首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to diesel exhaust particles (DEP) during the sensitization process has been shown to increase antigen-specific IgE production and aggravate allergic airway inflammation in human and animal models. In this study, we evaluated the effect of short-term DEP exposure on ovalbumin (OVA)-mediated responses using a post-sensitization model. Brown Norway rats were first exposed to filtered air or DEP (20.6 +/- 2.7 mg/m3) for 4 h/day for five consecutive days. One day after the final air or DEP exposure (day 1), rats were sensitized with aerosolized OVA (40.5 +/- 6.3 mg/m3), and then again on days 8 and 15, challenged with OVA on day 29, and sacrificed on days 9 or 30, 24 h after the second OVA exposure or the final OVA challenge, respectively. Control animals received aerosolized saline instead of OVA. DEP were shown to elicit an adjuvant effect on the production of antigen-specific IgE and IgG on day 30. At both time points, no significant airway inflammatory responses and lung injury were found for DEP exposure alone. However, the OVA-induced inflammatory cell infiltration, acellular lactate dehydrogenase activity and albumin content in bronchoalveolar lavage (BAL) fluid, and numbers of T cells and their CD4+ and CD8+ subsets in lung-draining lymph nodes were markedly reduced by DEP on day 30 compared with the air-plus-OVA exposure group. The OVA-induced nitric oxide (NO) in the BAL fluid and production of NO, interleukin (IL)-10, and IL-12 by alveolar macrophages (AM) were also significantly lowered by DEP on day 30 as well as day 9. DEP or OVA alone decreased intracellular glutathione (GSH) in AM and lymphocytes on days 9 and 30. The combined DEP and OVA exposure resulted in further depletion of GSH in both cell types. These results show that short-term DEP exposure prior to sensitization had a delayed effect on enhancement of the sensitization in terms of allergen-specific IgE and IgG production, but caused an attenuation of the allergen-induced airway inflammatory responses.  相似文献   

2.
Exposure to diesel exhaust particles (DEP) was shown to increase the susceptibility of the lung to bacterial infection in rats. In this study, the effects of DEP on alveolar macrophage (AM) phagocytic and bactericidal functions and cytokine secretion by AM and lymphocytes in response to Listeria monocytogenes infection were investigated in vitro and the roles of different DEP components in these processes were compared. Exposure to DEP or the organic extracts of DEP (eDEP) significantly decreased the phagocytosis and killing of L. monocytogenes by AM obtained from normal rats. Washed DEP (wDEP) also decreased AM phagocytosis and bacterial killing to a lesser extent, whereas carbon black (CB) reduced AM phagocytosis but had no significant effect on AM bactericidal activity. DEP or eDEP concentration-dependently suppressed L. monocytogenes-induced secretion of tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-12 by AM and of IL-2 and interferon-gamma by lymphocytes obtained from L. monocytogenes-infected rats, but augmented the AM secretion of IL-10. wDEP or CB, however, exerted little or no effect on these L. monocytogenes-induced cytokines. These results provide direct evidence that DEP, through the actions of organic components, suppresses AM phagocytic and bactericidal functions in vitro. Inhibition of AM phagocytic function and alterations of AM and lymphocyte cytokine secretion by DEP and DEP organic compounds may be implicated in the diminished AM bactericidal activity and the lymphatic arm of the host immune system, thus resulting in an suppressed pulmonary clearance of L. monocytogenes and an increased susceptibility of the lung to bacterial infection.  相似文献   

