首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. The effects of pituitary adenylate cyclase activating polypeptide (PACAP)-27 and PACAP-38 were investigated and compared with vasoactive intestinal polypeptide (VIP) responses in voltage clamped preparations of rat jejunum. Under these conditions electrogenic ion secretion was continuously recorded. 2. PACAP-27 is the most potent secretagogue described thus far, exhibiting a concentration-dependent dual secretory action. At low concentrations it stimulated rapid, transient secretory responses (not seen with either PACAP-38 or VIP) and these were inhibited by tetrodotoxin (TTX). At higher nM concentrations of PACAP-27 more prolonged secretory responses predominated which were insensitive to TTX. 3. In the presence of TTX, the concentration-response curve to PACAP-27 gave an EC50 value of 29.4 +/- 5.4 nM (n = 4) compared with 0.8 +/- 0.1 nM (n = 9) for PACAP-27 alone and 30.6 +/- 5.6 nM (n = 5) for PACAP-38. C-terminal fragments of PACAP-38 were not significantly effective. 4. Blockade of muscarinic and nicotinic receptors partially inhibited the low concentration effects of PACAP-27. Substance P desensitization and capsaicin pretreatment were effective at inhibiting the transient secretory PACAP-27 responses. Evidence is presented for selective, high affinity PACAP-27 receptors on submucous neurones innervating the mucosal region of the rat jejunum.  相似文献   

2.
We investigated the relaxant effect of the pituitary adenylate cyclase-activating polypeptide with 27 residues (PACAP27) and with 38 residues (PACAP38) on guinea-pig tracheal smooth muscle. Both forms of PACAP showed dose-dependent relaxant effects. The EC50 of PACAP27 was 8.7 +/- 1.9 x 10(-8) M and that of PACAP38 was 6.8 +/- 1.0 x 10(-8) M. Both increased cyclic AMP levels dose dependently and the elevation of cyclic AMP preceded the relaxation of tracheal smooth muscle. There was a marked difference in the duration of action of the two peptides. PACAP38 showed a longer-lasting relaxation compared to PACAP27. Furthermore PACAP38 maintained significantly higher levels of cyclic AMP, with cyclic AMP levels at 60 min after a 5-min exposure to PACAPs (10(-6) M) being 14.0 +/- 1.4 pM/mg protein for PACAP27 and 35.9 +/- 2.4 pM/mg protein for PACAP38. These results suggest that PACAP27 and PACAP38 may be novel potent relaxants in tracheal smooth muscle and their relaxant effect might be mediated by cyclic AMP. However PACAP38 had a longer-lasting action on relaxation of tracheal smooth muscle and production of tissue cyclic AMP than PACAP27.  相似文献   

3.
Receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the goose cerebral cortex were characterized using two approaches: (1) in vitro radioreceptor binding of [(125)I]-VIP, and (2) effects of peptides from the VIP/PACAP/secretin family on cyclic AMP formation. The binding of [(125)I]-VIP to goose cortical membranes was rapid, stable, and reversible. Saturation analysis resulted in a linear Scatchard plot, suggesting binding to a single class of receptor binding sites with a high affinity (K(d)=0.76 +/- 0.13 nM) and high capacity (B(max)=70 +/- 7 fmol/mg of protein). Various peptides displaced the specific binding of 0.12 nM [(125)I]-VIP to the goose cerebral cortical membranes in a concentration-dependent manner. The relative rank order of potency of the tested peptides to inhibit [(125)I]-VIP binding to the goose cerebrum was: PACAP(38) asymptotically equal to mammalian VIP > or = PACAP(27) asymptotically equal to chicken VIP > PHI (peptide histidine-isoleucine) > secretin (inactive). About 52% of specific [(125)I]-VIP binding sites in the goose cerebral cortex was sensitive to 5'-guanylimidodiphosphate [Gpp(NH)p], a nonhydrolyzable analogue of GTP. PACAP(38) and PACAP(27) potently stimulated cyclic AMP formation in the goose cerebral cortical slices in a concentration-dependent manner, displaying EC(50) values of 45.5 nM and 51.5 nM, respectively. Chicken VIP was markedly less potent than both forms of PACAP, mammalian VIP only weakly affected the nucleotide production, while effects evoked by PHI were negligible. It is concluded that the cerebral cortex of goose contains VPAC type receptors that are labeled with [(125)I]-VIP and are positively linked to cyclic AMP formation. In addition, the observed stronger action of PACAP, when compared to VIP, on cyclic AMP production in this tissue suggests its interaction with both PAC(1) and VPAC receptors.  相似文献   

