首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The homeobox gene sine oculis (so) is essential for visual system formation in Drosophila. A vertebrate member of the so/Six gene family, Six3, is expressed in the developing eye and forebrain. Injection of Six3 RNA into medaka fish embryos causes ectopic Pax6 and Rx2 expression in midbrain and cerebellum, resulting in the formation of ectopic retinal primordia. Injected mouse Six3 RNA initiates ectopic expression of endogenous medaka Six3, uncovering a feedback control of Six3 expression. Initiation of ectopic retina formation reveals a pivotal role for Six3 in vertebrate retina development and hints at a conserved regulatory network underlying vertebrate and invertebrate eye development.  相似文献   

4.
A few years ago, three novel murine homeobox genes closely related to the Drosophila sine oculis (so) gene (Six1-3) were isolated and were all included in the Six/so gene family. Because of its early expression in the developing eye field, Six3 was initially thought to be the functional ortholog of the Drosophila so gene. This hypothesis was further supported by the demonstration that ectopic Six3 expression in medaka fish (Oryzias latipes) promotes the formation of ectopic lens and retina tissue. Here, we show that similar to Drosophila, where the eyeless/Pax6 gene regulates the eye-specific expression of so, Six3 expression in the murine lens placodal ectoderm is also controlled by Pax6. We also show that ectopic Six3 expression promotes the formation of ectopic optic vesicle-like structures in the hindbrain-midbrain region of developing mouse embryos.  相似文献   

5.
The development of the compound eye of Drosophila is controlled, in part, by the concerted actions of several nuclear proteins that form an intricate regulatory system. One member of this network is sine oculis (so), the founding member of the Six gene family. Mutations within so affect the entire visual system, including the compound eye. The vertebrate homologs Six3 and Six6 also appear to play crucial roles in retinal formation. Mutations in Six3 inhibit retinal formation in chickens and fish, whereas those in Six6 are the underlying cause of bilateral anophthalmia in humans. Together, these phenotypes suggest a conserved role for the Six genes in eye development. In this report, we describe the effects of a dominant-negative mutation of sine oculis on the development of the compound eye of Drosophila. The mutation resides within the Six domain and may have implications for eye development and disease.  相似文献   

6.
7.
EYA4, a novel vertebrate gene related to Drosophila eyes absent   总被引:7,自引:0,他引:7  
We have isolated a family of four vertebrate genes homologous to eyes absent (eya), a key regulator of ocular development in Drosophila. Here we present the detailed characterization of the EYA4 gene in human and mouse. EYA4 encodes a 640 amino acid protein containing a highly conserved C-terminal domain of 271 amino acids which in Drosophila eya is known to mediate developmentally important protein-protein interactions. Human EYA4 maps to 6q23 and mouse Eya4 maps to the predicted homology region near the centromere of chromosome 10. In the developing mouse embryo, Eya4 is expressed primarily in the craniofacial mesenchyme, the dermamyotome and the limb. On the basis of map position and expression pattern, EYA4 is a candidate for oculo- dento-digital (ODD) syndrome, but no EYA4 mutations were found in a panel of ODD patients.   相似文献   