3.
Studies have shown that exposure to diesel exhaust particles (DEP) suppresses pulmonary host defense against bacterial infection. The present study was carried out to characterize whether DEP exposure exerts a sustained effect in which inhaled DEP increase the susceptibility of the lung to bacterial infection occurring at a later time. Brown Norway rats were exposed to filtered air or DEP by inhalation at a dose of 21.2 +/- 2.3 mg/m3, 4 h/day for 5 days, and intratracheally instilled with saline or 100,000 Listeria monocytogenes (Listeria) 7 days after the final DEP exposure. Bacterial growth and cellular responses to DEP and Listeria exposures were examined at 3 and 7 days post-infection. The results showed that inhaled DEP prolonged the growth of bacteria, administered 7 days post DEP exposure, in the lung as compared to the air-exposed controls. Pulmonary responses to Listeria infection were characterized by increased production of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, IL-12, and IL-10 by alveolar macrophages (AM) and increased presence of T lymphocytes and their CD4+ and CD8+ subsets in lung draining lymph nodes that secreted elevated levels of IL-2, IL-6, IL-10, and interferon (IFN)-gamma. Diesel exhaust particles were found to inhibit Listeria-induced production of IL-1beta and TNF-alpha, which are responsible for the innate immunity, and IL-12, which initiates the development of T helper (Th)1 responses, but enhance Listeria-induced AM production of IL-10, which prolongs Listeria survival in these phagocytes. The dual action of DEP on AM production of IL-12 and IL-10 correlated with an inhibition of the development of bacteria-specific T lymphocytes by DEP. Cytokine production by lymphocytes from DEP- and Listeria-exposed rats showed a marked decrease in the production of IL-2, IL-10, and IFN-gamma compared to Listeria infection alone, suggesting either that DEP inhibit the production of cytokines by lymphocytes or that these lymphocytes contained T-cell subsets that are different from those of Listeria infection alone and less effective in mediating Th1 immune responses. This study demonstrates that inhaled DEP, after a 7-day resting period, increase the susceptibility of the lung to bacterial infection occurring at a later time by inhibiting macrophage immune function and suppressing the development of T-cell-mediated immune responses. The results support the epidemiological observations that exposure to DEP may be responsible for the pulmonary health effects on humans.  相似文献   

4.
Diesel exhaust particles (DEP) have been shown to alter pulmonary immune responses to bacterial infection. Exposure of rats to 100 mg/m(3) DEP for 4 h was found to aggravate Listeria monocytogenes(Listeria) infection at 3 days postinfection, but the bacteria were largely cleared at 7 days postinfection due to the development of a strong T cell-mediated immunity. In the present study, we examined the effects of repeated DEP exposure at lower doses on pulmonary responses to bacterial infection. Brown Norway rats were exposed to DEP by inhalation at 20.62 +/- 1.31 mg/m 3 for 4 h/day for 5 days, followed by intratracheal inoculation with 100,000 Listeria at 2 h after the last DEP exposure. DEP-exposed rats showed a significant increase in lung bacterial load at both 3 and 7 days postinfection. The repeated DEP exposure was shown to suppress both the innate, orchestrated by alveolar macrophages (AM), and T cell-mediated responses to Listeria. DEP inhibited AM production of interleukin- (IL-) 1beta, tumor necrosis factor- (TNF-) alpha, and IL-12 but enhanced Listeria-induced AM production of IL-10, which has been shown to prolong the survival of intracellular pathogens such as Listeria. DEP exposure also suppressed the development of bacteria-specific lymphocytes from lung-draining lymph nodes, as indicated by the decreased numbers of T lymphocytes and their CD4(+) and CD8(+) subsets. Furthermore, the DEP exposure markedly inhibited the Listeria-induced lymphocyte secretion of IL-2 at day 7, IL-10 at days 3 and 7, and interferon- (IFN-) gamma at days 3 to 10 postinfection when compared to air-exposed controls. These results show a sustained pattern of downregulation of T cell-mediated immune responses by repeated low-dose DEP exposure, which is different from the results of a single high-dose exposure where the acute effect of DEP aggravated bacteria infection but triggered a strong T cell-mediated immunity.  相似文献   

