian rhythm of wheel-running. Chlordiazepoxide also inhibited wheel-running in lesioned animals, but there was no significant increase in general locomotion and the lesioned animals did not phase advance. Serial arousal by injection of saline at intervals of 23.5 h for 6 days entrained the circadian rhythm of wheel-running of intact hamsters and was associated with an increase in general locomotor activity. Entrainment by serial arousal was abolished by IGLX. However, the lesioned animals did show a clear behavioural response to every presentation of the non-photic cue. These results show that the IGL is a necessary component of the neural pathways mediating both arousal- and benzodiazepine-induced non-photic entrainment.  相似文献   

7.
The nervous system affects immune regulation. We permanently ablated the sympathetic nervous system (SNS) of CBA mice with 6-OHDA at birth. Function of splenic natural killer (NK) cells in the sympathectomized mice was equivalent to controls at 2 weeks, but rose significantly above control levels at 4 weeks. NK cell function decreased below control values thereafter. NK cell numbers paralleled these changes in NK cell function. Our data suggest that the SNS may regulate the number and function of splenic NK cells during development.  相似文献   

8.
People with attention-deficit/hyperactivity disorder (ADHD) often experience sleep problems, and these are frequently exacerbated by the methylphenidate they take to manage their ADHD symptoms. Many of the changes to sleep are consistent with a change in the underlying circadian clock. The present study was designed to determine if methylphenidate alone could alter properties of the circadian clock. Young male mice were examined in light-dark cycles and in constant darkness and recordings were performed on behavioral activity, sleep, and electrical activity in the suprachiasmatic nucleus (SCN) of freely moving mice. Methylphenidate in the drinking water (0.08%) significantly increased activity in the mid-to-late night, and led to a delay in the onset of activity and sleep relative to the light-dark cycle. While locomotor levels returned to baseline after treatment ended, the phase angle of entrainment required at least a week to return to baseline levels. In constant darkness, the free-running period of both wheel-running and general locomotor rhythms was lengthened by methylphenidate. When the treatment ended, the free-running period either remained stable or only partially reverted to baseline levels. Methylphenidate also altered the electrical firing rate rhythms in the SCN. It induced a delay in the trough of the rhythm, an increment in rhythm amplitude, and a reduction in rhythm variability. These observations suggest that methylphenidate alters the underlying circadian clock. The observed changes are consistent with clock alterations that would promote sleep-onset insomnia.  相似文献   

9.
Normal aging processes, as well as, psychological stress affect the immune system; each can act alone, or interact with each other, to cause dysregulation of immune function substantially altering physical and mental health. The sympathetic nervous system (SNS), a major mediator of stress effects on immune function, is significantly affected by normal aging process, and stress can affect aging of the SNS. Previously, we have shown age-associated changes in sympathetic noradrenergic (NA) innervation of lymphoid organs in male rodents that affect immune regulation. The purpose of this study was to investigate sympathetic innervation of lymphoid organs and associated alterations in immune responses in young and aging female Fischer 344 (F344) rats. Histofluorescence and immunocytochemistry for NA innervation, and neurochemistry for norepinephrine (NE) levels were performed in the thymus, spleen, and mesenteric lymph nodes (MLN) isolated from 3-month-old young (normal estrous cycle), 8- to 9-month-old (onset of irregular estrous cycling), and 24-25 month, and 30-31 month female F344 rats (acyclic) at diestrus based on vaginal smears. Age-related alterations in natural killer (NK) cell activity, interleukin-2 (IL-2) and interferon-γ (IFN-γ) production, T and B lymphocyte proliferation were examined in splenocytes. Sympathetic NA innervation and NE levels increased with aging in the thymus, declined in spleen and MLN, and was accompanied by significant reductions in NK cell activity, IL-2 and IFN-γ production, and T and B cell proliferation in old female rats. In 8-9 mo rats, NE levels in the hilar region of the spleen and IFN-γ production were unaltered, while NE levels in the end region of the spleen and IL-2 production were reduced. Collectively, these results suggest that aging is characterized by significant alterations in sympathetic NA innervation in the thymus, spleen, and MLN associated with immunosuppression, and that there is a marked shift in NA activity and immune reactivity occurring during middle-aged female rats.  相似文献   