4.
Pituitary adenylyl cyclase-activating polypeptide (PACAP) receptor type 1 (PAC(1)) signaling and desensitization were investigated in human retinoblastoma Y-79 cells. Concentration-dependent stimulation of cAMP accumulation was observed in Y-79 cells incubated for 30 min with PACAP38, PACAP27, or VIP (10(-12) to 10(-6) M). The following EC(50) values were calculated: PACAP38, 24+/-3 pM; PACAP27, 99+/-8 pM; and VIP, 29+/-3 nM. Homologous desensitization of PAC(1) receptors in Y-79 cells pretreated with 10 nM PACAP38 or PACAP27 for 60 min was characterized by a 30-50% reduction in PACAP-stimulated cAMP accumulation (p<0.0001) and a two- to fivefold rightward shift in EC(50) values (p<0.0001). PAC(1) receptor desensitization was not accompanied by a reduction in PAC(1) mRNA expression. We concluded that the desensitizing effect of PACAP38 was homologous because neither corticotropin-releasing factor- nor (-)-isoproterenol-stimulated cAMP accumulation was altered by PACAP38 preincubation. Pretreating Y-79 cells with the protein kinase A (PKA) inhibitor H89 failed to inhibit homologous PAC(1) receptor desensitization. Similarly, pretreating Y-79 cells with the protein kinase C (PKC) inhibitors staurosporine or bisindolylmaleimide failed to alter homologous PAC(1) receptor desensitization. Although activation of PKA by dibutyryl cAMP or forskolin did not desensitize PAC(1) receptors, direct activation of PKC by PMA heterologously desensitized PAC(1) receptors, reducing cAMP accumulation 34.2+/-2.2% (p<0.001). Using RT-PCR, mRNA levels for G-protein-coupled receptor kinase 3 (GRK3), but not GRK2, were found to increase 2.2- to 4.8-fold in Y-79 cells exposed to PACAP38 for 10 min to 24 h (p<0.001). PAC(1) receptor desensitization decreased 72.5+/-4.3% (p<0.001) in Y-79 cells transfected with a GRK3 antisense cDNA construct that also reduced GRK3 protein expression 48.5+/-7.9% (p<0.0005). These experiments demonstrate that GRK3 plays an important role in the homologous desensitization of retinoblastoma PAC(1) receptors, whereas PKC, but not PKA, contributes to the heterologous desensitization of retinoblastoma PAC(1) receptors.  相似文献   

5.
1. The effects of pituitary adenylate cyclase activating polypeptide (PACAP) on microvascular blood flow and plasma protein leakage were investigated in rabbit skin in vivo. 2. Intradermal injection of PACAP38, the 38 amino acid form of the peptide, caused a dose-dependent increase in blood flow measured by a 133Xe clearance technique. An equivalent increase in blood flow was induced by 10(-12) mol per site of PACAP38, 10(-12) mol per site of human alpha-calcitonin gene-related peptide (CGRP) and 10(-10) mol per site of vasoactive intestinal polypeptide (VIP). 3. The vasodilator activity of PACAP38 was not significantly different from that of the 27 amino acid form of the peptide, PACAP27, when measured with a laser Doppler flow meter, causing a 104 +/- 14% compared with 110 +/- 18% increase above basal blood flow at 10(-12) mol per site respectively. 4. At 10(-12) mol per site the effect of PACAP38 was longer lasting than that of CGRP. Blood flow remained significantly increased above control at 2 h with PACAP38 (P less than 0.05) whereas blood flow after intradermal CGRP had returned to control values by this time. 5. PACAP38 injected alone had no significant effect on microvascular leakage of 125I-labelled albumin. However, PACAP38 significantly potentiated bradykinin-induced oedema where it was approximately 100 fold more potent than VIP. 6. Oedema potentiation induced by PACAP38 was not inhibited by indomethacin at a dose which did inhibit potentiation of bradykinin-induced oedema by arachidonic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide-(1-38) (PACAP) have been found to stimulate distension-induced peristaltic motility in the guinea-pig isolated small intestine. In this study, we tested whether the putative VIP/PACAP receptor antagonist PACAP-(6-38) counteracts the properistaltic effect of VIP and PACAP in isolated segments of the guinea-pig small intestine. VIP (100 nM) and PACAP (30 nM) had a stimulatory effect, i.e., lowered the peristaltic pressure threshold at which peristaltic waves were triggered and enhanced the frequency of peristaltic waves. PACAP-(6-38) (3 microM) was per se without effect on peristalsis but prevented or reversed the peristaltic motor stimulation caused by VIP, when it was given before or after the agonist, respectively. PACAP-(6-38), however, failed to antagonize the properistaltic effect of PACAP. In ileal circular strips treated with tetrodotoxin (1 microM) and indomethacin (3 microM), spontaneous myogenic activity was inhibited by VIP (5-30 nM). This effect was significantly reduced by a pretreatment with PACAP-(6-38) (3 microM). A similar inhibition by PACAP-(1-38) (10-500 nM) was not influenced by the antagonist. It is concluded that PACAP-(6-38) is a VIP receptor antagonist, both in the peristaltic motor pathways and at the level of the circular muscle of the guinea-pig small intestine. The lack of a motor effect of PACAP-(6-38) on its own indicates that VIP acting on PACAP-(6-38)-sensitive receptors (located on neurons and/or the smooth muscle) is unlikely to participate in peristaltic motor regulation.  相似文献   