5.
Diesel exhaust particles (DEP) have been shown to suppress alveolar macrophage (AM)-mediated pulmonary immune responses to Listeria monocytogenes in vivo. In this study, effects of DEP-derived reactive oxygen species (ROS) and heme oxygenase (HO)-1 on AM-mediated immune responses to L. monocytogenes were investigated. Brown Norway rats were intratracheally inoculated with 100,000 L. monocytogenes, and AM were isolated at 7 days post-infection. Exposure to DEP or their organic extract (eDEP), but not the washed DEP (wDEP) or carbon black, increased intracellular ROS and HO-1 expression in AM. Induction of ROS and HO-1 by eDEP was partially reversed by alpha-naphthoflavone, a cytochrome P450 1A1 inhibitor, and totally blocked by N-acetylcysteine. In addition, exposure to eDEP, but not wDEP, inhibited lipopolysacchride-stimulated secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-12 (IL-12), but augmented production of IL-10 by AM. Kinetic studies showed that modulation of cytokines by eDEP was preceded by ROS and HO-1 induction. Furthermore, pretreatment of AM with superoxide dismutase (SOD) or zinc protoporphrin IX (Znpp), which attenuated eDEP-induced HO-1 expression/activity, substantially inhibited eDEP effect on IL-10. Finally, direct stimulation with pyrogallol (PYR), a superoxide donor, upregulated HO-1 and IL-10 but decreased secretion of IL-12 in L. monocytogenes-infected AM. These results show that DEP, through eDEP-mediated ROS, induce HO-1 expression and IL-10 production and at the same time inhibit AM production of TNF-alpha and IL-12 to dampen the host immune responses. The results also suggest that HO-1 may play an important role in regulating production of IL-10 by DEP-exposed and L. monocytogenes-infected AM.  相似文献   

6.
The effects of diesel exhaust particle (DEP) exposure on alveolar macrophage (AM) response to ex vivo and in vivo lipopolysaccharide (LPS) challenge were determined by monitoring LPS-stimulated production of interleukin-1 (IL-1) and tumor necrosis factoralpha (TNF-alpha). The roles of the insoluble particulate and the organic compounds of DEP in altering pulmonary responses were evaluated by comparing the DEP-induced pulmonary responses to those of carbon black (CB), a carbonaceous particle with few adsorbed organic compounds, or to silica, a known pneumotoxic dust. Male SpragueDawley rats were exposed to a single intratracheal dose (5 or 35 mg/ kg body weight) of DEP, CB, or silica, or to saline vehicle. Rats were sacrificed 1, 3, or 7 d postexposure. To study the responsiveness to the bacterial product LPS, AM isolated from particleexposed rats were challenged ex vivo with LPS (0.1 mug/ 10 6 AM) and LPS-stimulated cytokine release was monitored. In addition, rats were exposed intratracheally to a single dose of DEP (5 mg/kg) and 3 d later exposed in vivo to 1 mg/kg LPS for 3 h prior to measurement of cytokine production by AM. DEP exposure resulted in neutrophil infiltration and elevated levels of albumin and lactate dehydrogenase (LDH) activity in the bronchoalveolar lavage fluid; these responses were not substantially different from those elicited by CB or silica exposure. AM from DEP-exposed rats showed increased spontaneous production of IL-1, but not TNF-alpha, while the opposite was true for CB or silica. Upon ex vivo challenge with LPS, AM from DEP-exposed rats showed a significant decrease in the secretion of TNF- and, to a lesser extent, IL-1, compared to the sum of the DEP and LPS effects. In contrast, AM from CB- or silica-exposed rats did not show this decreased responsiveness to subsequent LPS challenge. This inhibitory action of DEP on LPS-stimulated AM production of IL-1 and TNF- was further confirmed by the results obtained from rats exposed to both DEP and LPS in vivo. In summary, these results indicate that while DEP, CB, and silica all induce pulmonary inflammatory responses due to particle stimulation, only DEP suppress AM cytokine release in response to LPS stimulation. The contrasting cellular response with respect to DEP and CB exposures may be due to the presence of adsorbed organic compounds on DEP, which may contribute to the increased susceptibility of hosts to pulmonary infections after DEP exposure.  相似文献   