8.
9.
10.
Dach1 is a mouse homologue of the Drosophila dachshund gene, which is a key regulator of cell fate determination during eye, leg, and brain development in the fly. We have investigated the expression and growth factor regulation of Dach1 during pre- and postnatal skeletal development in the mouse limb to understand better the function of Dach1. Dach1 was expressed in the distal mesenchyme of the early embryonic mouse limb bud and subsequently became restricted to the tips of digital cartilages. Dach1 protein was localized to postmitotic, prehypertrophic, and early hypertrophic chondrocytes during the initiation of ossification centers, but Dach1 was not expressed in growth plates that exhibited extensive ossification. Dach1 colocalized with Runx2/Cbfa1 in chondrocytes but not in the forming bone collar or primary spongiosa. Dach1 also colocalized with cyclin-dependent kinase inhibitors p27 (Kip1) and p57 (Kip2) in chondrocytes of the growth plate and in the epiphysis before the formation of the secondary ossification center. Because fibroblast growth factors (FGF), bone morphogenetic proteins (BMP), and hedgehog molecules (Hh) regulate skeletal patterning of the limb bud and chondrocyte maturation in developing endochondral bones, we investigated the regulation of Dach1 by these growth and differentiation factors. Expression of Dach1 in 11 days postcoitus mouse limb buds in organ culture was up-regulated by implanting beads soaked in FGF1, 2, 8, or 9 but not FGF10. BMP4-soaked beads down-regulated Dach1 expression, whereas Shh and bovine serum albumin had no effect. Furthermore, FGF4 or 8 could substitute for the apical ectodermal ridge in maintaining Dach1 expression in the limb buds. Immunolocalization of FGFR2 and FGFR3 revealed overlap with Dach1 expression during skeletal patterning and chondrocyte maturation. We conclude that Dach1 is a target gene of FGF signaling during limb skeletal development, and Dach1 may function as an intermediary in the FGF signaling pathway regulating cell proliferation or differentiation.  相似文献   

11.
Eya1 is a homolog of eyes absent in Drosophila, and essential for various organ formations in vertebrates. Mouse and chick Eya1 shows dynamic expression pattern in early development. We identified ten independent Eya1 enhancers by screening evolutionarily conserved sequences. They exhibited enhancer activities in Hensen's node, neural tube, migrating neural crest cells, otic vesicle, olfactory placode, cranial ganglia, and somites at HH6-17 of chick embryo. The sum of the enhancer activities of the enhancers covers the endogenous expression domains of Eya1 common to chick and mouse. Enhancer activities were also observed in species-specific expression domains such as trigeminal ganglia and brain. Mutational study of one of the enhancers revealed that the enhancer is composed of positive and negative cis-regulatory elements. Thus, we successfully identified a comprehensive group of enhancers around Eya1 locus, which are probably involved in the control of the complex expression pattern of Eya1 in vivo.  相似文献   

12.
A new Drosophila Pax gene, sparkling (spa), implicated in eye development, was isolated and shown to encode the homolog of the vertebrate Pax2, Pax5, and Pax8 proteins. It is expressed in the embryonic nervous system and in cone, primary pigment, and bristle cells of larval and pupal eye discs. In spapol mutants, a deletion of an enhancer abolishes Spa expression in cone and primary pigment cells and results in a severely disturbed development of non-neuronal ommatidial cells. Spa expression is further required for activation of cut in cone cells and of the Bar locus in primary pigment cells. We suggest close functional analogies between Spa and Pax2 in the development of the insect and vertebrate eye.  相似文献   

13.
Vertebrate muscle arises sequentially from embryonic, fetal, and adult myoblasts. Although functionally distinct, it is unclear whether these myoblast classes develop from common or different progenitors. Pax3 and Pax7 are expressed by somitic myogenic progenitors and are critical myogenic determinants. To test the developmental origin of embryonic and fetal myogenic cells in the limb, we genetically labeled and ablated Pax3+ and Pax7+ cells. Pax3+Pax7 cells contribute to muscle and endothelium, establish and are required for embryonic myogenesis, and give rise to Pax7+ cells. Subsequently, Pax7+ cells give rise to and are required for fetal myogenesis. Thus, Pax3+ and Pax7+ cells contribute differentially to embryonic and fetal limb myogenesis. To investigate whether embryonic and fetal limb myogenic cells have different genetic requirements we conditionally inactivated or activated β-catenin, an important regulator of myogenesis, in Pax3- or Pax7-derived cells. β-Catenin is necessary within the somite for dermomyotome and myotome formation and delamination of limb myogenic progenitors. In the limb, β-catenin is not required for embryonic myoblast specification or myofiber differentiation but is critical for determining fetal progenitor number and myofiber number and type. Together, these studies demonstrate that limb embryonic and fetal myogenic cells develop from distinct, but related progenitors and have different cell-autonomous requirements for β-catenin.  相似文献   