10.
11.
During physiological or psychological stress, catecholamines produced by the sympathetic nervous system (SNS) regulate the immune system. Previous studies report that the activation of β-adrenergic receptors (βARs) mediates the actions of catecholamines and increases pro-inflammatory cytokine production in a number of different cell types. The impact of the SNS on the immune modulation of social defeat has not been examined. The following studies were designed to determine whether SNS activation during social disruption stress (SDR) influences anxiety-like behavior as well as the activation, priming, and glucocorticoid resistance of splenocytes after social stress. CD-1 mice were exposed to one, three, or six cycles of SDR and HPLC analysis of the plasma and spleen revealed an increase in catecholamines. After six cycles of SDR the open field test was used to measure behaviors characteristic of anxiety and indicated that the social defeat induced increase in anxiety-like behavior was blocked by pre-treatment with the β-adrenergic antagonist propranolol. Pre-treatment with the β-adrenergic antagonist propranolol did not significantly alter corticosterone levels indicating no difference in activation of the hypothalamic-pituitary-adrenal axis. In addition to anxiety-like behavior the SDR induced splenomegaly and increase in plasma IL-6, TNFα, and MCP-1 were each reversed by pre-treatment with propranolol. Furthermore, flow cytometric analysis of cells from propranolol pretreated mice reduced the SDR-induced increase in the percentage of CD11b(+) splenic macrophages and significantly decreased the expression of TLR2, TLR4, and CD86 on the surface of these cells. In addition, supernatants from 18h LPS-stimulated ex vivo cultures of splenocytes from propranolol-treated SDR mice contained less IL-6. Likewise propranolol pre-treatment abrogated the glucocorticoid insensitivity of CD11b(+) cells ex vivo when compared to splenocytes from SDR vehicle-treated mice. Together, this study demonstrates that the immune activation and priming effects of SDR result, in part, as a consequence of SNS activation.  相似文献   

12.
Maternal rhythms entrain the prenatal and neonatal circadian clock in the suprachiasmatic nucleus (SCN) before light entrainment is established. However, the responsible time cues for maternal entrainment are not identified. To examine the role of cyclic changes of ambient temperature in maternal entrainment, blind neonatal rats carrying a clock gene (Per2) bioluminescence reporter were exposed to either of three ambient temperatures (10, 20 or 30 °C) during 6‐h maternal separation in the early light phase. Cold exposure was performed from postnatal day 1 (P1) to P5. On P6, the SCN was harvested and cultured for photometric monitoring of the circadian rhythm in Per2 expression. Here we demonstrate that the daily cold exposure phase‐delayed the circadian Per2 expression rhythms at P6 in a temperature‐dependent manner. Exposure to 10 °C produced the largest phase‐shift of 12.7 h, and exposure to 20 and 30 °C yielded moderate shifts of 4.1 and 4.5 h, respectively. There was no significant difference in the phase‐shifts between the latter two temperatures, indicating that ambient temperature is not the sole factor for the phase‐shift. Behavioral rhythms that developed after weaning reflected the phase‐shift of clock gene expression rhythm in the SCN. These findings indicate that a daily exposure to an ambient temperature of 10 °C during the neonatal period is capable of resetting the circadian clock in the SCN, but other factors yet unidentified are also involved in maternal entrainment.  相似文献   

13.
As with many processes in nature, appropriate timing in biological systems is of paramount importance. In the neuroendocrine system, the efficacy of hormonal influence on major bodily functions, such as reproduction, metabolism and growth, relies on timely communication within and across many of the brain's homeostatic systems. The activity of these circuits is tightly orchestrated with the animal's internal physiological demands and external solar cycle by a master circadian clock. In mammals, this master clock is located in the hypothalamic suprachiasmatic nucleus (SCN), where the ensemble activity of thousands of clock neurones generates and communicates circadian time cues to the rest of the brain and body. Many regions of the brain, including areas with neuroendocrine function, also contain local daily clocks that can provide feedback signals to the SCN. Although much is known about the molecular processes underpinning endogenous circadian rhythm generation in SCN neurones and, to a lesser extent, extra‐SCN cells, the electrical membrane clock that acts in partnership with the molecular clockwork to communicate circadian timing across the brain is poorly understood. The present review focuses on some circadian aspects of reproductive neuroendocrinology and processes involved in circadian rhythm communication in the SCN, aiming to identify key gaps in our knowledge of cross‐talk between our daily master clock and neuroendocrine function. The intention is to highlight our surprisingly limited understanding of their interaction in the hope that this will stimulate future work in these areas.  相似文献   