7.
The effects of diesel exhaust particle (DEP) exposure on alveolar macrophage (AM) response to ex vivo and in vivo lipopolysaccharide (LPS) challenge were determined by monitoring LPS-stimulated production of interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha). The roles of the insoluble particulate and the organic compounds of DEP in altering pulmonary responses were evaluated by comparing the DEP-induced pulmonary responses to those of carbon black (CB), a carbonaceous particle with few adsorbed organic compounds, or to silica, a known pneumotoxic dust. Male Sprague-Dawley rats were exposed to a single intratracheal dose (5 or 35 mg/kg body weight) of DEP, CB, or silica, or to saline vehicle. Rats were sacrificed 1, 3, or 7 d postexposure. To study the responsiveness to the bacterial product LPS, AM isolated from particle-exposed rats were challenged ex vivo with LPS (0.1 microg/10(6) AM) and LPS-stimulated cytokine release was monitored. In addition, rats were exposed intratracheally to a single dose of DEP (5 mg/kg) and 3 d later exposed in vivo to 1 mg/kg LPS for 3 h prior to measurement of cytokine production by AM. DEP exposure resulted in neutrophil infiltration and elevated levels of albumin and lactate dehydrogenase (LDH) activity in the bronchoalveolar lavage fluid; these responses were not substantially different from those elicited by CB or silica exposure. AM from DEP-exposed rats showed increased spontaneous production of IL-1, but not TNF-alpha, while the opposite was true for CB or silica. Upon ex vivo challenge with LPS, AM from DEP-exposed rats showed a significant decrease in the secretion of TNF-alpha and, to a lesser extent, IL-1, compared to the sum of the DEP and LPS effects. In contrast, AM from CB- or silica-exposed rats did not show this decreased responsiveness to subsequent LPS challenge. This inhibitory action of DEP on LPS-stimulated AM production of IL-1 and TNF-alpha was further confirmed by the results obtained from rats exposed to both DEP and LPS in vivo. In summary, these results indicate that while DEP, CB, and silica all induce pulmonary inflammatory responses due to particle stimulation, only DEP suppress AM cytokine release in response to LPS stimulation. The contrasting cellular response with respect to DEP and CB exposures may be due to the presence of adsorbed organic compounds on DEP, which may contribute to the increased susceptibility of hosts to pulmonary infections after DEP exposure.  相似文献   

8.
The effect of exposure to irritant air pollutants on the development of allergic airway disease is poorly understood. This study examines the effects of the lower respiratory tract irritant, NO 2 , on the outcome of ovalbumin (OVA)-induced allergic airway disease. Male and female C57Bl/6 mice were sensitized by weekly intraperitoneal (ip) OVA injections for 3 wk followed by daily 1-h OVA aerosol inhalation challenge for 3 or 10 d. Initially, mice were exposed daily for 3 d to air or 0.7 or 5 ppm NO 2 for 2 h following each OVA aerosol challenge. OVA exposure resulted in pronounced lower airway inflammation, as evidenced by a significant increase in bronchoalveolar lavage (BAL) total cellularity and eosinophil levels. BAL eosinophil levels were significantly lower in OVA-NO 2 compared to OVA-air animals. The reduction was similar at both NO 2 exposure concentrations. In a subsequent study, sensitized animals were exposed for 3 or 10 d to aerosolized OVA followed by air or 0.7 ppm NO 2 . BAL eosinophils were again reduced at 3 d by OVA-NO 2 exposure compared to OVA-air mice. At 10 d the eosinophilia was virtually abolished. This reduction in OVA-induced cellular inflammation by NO 2 was confirmed by histopathological analysis. Contrary to expectations, exposure to NO 2 during the aerosol challenge to OVA dramatically diminished the outcome of allergic disease in lungs as measured by airway cellular inflammation.  相似文献   