7.
A region of the brain believed to be important in the CNS response to stress is the locus coeruleus, the predominant site of noradrenergic cell bodies. Corticotrophin releasing hormone (CRH) is the primary hypothalamic releasing hormone responsible for the activation of the pituitary-adrenal axis in response to stress and, in this study, we employed a locus coeruleus-like cell line, CATH.a, to investigate the modulation of receptor signalling pathways by CRH. Pituitary adenylyl cyclase-activating polypeptide (PACAP) (10 nM), vasoactive intestinal peptide (VIP) (1 microM) and carbachol (1 mM) produced transient increases in intracellular [Ca2+]. The inhibition of the carbachol (1 mM) response by CRH was concentration-dependent (EC50 = 154 +/- 1.8 nM). Calcium responses to sub-maximally effective concentrations of PACAP (5 nM), VIP (400 nM) and carbachol (1 mM) were abolished by prior exposure to CRH (1 microM). At the concentrations employed, CRH and VIP both substantially increased intracellular [3H]-cyclic AMP accumulation. The adenylyl cyclase activator forskolin (10 microM) was also effective at eliminating the agonist-induced calcium responses. Incubation with the cell permeant cyclic AMP analogue dibutyryl cyclic AMP (dbcAMP) (1 mM), an activator of protein kinase A (PKA), for 12 min prior to agonist exposure similarly abolished the intracellular calcium response to carbachol. Carbachol increased [3H]-inositol phosphate ([3H]-IP) accumulation to a maximum of 2.4 +/- 0.11-fold basal (EC50 = 6.75 +/- 0.26 microM). PACAP produced a much greater accumulation (19.9 +/- 2.1 fold basal; EC50 = 24 nM). In the presence of forskolin (10 microM), neither carbachol- nor PACAP-induced [3H]-IP accumulation was significantly different from in its absence. These results demonstrate that CRH inhibits receptor-mediated intracellular calcium responses in a locus coeruleus-like cell line possibly via activation of PKA. This modulation could be important in controlling neuronal function in vivo in stressful situations in which the levels of CRH are increased in the locus coeruleus.  相似文献   

