首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Atherosclerosis is a chronic inflammatory disease and the expression of adhesion molecules on vascular smooth muscle cells (VSMCs) contributes to the progress of the disease. Diosgenin, a precursor of steroid hormones, has been shown to have a variety of biological activities including anti-inflammatory activity; however, its molecular mechanisms are poorly understood. This study examined the effect of diosgenin on the expression of adhesion molecules induced by TNF-α in cultured mouse VSMC cell line, MOVAS-1. Preincubation of VSMCs for 2h with diosgenin (0.1-10 μM) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and mRNA and protein expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Diosgenin abrogated TNF-α induced production of intracellular reactive oxygen species (ROS) and phosphorylation of p38, ERK, JNK and Akt. Diosgenin was also shown to inhibit NK-κB activation induced by TNF-α. Furthermore, diosgenin inhibited TNF-α-induced IκB kinase activation, subsequent degradation of IκBα, and nuclear translocation of NF-κB. Our results indicate that diosgenin inhibits the adhesive capacity of VSMC and the TNF-α-mediated induction of ICAM-1 and VCAM-1 in VSMC by inhibiting the MAPK/Akt/NF-κB signaling pathway and ROS production, which may explain the ability of diosgenin to suppress inflammation within the atherosclerotic lesion and modulate immune response.  相似文献   

2.
Vaspin (visceral adipose tissue-derived serine protease inhibitor) was recently identified as a novel adipocytokine with insulin-sensitizing effects. We hypothesized that vaspin could play a role in vascular inflammation. To test the hypothesis, we investigated the effects of vaspin on TNF-α-stimulated vascular smooth muscle cells (SMCs) focusing on inflammatory signal transduction. Vascular SMCs from mesenteric artery of male Wistar rats were treated with TNF-α (5–10 ng/ml, 20 min–6 h) in the absence or presence of vaspin (1–300 ng/ml, pretreatment for 24 h). Western blotting was performed to analyze the cellular signal. Reactive oxygen species (ROS) generation was fluorometrically measured using 2′,7′-diclorofluorescein diacetate. Vaspin alone treatment had no effect on vascular SMCs morphology and cellular signal. Vaspin significantly decreased the TNF-α-induced monocyte adhesion to SMCs. Vaspin significantly inhibited the protein expression of intracellular adhesion molecule (ICAM)-1 and the phosphorylation of NF-κB and protein kinase C (PKC)θ induced by TNF-α. Both of NF-κB and novel PKC inhibitors significantly attenuated the TNF-α-induced ICAM-1 expression. Moreover, vaspin inhibited TNF-α-induced ROS generation. An anti-oxidant, N-acetyl-l-cysteine blocked the TNF-α-induced activation of NF-κB, PKCθ and expression of ICAM-1. The present results demonstrated for the first time that vaspin inhibits TNF-α-induced expression of ICAM-1 via preventing the ROS generation and subsequent activation of NF-κB and PKCθ. Consequently, vaspin could play inhibitory roles on inflammatory states of vascular SMCs.  相似文献   

3.
Atherosclerosis is a chronic inflammatory disease, the progression of which is associated with the increased expression of cell adhesion molecules on vascular smooth muscle cells (VSMCs). Lobastin is a new pseudodepsidone isolated from Stereocaulon alpinum, Antarctic lichen, which is known to have antioxidant and antibacterial activities. However, the nature of the biological effects of lobastin still remains unclear. In the present study, we examine the effect of lobastin on the expression of vascular cell adhesion molecules (VCAM-1) induced by TNF-α in the cultured mouse VSMC cell line, MOVAS-1. Pretreatment of VSMCs for 2 h with lobastin (0.1–10 μg/ml) concentration-dependently inhibited TNF-α-induced protein expression of VCAM-1. Lobastin also inhibited TNF-α-induced production of intracellular reactive oxygen species (ROS). Lobastin abrogated TNF-α-induced phosphorylation of p38 and ERK 1/2, but not JNK, and also inhibited TNF-α-induced NK-κB activation. In addition, lobastin suppressed TNF-α-induced IκB kinase activation, subsequent degradation of IκBα and nuclear translocation of p65 NF-κB. Our results indicate that lobastin downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the p38, ERK 1/2 and NF-κB signaling pathways and intracellular ROS generation. Thus, lobastin may be an important regulator of inflammation in the atherosclerotic lesion and a novel therapeutic drug for the treatment of atherosclerosis.  相似文献   