9.
The effect of exposure to irritant air pollutants on the development of allergic airway disease is poorly understood. This study examines the effects of the lower respiratory tract irritant, NO(2), on the outcome of ovalbumin (OVA)-induced allergic airway disease. Male and female C57Bl/6 mice were sensitized by weekly intraperitoneal (ip) OVA injections for 3 wk followed by daily 1-h OVA aerosol inhalation challenge for 3 or 10 d. Initially, mice were exposed daily for 3 d to air or 0.7 or 5 ppm NO(2) for 2 h following each OVA aerosol challenge. OVA exposure resulted in pronounced lower airway inflammation, as evidenced by a significant increase in bronchoalveolar lavage (BAL) total cellularity and eosinophil levels. BAL eosinophil levels were significantly lower in OVA-NO(2) compared to OVA-air animals. The reduction was similar at both NO(2) exposure concentrations. In a subsequent study, sensitized animals were exposed for 3 or 10 d to aerosolized OVA followed by air or 0.7 ppm NO(2). BAL eosinophils were again reduced at 3 d by OVA-NO(2) exposure compared to OVA-air mice. At 10 d the eosinophilia was virtually abolished. This reduction in OVA-induced cellular inflammation by NO(2) was confirmed by histopathological analysis. Contrary to expectations, exposure to NO(2) during the aerosol challenge to OVA dramatically diminished the outcome of allergic disease in lungs as measured by airway cellular inflammation.  相似文献   

10.
The effects of single or repeated amphetamine (AMPH) treatment and those of AMPH withdrawals on immune-mediated lung inflammatory response were studied in rats. Two experiments were done. In the first, rats egg-albumin (OVA) sensitized were singularly or repeatedly (21 days, once daily) treated with AMPH (1.0 mg/kg) or with a similar number and volume of 0.9% NaCl. The OVA aerosol challenge was performed 12 h after the single or last repeated AMPH treatment and also 72 and 120 h after AMPH withdrawal. In the second experiment, the effects of reserpine (1.0 mg/kg/day for 5 consecutive days) on single AMPH actions on lung allergic response of rats were analyzed. Single and repeated AMPH treatment induced opposite actions on Bronchoalveolar lavage fluid (BAL) cellularity of allergic rats: single treatment decreased and repeated treatment increased the total number of cells as well as those of macrophages, neutrophils and eosinophils. Our data also showed that single but not repeated AMPH treatment decreased the number of neutrophils, monocytes and lymphocytes in the peripheral blood, and increased the total number of bone marrow cells in rats sensitized and challenged with OVA. Furthermore, it was shown that reserpine treatment precluded the effects of single AMPH treatment on cellular migration to the lung of OVA-sensitized and challenged rats. It was concluded that AMPH effects on lung inflammatory response and cell recruitment to the lung in allergic rats rely at least partially on corticosterone serum levels. The possible involvement of vesicular monoamine transporter type 2 (VMAT2) with these observed effects was discussed.  相似文献   

11.
AIM: To explore the anti-inflammatory effects of amurensin H on asthma-like reaction induced by allergen in sensitized mice. METHODS: BALB/c mice were sensitized by ovalbumin (OVA, ip) on d 0 and d 14 and challenged with 1% OVA on d 18 to 22. Mice developed airway eosinophilia, mucus hypersecretion, and elevation in cytokine levels. Mice were administered amurensin H orally at the doses of 49, 70, or 100 mg/kg once every day from d 15 to the last day. Bronchoalveolar lavage fluid (BALF) were collected at 24 h and 48 h after the last OVA challenge. Levels of tumor necrosis factor-alpha (TNF-alpha), interleukin 4 (IL-4), interleukin 5 (IL-5), and interleukin 13 (IL-13) in BALF were measured using ELISA method. Differential cell counts of macrophages, lymphocytes, neutrophils and eosinophils were performed in 200 cells per slide (one slide per animal). Lung tissue sections of 6-mum thickness were stained with Mayer's hematoxylin and eosin for assessment of cell infiltration, mucus production, and tissue damage. RESULTS: Oral administration of amurensin H significantly inhibited OVA-induced increases in total cell counts, eosinophil counts, and TNF- alpha, IL-4, IL-5 and IL-13 levels in BALF. In addition, amuresin H dramatically decreased OVA-induced lung tissue damage and mucus production. CONCLUSION: Amurensin H may have therapeutic potential for the treatment of allergic airway inflammation.  相似文献   