14.
The brain of larval Rhodnius prolixus releases neurohormones with a circadian rhythm, indicating that a clock system exists in the larval brain. Larvae also possess a circadian locomotor rhythm. The present paper is a detailed analysis of the distribution and axonal projections of circadian clock cells in the brain of the fifth larval instar. Clock cells are identified as neurons that exhibit circadian cycling of both PER and TIM proteins. A group of eight lateral clock neurons (LNs) in the proximal optic lobe also contain pigment‐dispersing factor (PDF) throughout their axons, enabling their detailed projections to be traced. LNs project to the accessory medulla and thence laterally toward the compound eye and medially into a massive area of arborizations in the anterior protocerebrum. Fine branches radiate from this area to most of the protocerebrum. A second group of clock cells (dorsal neurons [DNs]), situated in the posterior dorsal protocerebrum, are devoid of PDF. The DNs receive two fine axons from the LNs, indicating that clock cells throughout the brain are integrated into a timing network. Two axons of the LNs cross the midline, presumably coordinating the clock networks of left and right sides. The neuroarchitecture of this timing system is much more elaborate than any previously described for a larval insect and is very similar to those described in adult insects. This is the first report that an insect timing system regulates rhythmicity in both the endocrine system and behavior, implying extensive functional parallels with the mammalian suprachiasmatic nucleus. J. Comp. Neurol. 518:1264–1282, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The immune system is under strong circadian control, and circadian desynchrony is a risk factor for metabolic disorders, inflammatory responses and cancer. Signaling pathways that maintain circadian rhythms (CRs) in immune function in vivo, and the mechanisms by which circadian desynchrony impairs immune function, remain to be fully identified. These experiments tested the hypothesis that the hypothalamic circadian pacemaker in the suprachiasmatic nucleus (SCN) drives CRs in the immune system, using a non-invasive model of SCN circadian arrhythmia. Robust CRs in blood leukocyte trafficking, with a peak during the early light phase (ZT4) and nadir in the early dark phase (ZT18), were absent in arrhythmic hamsters, as were CRs in spleen clock gene (per1, bmal1) expression, indicating that a functional pacemaker in the SCN is required for the generation of CRs in leukocyte trafficking and for driving peripheral clocks in secondary lymphoid organs. Pinealectomy was without effect on CRs in leukocyte trafficking, but abolished CRs in spleen clock gene expression, indicating that nocturnal melatonin secretion is necessary for communicating circadian time information to the spleen. CRs in trafficking of antigen presenting cells (CD11c+ dendritic cells) in the skin were abolished, and antigen-specific delayed-type hypersensitivity skin inflammatory responses were markedly impaired in arrhythmic hamsters. The SCN drives robust CRs in leukocyte trafficking and lymphoid clock gene expression; the latter of which is not expressed in the absence of melatonin. Robust entrainment of the circadian pacemaker provides a signal critical to diurnal rhythms in immunosurveilliance and optimal memory T-cell dependent immune responses.  相似文献   

16.
Growing evidence links adverse prenatal conditions to mood disorders. We investigated the long-term behavioral alterations induced by prenatal exposure to excess glucocorticoids (dexamethasone—DEX). At 12 months, but not earlier, DEX-exposed mice displayed depression-like behavior and impaired hippocampal neurogenesis, not reversible by the antidepressant fluoxetine (FLX). Concomitantly, we observed arrhythmic glucocorticoid secretion and absent circadian oscillations in hippocampal clock gene expression. Analysis of spontaneous activity showed progressive alterations in circadian entrainment preceding depression. Circadian oscillations in clock gene expression (measured by means of quantitative PCR) were also attenuated in skin fibroblasts before the appearance of depression. Interestingly, circadian entrainment is not altered in a model of depression (induced by methylmercury prenatal exposure) that responds to FLX. Altogether, our results suggest that alterations in circadian entrainment of spontaneous activity, and possibly clock gene expression in fibroblasts, may predict the onset of depression and the response to FLX in patients.  相似文献   