8.
1. The distribution and effects of pituitary adenylate cyclase-activating polypeptide (PACAP-27 and -38), helospectin (Hel-1 and Hel-2), and vasoactive intestinal polypeptide (VIP), were investigated in isolated preparations of human corpus cavernosum (CC). 2. Immunohistochemistry revealed coinciding profiles of nerve structures that showed immunoreactivities for VIP and PACAP, and VIP and Hel. Confocal microscopy showed the co-existence of VIP- and PACAP-immunoreactivities, and VIP- and Hel-immunoreactivities in most (90%) varicose nerve structures. 3. As determined by radioimmunoassay, the amounts of VIP, PACAP-27, and PACAP-38 in the preparations were 61.7 +/- 11.6, 0.1 +/- 0.05, and 3.7 +/- 0.5 pmol g-1 wet weight of tissue (pmol g-1 wet wt.), respectively. In tissue from patients with diabetes, the content of VIP was lower (13.7 +/- 0.5 pmol g-1 wet wt.), whereas that of PACAP (-27 and -38) was unchanged. 4. Cyclic nucleotide levels were determined in preparations exposed to PACAP-27, PACAP-38, Hel-1, Hel-2, and VIP. All the peptides, but Hel-2, significantly increased the concentrations of cyclic AMP, whereas the levels of cyclic GMP were unchanged. 5. The peptides concentration-dependently relaxed noradrenaline-contracted preparations. The order of potency was VIP > PACAP 27 > Hel-1 > Hel-2 > PACAP-38. 6. Hel-1, VIP and PACAP-27 effectively counteracted electrically induced contractions. At 10(-6) M, the highest peptide concentration used, the inhibitory effects obtained reached 96 +/- 3%, 87 +/- 6%, and 80 +/- 3%, respectively. 7. The results suggest that PACAP and Hel-1 are co-localized with VIP in nerve structures within the human cavernous tissue, and that the peptides are effective relaxants of CC preparations in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Six neuropeptides: short and long form of the pituitary adenylate cyclase activating polypeptide (PACAP), i.e. PACAP27 and PACAP38, vasoactive intestinal peptide (VIP), peptide histidine-isoleucine (PHI), secretin and glucagon, members of the secretin/VIP/PACAP superfamily ofpolypeptides, were tested for their ability to stimulate cyclic AMP formation in [3H]adenine-prelabeled slices of the chick hypothalamus and cerebral cortex. Of the tested peptides, only PACAP evoked pronounced and significant responses in the two analyzed brain structures. Although magnitude of the responses varied in different experiments, the effects of both forms of PACAP were usually larger in the cerebral cortex than in the hypothalamus. Glucagon, PHI (both used at concentrations 0.01-1 microM) and VIP (0.1-3 microM) induced concentration-dependent yet comparatively small effects that did not reach statistical significance, while secretin (0.1-3 microM) had no effect.  相似文献   

10.
1 We investigated whether vasoactive intestinal peptide (VIP) and its related peptides, pituitary adenylate cyclase activating peptide (PACAP) and secretin, regulate cholinergic neural mucus secretion in ferret trachea in vitro, using 35SO4 as a mucus marker. We also studied the interaction between VIP and secretin on cholinergic mucus output. 2 VIP (1 and 10 microM) increased secretion, whereas neither PACAP1 - 27, PACAP1 - 38 nor secretin (up to 10 microM) increased mucus output. In contrast, VIP, PACAP1 - 27 and PACAP1 - 38 concentration-dependently inhibited cholinergic neural secretion, with an order of potency of VIP>PACAP 1 - 38>PACAP1 - 27. Neither PACAP1 - 27 nor PACAP1 - 38 altered the secretion induced by acetylcholine (ACh). 3 Secretin increased cholinergic neural secretion with a maximal increase of 190% at 1 microM. This potentiation was blocked by VIP or atropine. Similarly, secretin (1 microM) potentiated VIP (1 microM)-induced mucus output by 160%. Secretin did not alter exogenous ACh-induced secretion. VIP vs secretin competition curves suggested these two peptides were competing reversibly for the same receptor. 4 We conclude that, in ferret trachea in vitro, VIP and PACAPs inhibit cholinergic neural secretion via pre-junctional modulation of cholinergic neurotransmission. VIP and secretin compete for the same receptor, possibly a VIP1 receptor, at which secretin may be a receptor antagonist.  相似文献   

11.
Pituitary adenylate cyclase-activating polypeptide (PACAP38) potently stimulates cyclic AMP formation in slices of chick cerebral cortex. One- to fifteen-minute pretreatment of slices with 30 nM PACAP38 led to a time-dependent attenuation (when compared with values observed in the control tissue) of the cyclic AMP response produced by subsequent re-stimulation with 1 microM PACAP38. Concentration-response curve for restimulation with PACAP38 applied at 0.01-1 microM to tissue slices preincubated for 15 min with 30 nM PACAP38 revealed dose-dependent decreases in subsequent cyclic AMP responses by 16-37%. It is concluded that in chick cerebral cortex, the receptors mediating PACAP-driven cyclic AMP responses (PAC1 receptors) undergo rapid homologous desensitization.  相似文献   