12.
AIM: To determine the expressions of cysteinyl leukotriene receptors, CysLT1 and CysLT2, in airway eosinophilic inflammation of OVA-induced asthmatic mice and the modulation by montelukast, a CysLT1 receptor antagonist. METHODS: Asthma model was induced by chronic exposure to ovalbumin (OVA) in C57BL/6 mice. The eosino-phils in bronchoalveolar lavage (BAL) fluid and lung tissues were counted, IL-5 level in BAL fluid was measured, and CysLT1 and CysLT2 receptor mRNA expressions were detected by semi-quantitative RT-PCR. RESULTS: Montelukast (6 mg/kg, once per day for 20 d) significantly suppressed the increased eosinophils in BAL fluid and lung tissue, and increased IL-5 level in BAL fluid in OVA challenged mice. OVA challenge increased CysLT1 but decreased CysLT2 receptor mRNA expression. Montelukast inhibited the increased CysLT1 but not the reduced CysLT2 expression after OVA challenge. CONCLUSION: CysLT receptors are modulated immunologically, and montelukast inhibits up-regulation of CysLT1 receptor  相似文献   

13.
Cerium dioxide nanoparticles (CeO2NPs) have been used as diesel fuel-borne catalysts for improved efficiency and pollutant emissions. Concerns that such material may influence diesel exhaust particle (DEP) effects within the lung upon inhalation, prompted us to examine particle responses in mice in the presence and absence of the common allergen house dust mite (HDM). Repeated intranasal instillation of combined HDM and DEP increased airway mucin, eosinophils, lymphocytes, IL-5, IL-13, IL-17A and plasma IgE, which were further increased with CeO2NPs co-exposure. A single co-exposure of CeO2NPs and DEP after repeated HDM exposure increased macrophage and IL-17A levels above DEP induced levels. CeO2NPs exposure in the absence of HDM also resulted in increased levels of plasma IgE and airway mucin staining, changes not observed with repeated DEP exposure alone. These observations indicate that CeO2NPs can modify exhaust particulate and allergen induced inflammatory events in the lung with the potential to influence conditions such as allergic airway disease.  相似文献   

14.
The role of traffic-related air pollution in the development of allergic diseases is still unclear. We therefore investigated if NO?, an important constituent of traffic-related air pollution, promotes allergic sensitization to the allergen ovalbumin (OVA). We also examined if NO? influenced the allergy adjuvant activity of diesel exhaust particles (DEP). For this purpose, mice were exposed intranasally to OVA with or without DEP present, immediately followed by exposure to NO? (5 or 25 parts per million [ppm]) or room air for 4?h in whole body exposure chambers. Eighteen hours after the last of three exposures, the lungs of half of the animals were lavaged with saline and markers of lung damage and lung inflammation in the bronchoalveolar lavage fluid (BALF) were measured. Three weeks later, after intranasal booster immunizations with OVA, the levels of OVA-specific IgE and IgG2a antibodies in serum were determined. Both NO? (25 ppm) and DEP gave lung damage, measured as increased total protein concentration in BALF, whereas only NO? seemed to stimulate release of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). In contrast, only DEP significantly increased the number of neutrophils. Furthermore, DEP in combination with OVA stimulated the production of serum allergen-specific IgE antibodies. NO?, however, neither increased the production of allergen-specific IgE antibodies, nor influenced the IgE adjuvant activity of DEP. Thus, based on our findings, NO? seems to be of less importance than combustion particles in the development of allergic diseases after exposure to traffic-related air pollution.  相似文献   