17.
Despite the well known role of the light-dark cycle in the entrainment of circadian rhythms, very little is known about the neurochemical events that mediate the effects of light on the mammalian circadian clock. Recent anatomical and pharmacological data support the hypothesis that acetylcholine may be involved in relaying light-dark information from the retina to, or within, the circadian clock of rodents. If acetylcholine is required for this response, it should be possible to block the phase-shifting effects of a light pulse by blocking cholinergic neurotransmission. To test this possibility, hamsters free-running in constant darkness received an intraventricular injection of the anticholinergic drug, mecamylamine (450 micrograms), 10 min before being exposed to a 5-min pulse of light known to induce sub-maximal phase shifts in the circadian rhythm of wheel-running behavior. Compared to vehicle-injected control animals, mecamylamine treatment blocked or reduced both the phase-advancing and phase-delaying effects of light. These results support the hypothesis that acetylcholine is involved in mediating the phase-shifting effects of light on the mammalian circadian clock.  相似文献   

18.
The fruit fly, Drosophila melanogaster, shows a clear circadian locomotor rhythm in light cycles and constant darkness. Although the rhythm disappears in constant light, we found that temperature cycles drive the circadian rhythm both in locomotor activity and molecular abundance of PERIOD (PER) and TIMELESS (TIM). The thermoperiodically induced locomotor rhythm entailed an anticipatory activity at the late thermophase, which required several transient cycles to establish a steady-state entrainment, suggesting that the rhythm is endogenous and driven by a circadian clock. Western blot analysis revealed that PER and TIM increased during the cryophase, peaking at the middle to late cryophase. PER was also cyclically expressed under the temperature cycle in the known per-expressing neurons, i.e. so-called lateral (LNs) and dorsal neurons (DNs), and two pairs of cells (LPNs) that were located in the lateral posterior protocerebrum. It is thus suggested that the temperature cycle induces the cycling of PER and TIM either by blocking somewhere in the photic entrainment pathway during the cryophase or temporally activating their translation to sufficient protein levels to drive a circadian oscillation. In flies lacking pigment-dispersing factor (PDF) or PDF-expressing cells, the anticipatory activity was relatively dispersed. disco(2) mutant flies lacking the lateral neurons still showed an anticipatory activity, but with dispersed activity. These behavioural results suggest that not only LNs but also DNs and LPNs can, at least, partially participate in regulating the thermoperiodically induced rhythm.  相似文献   

19.
Sympathetic noradrenergic (NA) neuronal activities in the thymus, spleen and mesenteric lymph nodes (MLN) and immune responses in the spleen were examined in young male F344 rats treated daily with 0, 0.25 mg, or 2.5 mg/kg body weight of L-deprenyl, an irreversible monoamine oxidase-B (MAO-B) inhibitor. Rats were treated daily for 1, 15, or 30 days, and sacrificed 7 days after the last deprenyl treatment. Deprenyl treatment increased norepinephrine (NE) content in the spleen without modifying the pattern and density of NA innervation in the splenic white pulp. The concentration of NE was unaltered in the thymus, but it was increased in the MLN of deprenyl-treated rats. One day of treatment with deprenyl decreased splenic NK cell activity while 15 days of deprenyl treatment enhanced splenic NK cell activity. Deprenyl elevated Con A-induced T lymphocyte proliferation following 30 days of treatment, but did not alter spleen cell Con A-induced IL-2 production or the percentage of CD5 + T cells in the spleen. A moderate decrease in the percentage of sIgM + B cells was observed in the spleens of 15- and 30-day deprenyl-treated rats. These results suggest that deprenyl has sympathomimetic action on sympathetic NA nerve fibers in the spleen; the enhancement of NA neuronal activity may contribute to the modulation of immune responses in the spleen.  相似文献   

20.
The mammalian circadian system is composed of a central clock situated in the hypothalamic suprachiasmatic nucleus (SCN) and peripheral clocks of each tissue and organ in the body. While much has been learned about the pre‐ and postnatal development of the circadian system, there are still many unanswered questions about how and when cellular clocks start to tick and form the circadian system. Most SCN neurons contain a cell‐autonomous circadian clock with individual specific periodicity. Therefore, the network of cellular oscillators is critical for the coherent rhythm expression and orchestration of the peripheral clocks by the SCN. The SCN is the only circadian clock entrained by an environmental light–dark cycle. Photic entrainment starts postnatally, and the SCN starts to function gradually as a central clock that controls physiological and behavioral rhythms during postnatal development. The SCN exhibits circadian rhythms in clock gene expression from the embryonic stage throughout postnatal life and the rhythm phenotypes remain basically unchanged. However, the disappearance of coherent circadian rhythms in cryptochrome‐deficient SCN revealed changes in the SCN networks that occur in postnatal weeks 2–3. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by the vasoactive intestinal polypeptide and arginine vasopressin signaling depending on the period of postnatal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号