4.
Atherosclerosis is a chronic inflammatory disease associated with increased expression of adhesion molecules in vascular smooth muscle cells (VSMCs). The objective of this study was to examine the in vitro effects of extract from aerial Bulbil of Dioscorea batatas Decne (Db-Ex) on the ability to suppress the expression of adhesion molecules induced by TNF-α. We also identified bioactive components from a methanol extract. VSMCs pre-exposed to Db-Ex (10–100 μg/ml) were stimulated with TNF-α (10 ng/ml). Preincubation of VSMCs for 2 h with Db-Ex dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and mRNA and protein expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Db-Ex treatment decreased ROS production and the amount of phosphorylated form of p38, ERK, JNK and Akt in TNF-α-stimulated cells, suggesting that Db-Ex inhibits adhesion molecule expression possibly through MAPK and Akt regulation. Db-Ex also suppressed TNF-α-activation NK-κB. This effect was mediated through degradation of IκBα and nuclear translocation of the p65 subunit of NF-κB. These results suggest that Db-Ex inhibits monocyte adhesion and the TNF-α-mediated induction of adhesion molecules in VSMC by downregulating the MAPK/Akt/NF-κB signaling pathway, which may explain the ability of Db-Ex to suppress inflammation within the atherosclerotic lesion.  相似文献   

5.
Thymic epithelial cells (TECs) constitute a major component of the thymic stroma which provides a microenvironment critical for developing thymocytes. We have previously demonstrated that doxycycline (Dox), a tetracycline derivative, enhances the proliferation of the mouse thymic epithelial cell line 1 (MTEC1) via MAPK/ERK signal pathway. Herein we provide evidence that Dox also has profound impact on the cytokine production by MTEC1. Specifically, the expression of IL-6 and GM-CSF, both at mRNA and protein levels, was found to be increased in a time- and dose-dependent manner with the addition of Dox. Western blotting analysis revealed that treatment with Dox-induced phosphorylation of the p65 subunit of NF-κB and ERK. Notably, Dox-induced up-regulation of IL-6 and GM-CSF was largely abolished after pretreatment of MTEC1 with either NF-κB inhibitor BAY11-7082 or MEK1/2 inhibitor U0126, supporting the involvement of the two pathways in the process. These findings warrant further investigation into the potential application of Dox in T-cell reconstitution in such situations as chemotherapy, radiotherapy, bone marrow transplantation and HIV infection.  相似文献   

6.
7.

Aim:

To investigate whether curcumin (Cur) suppressed lipopolysaccharide (LPS)-induced inflammation in vascular smooth muscle cells (VSMCs) of rats, and to determine its molecular mechanisms.

Methods:

Primary rat VSMCs were treated with LPS (1 μg/L) and Cur (5, 10, or 30 μmol/L) for 24 h. The levels of MCP-1, TNF-α, and iNOS were measured using ELISA and real-time RT-PCR. NO level was analyzed with the Griess reaction. Western-blotting was used to detect the activation of TLR4, MAPKs, IκBα, NF-κB p65, and the p47phox subunit of NADPH oxidase in the cells.

Results:

Treatment of VSMCs with LPS dramatically increased expression of inflammatory cytokines MCP-1 and TNF-α, expression of TLR4 and iNOS, and NO production. LPS also significantly increased phosphorylation of IκBα, nuclear translocation of NF-κB (p65) and phosphorylation of MAPKs in VSMCs. Furthermore, LPS significantly increased production of intracellular ROS, and decreased expression of p47phox subunit of NADPH oxidase. Pretreatment with Cur concentration-dependently attenuated all the aberrant changes in LPS-treated VSMCs. The LPS-induced overexpression of MCP-1 and TNF-α, and NO production were attenuated by pretreatment with the ERK inhibitor PD98059, the p38 MAPK inhibitor SB203580, the NF-κB inhibitor PDTC or anti-TLR4 antibody, but not with the JNK inhibitor SP600125.

Conclusion:

Cur suppresses LPS-induced overexpression of inflammatory mediators in VSMCs in vitro via inhibiting the TLR4-MAPK/NF-κB pathways, partly due to block of NADPH-mediated intracellular ROS production.  相似文献   

8.