15.
The effect of exposure to diesel exhaust particulate (DEP) on bacillus Calmette-Guerin (BCG) lung infection in mice was studied. C57Bl/6J female mice were infected with BCG (2.5 x 104 bacteria/mouse) by intrapulmonary instillation, with or without coadministration of DEP (100 microg/mouse). Five weeks later, mice exposed to DEP + BCG had about a four-fold higher BCG load in the lungs than mice exposed only to BCG (p < 0.05). DEP treatment alone had no effect on the total number of lung lymphocytes or numbers of T, B, or NK cells recovered from lungs. In contrast, BCG infection significantly increased (p< 0.05) recovery levels of all types of lymphocytes from lungs. Coexposure to DEP + BCG further increased the recovery of lymphocytes from lungs of BCG-infected mice. The pulmonary lymphocyte subpopulation expressing the greatest levels of mRNA for IFNgamma after BCG infection was CD4+ T cells. Expression levels were similar in mice exposed to BCG or BCG + DEP and were elevated as compared to noninfected mice and mice treated with DEP alone. Recovery of IFNgamma-secreting lymphocytes and IFNgamma-secreting T cells was significantly higher (p < 0.05) from lungs of BCG-infected mice as compared to control or DEP-exposed mice. BCG and BCG + DEP groups of mice did not differ significantly in the numbers of IFNgamma-secreting lymphocytes in lungs. Taken together, these results indicated that coexposure to DEP + BCG did not significantly affect the level of IFNgamma response of mice to BCG infection. However, DEP treatment was found to inhibit IFNgamma-induced nitric oxide (NO) production by mouse alveolar macrophages in vitro. Our results indicate that DEP exposure did not alter the IFNgamma response to BCG infection, but reduced responsiveness of alveolar macrophages to IFNgamma. Reduced sensitivity of DEP-exposed alveolar macrophages to IFNgamma may contribute to a greater load of BCG in the lungs of BCG-infected mice given DEP.  相似文献   

16.
The present study was conducted to clarify the involvement of mast cells in the exacerbating effect of diesel exhaust particles (DEP) toward allergic airway inflammation and airway hyperresponsiveness (AHR). Airway inflammation by the infiltration of cosinophils with goblet cell proliferation and AHR, as well as by the production of antigen-specific IgG1 and IgE, in plasma were examined using mast cell-deficient mice (W/Wv) and normal mice (W/W+). Both groups of mice received ovalbumin (OVA) or OVA+DEP intratracheally. The eosinophilic airway inflammation and goblet cell proliferation promoted by OVA were significantly greater in W/W+ than in W/Wv. A similar result was observed in AHR, but was not significant among both groups of mice. DEP enhanced OVA induced-allergic airway inflammation, goblet cell proliferation, and development of AHR in W/Wv, but not in W/W+. DEP decreased production of antigen-specific IgG1 and IgE in both groups of mice. Mast cells were observed in the submucosal layer of the main bronchus in W/Wv. The number of mast cells was significantly decreased by OVA treatment. The results indicate that mast cells are not necessary to enhance airway damage and development of AHR in W/Wv by DEP. However, mast cells may be required for the OVA-induced cosinophilic inflammation, airway damage with goblet cell proliferation, and AHR in W/W+.  相似文献   

17.
Diesel exhaust particles (DEP) are assumed to be a causal substance for pulmonary inflammation. As peroxynitrite is recently implicated in inflammation and cytotoxity, the hypothesis was tested that instillation of DEP induces formation of peroxynitrite in cells migrated in lung. Rats were intratracheally instilled with DEP suspension (2 mg/0.5 ml/kg) and killed 24 h later. Alveolar cells were collected by broncho-alveolar lavage. Population of alveolar cells increased more than twice by DEP exposure, mainly due to a large increase of neutrophils. Peroxynitrite formation (N(G)-nitro-L-arginine methylester and superoxide dismutase inhibitable chemiluminescence) was detected in alveolar cells from treated rats, and 12-O-tetradecanoylphorbol 13-acetate-stimulation enhanced it. In addition, DEP induced expression of inducible NO synthase mRNA in these cells. But peroxynitrite was not detectable in cells from control. These results indicate that DEP exposure results in peroxynitrite formation in migrated cells, which leads to pulmonary inflammation.  相似文献   