12.
In AR 4-2J rat pancreatic acinar cell membranes, receptors for the two pituitary adenylate cyclase-activating peptides (PACAP) PACAP-27 (the short version of PACAP) and PACAP-38 [the long version, with a carboxyl-terminal (residues 28-38) extension] can be subdivided into (a) type A receptors, with high affinity (Kd, 0.3-0.5 nM) for both PACAP-27 and PACAP-38, and (b) type B receptors, with high affinity for PACAP-38 (Kd, 0.3 nM) but low affinity for PACAP-27 (Kd, 20 nM). Determinants of agonist/antagonist activity in 47 PACAP-27 and PACAP-38 analogs (mono- or disubstituted in positions 1, 2, 3, 20, and 21) or amino-terminally shortened were tested by (a) the occupancy of PACAP-A receptors, preferentially labeled with [125I-N-acetyl-His1]PACAP-27, and that of PACAP-A and -B receptors, both labeled with 125I-PACAP-38, and (b) the resulting activation or inhibition of adenylate cyclase. For PACAP-A receptor recognition, deprotonated His1 was a major determinant for PACAP-27 but not PACAP-38; the Kd of 125I-PACAP-27 decreased 2.4-fold at 37 degrees between pH 6.0 and 7.5 and 3.6-fold at 15 degrees, whereas the IC50 of [N-acetyl-His1]PACAP-27 was less affected and that of PACAP(2-27), PACAP(2-38), and PACAP(1-38) was pH independent. In addition, PACAP-A receptors coupled to adenylate cyclase were much more sensitive to PACAP-38 derivatives than to PACAP-27 derivatives; for instance, [D-Phe2]PACAP-38 was a more potent antagonist (Ki, 5 nM) than [D-Phe2]PACAP-27 (Ki, 350 nM), and PACAP(6-38) was a more potent antagonist (Ki, 7 nM) than PACAP(6-27) (Ki, 300 nM). PACAP-B receptors, apart from showing high affinity for PACAP-38, displayed relatively high affinity for amino-terminally shortened PACAP-38 fragments and poor affinity for PACAP-27 and PACAP-27 fragments.  相似文献   

13.
Neurogenic vasodilation in cranial arteries may be an important mechanism in the pathogenesis of migraine headache. We describe a novel, in vitro assay to characterise neurogenic vasodilator responses in endothelium-denuded segments of rabbit isolated basilar artery, with particular focus on calcitonin-gene related peptide (CGRP). In arterial segments precontracted with prostaglandin F(2alpha), relaxations evoked by exogenously applied alphaCGRP (EC(50)=2.9 nM) were inhibited by alphaCGRP-(8-37) (pA(2)=6.49) or by desensitisation resulting from prior exposure to alphaCGRP. Relaxations evoked by exogenously applied vasoactive intestinal polypeptide (VIP) (EC(50)=2.5 nM) were inhibited by VIP-(7-28) 1 microM. The 5-HT(1) receptor agonists L-771,331 ((3S)-3[N-(S)-alpha-methylbenzyl]aminomethyl-(S)-1-[2-(5-(2-oxo-1, 3-oxazolidin-4-ylmethyl)-1H-indol-3-yl)ethyl]pyrrolidine) and sumatriptan exerted contractile effects (EC(50)=293 and 95 nM, respectively). In neurogenic experiments, vasodilation evoked by electrical field stimulation was markedly attenuated by pre-treatment with capsaicin (10 microM) or by prior CGRP receptor desensitisation and to a lesser extent by pre-treatment with VIP-(7-28) 1 microM. L-771,331 (100 nM) exerted a weak inhibitory effect, marked only by a short reduction in the recovery time (post-electrical stimulation) and sumatriptan (30 nM) had no effect. The neurogenic response was potentiated by alphaCGRP-(8-37) 1 microM (reversible on wash-out). Short application (5-10 min) of capsaicin (10 microM) produced vasodilation that was inhibited by alphaCGRP-(8-37) 1 microM. These data suggest that electrically evoked neurogenic vasodilation in rabbit basilar artery has a large component resulting from the release of sensory neuropeptides in particular CGRP and a smaller component involving the release of VIP.  相似文献   