Aim:

To investigate the effects Astragalus polysaccharides (APS) on tumor necrosis factor (TNF)-α-induced inflammatory reactions in human umbilical vein endothelial cells (HUVECs) and to elucidate the underlying mechanisms.

Methods:

HUVECs were treated with TNF-α for 24 h. The amounts of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were determined with Western blotting. HUVEC viability and apoptosis were detected using cell viability assay and Hoechst staining, respectively. Reactive oxygen species (ROS) production was measured by DHE staining. Monocyte and HUVEC adhesion assay was used to detect endothelial cell adhesive function. NF-κB activation was detected with immunofluorescence.

Results:

TNF-α (1-80 ng/mL) caused dose- and time-dependent increases of ICAM-1 and VCAM-1 expression in HUVECs, accompanied by significant augmentation of IκB phosphorylation and NF-κB translocation into the nuclei. Pretreatment with APS (10 and 50 μg/mL) significantly attenuated TNFα-induced upregulation of ICAM-1 VCAM-1 and NF-κB translocation. Moreover, APS significantly reduced apoptosis, ROS generation and adhesion function damage in TNF-α-treated HUVECs.

Conclusion:

APS suppresses TNFα-induced adhesion molecule expression by blocking NF-κB signaling and inhibiting ROS generation in HUVECs. The results suggest that APS may be used to treat and prevent endothelial cell injury-related diseases.  相似文献   

9.
In this study, we investigated the roles of mitogen activated protein kinase (MAPK), mitogen stress-activated protein kinase 1 (MSK1), and nuclear factor-κB (NF-κB) signaling pathways in thrombin-induced inducible nitric oxide synthase (iNOS) expression in alveolar macrophages (NR8383). Treatment of NR8383 cells with thrombin caused an increase in iNOS expression in a concentration- and time-dependent manner. Treatment of NR8383 cells with SB203580 (4-(4-Fluorophenyl)-2-[4-(methylsulfinyl)phenyl]-5-(4-pyridyl)-1H-imidazole, a p38 MAPK inhibitor), PD98059 (2'-amino-3'-methoxyflavone, a MAPK kinase (MEK) inhibitor), and SP600125 (anthra[1-9-cd]pyrazol-6(2H)-one, a JNK inhibitor) all inhibited thrombin-induced iNOS expression. Stimulation of cells with thrombin caused an increase in p38 MAPK, ERK, and JNK phosphorylation. Treatment of cells with Ro 31-8220 (an MSK1 inhibitor) and MSK1 small interfering RNA (MSK1 siRNA) both inhibited thrombin-induced iNOS expression. Thrombin caused time-dependent activation of MSK1 Ser531 phosphorylation, which was inhibited by SB203580 and PD98059, but not by SP600125. Treatment of cells with pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) inhibited thrombin-induced iNOS expression in a concentration-dependent manner. Treatment of NR8383 cells with thrombin induced κB-luciferase activity and p65 Ser276 phosphorylation. Thrombin-induced increases in p65 Ser276 phosphorylation and κB-luciferase activity were inhibited by SB203580, PD98059, Ro 31-8220, and MSK1 siRNA. Taken together, these results suggest that the signaling pathways of MAPK, MSK1, and NF-κB play important roles in thrombin-induced iNOS expression in alveolar macrophages.  相似文献   

10.

Aim:

To explore the effect of neferine on angiotensin II (Ang II)-induced vascular smooth muscle cell (VSMC) proliferation.

Methods:

Human umbilical vein smooth muscle cells (HUVSMCs) were used. Cell proliferation was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis. Heme oxygenase (HO)-1 protein expression was tested by Western blot analysis. Extracellular signal-regulated protein kinase 1/2 (ERK1/2) activation was determined by using immunoblotting.

Results:

Pre-incubation of HUVSMCs with neferine (0.1, 0.5, 1.0, and 5.0 μmol/L) significantly inhibited Ang II-induced cell proliferation in a concentration-dependent manner and neferine 5.0 μmol/L increased HO-1 expression by 259% compared with control. The antiproliferative effect of neferine was significantly attenuated by coapplication of zinc protoporphyrin IX (ZnPP IX, an HO-1 inhibitor) with neferine. Ang II-enhanced ERK1/2 phosphorylation was markedly reversed by neferine. By inhibiting HO-1 activity with ZnPP IX, the inhibitive effect of neferine on ERK1/2 phosphorylation was significantly attenuated. Cobalt-protoporphyrin (CoPP), an HO-1 inducer, significantly decreased Ang II-induced ERK1/2 phosphorylation and inhibited Ang II-induced cell proliferation. The ERK1/2 pathway inhibitor PD98059 significantly blocked Ang II-enhanced ERK1/2 phosphorylation and inhibited cell proliferation.