18.
The use of cerium compounds as diesel fuel catalyst results in the emission of cerium oxide nanoparticles (CeO2) in the exhaust. This study characterized the potential effects of CeO2 exposure on lung toxicity. Male Sprague Dawley rats were exposed to CeO2 by a single intratracheal instillation at 0.15, 0.5, 1, 3.5 or 7 mg/kg body weight. At 1 day after exposure, CeO2 significantly reduced NO production, but increased IL-12 production, by alveolar macrophages (AM) in response to ex vivo lipopolysacchride (LPS) challenge, and caused AM apoptosis, through activation of caspases 9 and 3. CeO2 exposure markedly increased suppressor of cytokine signaling-1 at 1-day and elevated arginase-1 at 28-day post exposure in lung cells, while osteopontin was significantly elevated in lung tissue at both time points. CeO2 induced inflammation, cytotoxicity, air/blood barrier damage, and phospholipidosis with enlarged AM. Thus, CeO2 induced lung inflammation and injury in lungs which may lead to fibrosis.  相似文献   

19.
Warifteine is a bisbenzylisoquinoline alkaloid isolated from the Cissampelos sympodialis Eichl (Menispermaceae). This plant is used in the folk medicine for the treatment of airway respiratory diseases. A murine model of immediate allergic reaction was used to evaluate warifteine treatment in the IgE production, leukocyte activation, thermal hyperalgesia, mast cell degranulation and scratching behavior. BALB/c mice treated with warifteine (0.4-10 mg/Kg) 1 h before OVA sensitization reduced OVA induced paw edema as well as the OVA-specific IgE serum titers as compared with non-treated and OVA-sensitized animals. Warifteine also reduced the mice death evoked by IgE-dependent anaphylactic shock reaction at 30 min after intravenous OVA challenge. To assess the effect of warifteine treatment on T cell proliferative response, spleen cells from warifteine treated or non-treated and OVA-sensitized animals were evaluated. Spleen cells from warifteine treated animals (2.0 mg/kg) did not proliferate following OVA stimulation as compared with spleen cell cultures from non-treated animals. This response may be related with the increase of NO production as observed in peritoneal macrophage cultures treated with warifteine. Thermal hyperalgesia evoked by IgE or histamine/5-hydroxytryptamine challenge was inhibited on rats at dose of 4.0 mg/kg. Warifteine treatment (0.6 or 6.0 microg/ml) also decreased the IgEalphaDNP-BSA sensitized mast degranulation after DNP-BSA challenge measured by histamine release. In addition, compound 48/80-induced scratching behavior was also sensitive to warifteine treatment. These results demonstrate for the first time that warifteine treatment reduced the allergy-associated responses.  相似文献   

20.
Lee MY  Shin IS  Lim HS  Seo CS  Ha H  Shin HK 《Inhalation toxicology》2011,23(14):938-946
Kochia scoparia fruit has been used in Asia for a long time. It possesses anti-inflammatory, antiallergic, and antipruritic actions. We investigated the role of a K. scoparia fruit ethanolic extract (KSEE) in allergic airway inflammation in a mouse asthma model. BALB/c mice were sensitized with ovalbumin (OVA) and, upon OVA aerosol challenge, developed airway eosinophilia, mucus hypersecretion, elevations in cytokine, chemokine, and immunoglobulin levels, and upregulation of MMP-9, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expression. Intragastric administration of KSEE significantly attenuated OVA-induced influx of total leukocytes, eosinophils, neutrophils, macrophages, and lymphocytes into lungs, as well as attenuating levels of interleukin (IL)-4 and IL-5 in a dose-dependent manner. KSEE also significantly reduced the serum levels of total and OVA-specific immunoglobulin (Ig)E and OVA-specific IgG1 release into the airspace. Histological studies showed that KSEE inhibited OVA-induced lung tissue eosinophilia and airway mucus production. Moreover, in whole lung tissue lysates, immunoreactivity showed that KSEE markedly attenuated the OVA-induced increase in expression of ICAM-1, VCAM-1, and MMP-9. These results show that KSEE possesses protective effects against allergic airway inflammation, acts as an MMP-9 inhibitor, and induces a reduction in ICAM-1 and VCAM-1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号