14.
15.
Muscle cell recruitment (hyperplasia) during myogenesis in the vertebrate embryo is known to occur in three consecutive phases. In teleost fish (including zebrafish), however, information on myogenic precursor cell activation is largely fragmentary, and comprehensive characterization of the myogenic phases has only been fully undertaken in a single slow-growing cyprinid species by examination of MEF2D expression. Here, we use molecular techniques to provide a comprehensive characterization of MyoD and Myogenin expression during myogenic cell activation in embryos and larvae of brown trout, a fast-growing salmonid with exceptionally large embryos. Results confirm the three-phase pattern, but also demonstrate that the second and third phases begin simultaneously and progress vigorously, which is different from the previously described consecutive activation of these phases. Furthermore, we suggest that Pax7 is expressed in myogenic progenitor cells that account for second- and third-phase myogenesis. These findings are discussed in relation to teleost myotome development and to teleost growth strategies.  相似文献   

16.
17.
Genetic control of muscle development: learning from Drosophila   总被引:2,自引:0,他引:2  
Muscle development involves a complex sequence of time and spatially regulated cellular events leading to the formation of highly specialised syncytial muscle cells displaying a common feature, the capacity of contraction. Analyses of mechanisms controlling muscle development reveals that the main steps of muscle formation including myogenic determination, diversification of muscle precursors, myoblast fusion and terminal differentiation involve the actions of evolutionarily conserved genes. Thus dissecting the genetic control of muscle development in simple model organisms appears to be an attractive way to get insights into core genetic cascade that orchestrate myogenesis. In this respect, particularly insightful have been data generated using Drosophila as a model system. Notably, the interplay between intrinsic and extrinsic cues that determine the early myogenic decisions leading to the specification of muscle progenitors and those controlling myoblasts fusion are much better characterised in Drosophila than in vertebrate species. Also, adult Drosophila myogenesis, which leads to the formation of vertebrate-like multi-fibre muscles, emerges as a particularly well-adapted system to study normal and aberrant muscle development.  相似文献   

18.
Pax6 is a pivotal regulator of eye development throughout Metazoa, but the direct upstream regulators of vertebrate Pax6 expression are unknown. In vertebrates, Pax6 is required for formation of the lens placode, an ectodermal thickening that precedes lens development. Here we show that the Meis1 and Meis2 homeoproteins are direct regulators of Pax6 expression in prospective lens ectoderm. In mice, Meis1 and Meis2 are developmentally expressed in a pattern remarkably similar to Pax6 and their expression is Pax6-independent. Biochemical and transgenic experiments reveal that Meis1 and Meis2 bind a specific sequence in the Pax6 lens placode enhancer that is required for its activity. Furthermore, Pax6 and Meis2 exhibit a strong genetic interaction in lens development, and Pax6 expression is elevated in lenses of Meis2-overexpressing transgenic mice. When expressed in embryonic lens ectoderm, dominant-negative forms of Meis down-regulate endogenous Pax6. These results contrast with those in Drosophila, where the single Meis homolog, Homothorax, has been shown to negatively regulate eye formation. Therefore, despite the striking evolutionary conservation of Pax6 function, Pax6 expression in the vertebrate lens is uniquely regulated.  相似文献   

19.
Pax3/7-dependent stem cells play an essential role in skeletal muscle development. We now show that Fgfr4 lies genetically downstream from Pax3 and is a direct target. In chromatin immunoprecipitation (ChIP)-on-chip experiments, Pax3 binds to a sequence 3' of the Fgfr4 gene that directs Pax3-dependent expression at sites of myogenesis in transgenic mouse embryos. The activity of this regulatory element is also partially dependent on E-boxes, targets of the myogenic regulatory factors, which are expressed as progenitor cells enter the myogenic program. Other FGF signaling components, notably Sprouty1, are also regulated by Pax3. In vivo manipulation of Sprouty expression reveals that FGF signaling affects the balance between Pax-positive progenitor cells and committed myoblasts. These results provide new insight into the Pax-initiated regulatory network that modulates stem cell maintenance versus tissue differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号