Conclusion:

These findings suggest that neferine can inhibit Ang II-induced HUVSMC proliferation by upregulating HO-1, leading to the at least partial downregulation of ERK1/2 phosphorylation.  相似文献   

11.
Aim: Chemokines usually direct the movement of circulating leukocytes to sites of inflammation or injury. CXCL1/GRO-a has been shown to be upregulated in atherosclerotic lesions and various cancers. The aim of this study was to investigate the mechanisms underlying the TNF-α-induced release of CXCL1 from human vascular endothelial cells in vitro. Methods: Human umbilical vein endothelial cells (HUVECs) were treated with different proinflam-matory mediators and growth factors. CXCL1 expression and secretion were determined using RT-PCR and ELISA, respectively. TNF-a-induced cell signaling was assayed with Western blotting. Cell viability/growth was determined using MTTassay. Monocyte migration was measured with transwell migration assay. Results: Among the 17 mediators and growth factors tested, TNF-α, LPS and thrombin induced marked increase in CXCL1 release from HUVEC cells. TNF-α (2, 5 ng/mL) induced CXCL1 release and mRNA expression in the cells in concentration- and time-dependent manners. TNF-α (5 ng/mL) caused activation of JNK, p38 MAPK, PI3K and Akt, whereas pretreatment with JNK inhibitor (SP600125), p38 MAPK inhibitor (SB202190) or PI-3K inhibitor (LY294002) significantly suppressed TNF-a-induced CXCL1 release from the cells. But only SP600125 significantly reduced TNF-a-induced CXCL1 mRNA expression in the cells. Moreover, dexamethasone (up to 500 nmol/L) failed to affect TNF-a-induced CXCL1 release from the cells. In functional studies, recombinant CXCL1 enhanced HUVEC proliferation, and both recombinant CXCL1 and TNF-a-induced CXCL1 from HUVECs attracted human monocyte migration. Conclusion: TNF-a stimulates CXCL1 release from human ECs through JNK-mediated CXCL1 mRNA expression and p38 MAPK- and PI-3K-mediated CXCL1 secretory processes.  相似文献   

12.
Piperine is a major component of black (Piper nigrum Linn) and long (Piper longum Linn) peppers, and is widely used as a traditional food and medicine. It also exhibits a variety of biological activities, which include antioxidant, anti-tumor and anti-pyretic properties. In the present study, we investigated the inhibitory effects of piperine on phorbol 12-myristate 13-acetate (PMA)-induced cyclooxygenase-2 (COX-2) gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Piperine dose-dependently decreased PMA-induced COX-2 expression and PGE2 production, as well as COX-2 promoter-driven luciferase activity. Transient transfections utilizing COX-2 promoter deletion constructs and COX-2 promoter constructs, in which specific enhancer elements were mutagenized, revealed that the nuclear factor-κB (NF-κB), CCAAT/enhancer binding protein (C/EBP) and activator protein-1 (AP-1), were the predominant contributors to the effects of piperine. In addition, piperine inhibited PMA-induced NF-κB, C/EBP and c-Jun nuclear translocation. Furthermore, piperine significantly inhibited PMA-induced activation of the Akt and ERK. These findings demonstrate that piperine effectively attenuates COX-2 production, and provide further insight into the signal transduction pathways involved in the anti-inflammatory effects of piperine.  相似文献   

13.
Salvianolic acid B (Sal B), a bioactive compound from Salvia miltiorrhiza, widely used to treat cardiovascular diseases, and stromal cell-derived factor-1α (SDF-1α)/CXCR4 pathway has been correlated with balloon angioplasty-induced neointimal formation. The purposes of the present study were to investigate whether Sal B can inhibit SDF-1α/CXCR4-mediated effects on the cell proliferation and migration of vascular smooth muscle cells (VSMCs) and to examine its possible molecular mechanisms. Under 0.5% FBS medium, all of the cellular studies were investigated on VSMCs (A10 cells) stimulated with 10 ng/ml SDF-1α alone or co-treated with 0.075 mg/ml Sal B. Our results showed that SDF-1α markedly stimulated the cell growth and migration of A10 cells, whose effects can be significantly reversed by co-incubation of Sal B. Similarly, Sal B also obviously down-regulated the SDF-1α-stimulated up-regulation of CXCR4 (total and cell-surface levels), Raf-1, MEK, ERK1/2, phospho-ERK1/2, FAK and phospho-FAK as well as an increase of the promoter activity of NF-κB. Besides, Sal B also effectively attenuated balloon angioplasty-induced neointimal hyperplasia. In conclusion, suppressing the expression levels of CXCR4 receptor and downstream molecules of SDF-1α/CXCR4 axis could possibly explain one of the pharmacological mechanisms of Sal B on prevention of cell proliferation, migration and subsequently neointimal hyperplasia.  相似文献   

14.

Aim:

To explore the signalling pathways involved in aldosterone-induced inflammation and fibrosis in rat vascular smooth muscle cells (VSMCs).

Methods:

Using Western blotting and real-time RT-PCR, we investigated the effects of aldosterone on the expression of cyclooxygenase-2 (Cox-2) and IL-6, two important proinflammatory factors, and TGFβ1, a critical profibrotic factor, in VSMCs.

Results:

Aldosterone treatment significantly increased the expression of Cox-2 and IL-6 and activation of p38MAPK and NF-κB. The expression of both Cox-2 and IL-6 could be blocked by the mineralocorticoid receptor (MR) antagonist spironolactone and the p38MAPK inhibitor SB203580. Also, the rapid phosphorylation of p38MAPK could be suppressed by SB203580 but not by spironolactone, implicating in nongenomic effects of aldosterone. Similar to SB203580 and spironolactone, the NF-κB inhibitor α-p-tosyl-L-lysine chloromethyl ketone (TLCK) markedly attenuated expression of Cox-2, indicating that MR, p38MAPK and NF-κB are associated with aldosterone-induced inflammatory responses. Furthermore, aldosterone enhanced expression of TGFβ1 in rat VSMCs. This result may be related to activation of the MR/ERK-Sp1 signalling pathway because PD98059, an ERK1/2 inhibitor, significantly blocked the rapid phosphorylation of ERK1/2 and function of Sp1 and led to reduced expression of TGFβ1. Spironolactone was also shown to significantly inhibit TGFβ1 and Sp1 expression but not ERK1/2 phosphorylation.

Conclusion:

These results suggest that aldosterone-induced inflammatory responses and fibrotic responses may be mediated by the MR/p38MAPK-NF-κB pathways and the MR/ERK-Sp1 pathways in VSMCs, respectively.  相似文献   

15.
Gossypol is a yellowish polyphenolic compound originally from cotton plant, which has been shown to exert a potential for anti-cancer and anti-inflammatory effects. However, its molecular mechanism is not thoroughly understood on breast cancer cells known to highly express intercellular adhesion molecule-1 (ICAM-1) for their adhesion and metastasis. This study aims to investigate the effect of gossypol on tumor necrosis factor (TNF)-α-stimulated ICAM-1 via nuclear factor-kappa B (NF-κB) activity. Gossypol was shown to inhibit TNF-α-induced ICAM-1 expression and U937 cell adhesion to MDA-MB-231 and MCF-7 cells. Additionally, TNF-α-induced MDA-MB-231 cell invasion was blocked in the presence of gossypol. Chromatin immunoprecipitation analysis demonstrated that gossypol blocks NF-κB binding on the ICAM-1 promoter regions. Additionally, TNF-α-induced NF-κB activation was completely suppressed in the presence of gossypol. Gossypol did not directly suppress the binding of NF-κB to the DNA but rather inhibited the nuclear translocation of p65 and p50 via phosphorylation and degradation of IκB. We also found that gossypol suppresses NF-κB activation induced by a wide variety of agents, including taxol, okadaic acid, and phorbol myristate acetate. Taken together, gossypol effectively inhibited TNF-α-induced ICAM-1 expression via the suppression of NF-κB activation and in vitro adhesion and invasion in human breast cancer cells.  相似文献   

16.
17.
Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号