14.
1: We investigated the human vasoactive intestinal polypeptide (VIP) receptors VPAC(1) and VPAC(2) mutated at conserved tyrosine residues in the first transmembrane helix (VPAC(1) receptor Y146A and Y150A and VPAC(2) receptor Y130A and Y134A). 2: [(125)I]-Acetyl-His(1) [D-Phe(2), K(15), R(16), L(27)]-VIP (1-7)/GRF (8-27) (referred to as [(125)I]-VPAC(1) antagonist) labelled VPAC(1) binding sites, that displayed high and low affinities for VIP (IC(50) values and per cent of high affinity binding sites: wild-type, 1 nM (57+/-9%) and 160 nM; Y146A, 30 nM (40+/-8%) and 800 nM; Y150A, 4 nM (27+/-8%) and 300 nM). [R(16)]-VIP behaved as a "super agonist" at both mutated VPAC(1) receptors and the efficacies of VIP analogues modified in positions 1, 3 and 6 were significantly decreased. 3: VIP was less potent at the Y130A and Y134A mutated VPAC(2) receptors (EC(50) 200 and 400 nM, respectively) than at the wild-type VPAC(2) receptor (EC(50) 7 nM). Furthermore, [hexanoyl-His(1)]-VIP behaved as a "super agonist" at the two mutated VPAC(2) receptors, and VIP analogues modified in positions 1, 3 and 6 were less potent and efficient at the mutated than at wild-type VPAC(2) receptors. However, the Y130A and Y134A mutants could not be studied in binding assays. 4: Our results suggest that the conserved tyrosine residues do not interact directly with the VIP His(1), Asp(3) or Phe(6) residues (that are necessary for receptor activation), but stabilize the correct active receptor conformation.  相似文献   

15.
Chimeric peptides were synthesized by adding the C-terminal extension 28-38 of the pituitary adenylate cyclase activating polypeptide (PACAP) to the sequences (1–27), (2–27), (3–27) and (6–27) of VIP. The capacity of these peptides to occupy the selective PACAP- and the non-selective PACAP-VIP receptors and to stimulate adenylate cyclase activity was studied in Chinese hamster ovary (CHO) cells expressing the recombinant receptors. The results were compared to those obtained with VIP and the corresponding VIP fragments. The presence of the (28–38) PACAP extension increased at least 100-fold the VIP- or VIP fragment affinities for the selective PACAP receptor but not for the non-selective PACAP-VIP receptors. Furthermore, on both receptors, the extension increased peptide intrinsic activity: VIP(3–28) was a partial agonist; while VIP(3–27)/PACAP(28–38) was as potent as VIP and was apparently a full agonist; VIP(6–28) had no intrinsic activity, but VIP(6–27)/PACAP(28–38) was a partial agonist. These results suggest: (1) the presence of a specific domain for the (28–38) PACAP sequence on the selective PACAP receptor; and (2) a stabilizing effect of the (28–38) PACAP sequence on the structure of N-terminally truncated VIP. © Munksgaard 1996.  相似文献   

16.
1. We have used an isolated, buffer-perfused, rabbit ear model of acute arterial occlusion to investigate the effects of the nitrovasodilator sodium nitroprusside, the potassium channel activator BRL 38227 (the active (-)-enantiomer of cromakalim) and the calcium antagonist, verapamil, on collateral perfusion in the absence of pharmacological tone. 2. Verapamil was the most potent vasodilator (EC50 = 72.6 +/- 32.0 nM) of 5-hydroxytryptamine/histamine-induced tone in the rabbit isolated perfused ear. Sodium nitroprusside and BRL 38227 were less potent with respective EC50 values of 488 +/- 75 nM and 296 +/- 40 nM. Following inhibition of endothelium-derived relaxing factor (EDRF) synthesis, the potency of BRL 38227 was significantly (P less than 0.001) increased with an EC50 of 55.6 +/- 5.0 nM. 3. BRL 38227 at 500 nM and 3 microM induced substantial increases in collateral perfusion following arterial ligation in the absence of pharmacological tone compared to control. Furthermore 3 microM BRL 38227 completely reversed the attenuation of collateral perfusion which followed inhibition of EDRF synthesis with 100 microM NG-nitro-L-arginine methyl ester (L-NAME). 4. Sodium nitroprusside (500 nM and 3 microM) induced modest improvements in collateral perfusion in the early stages after arterial occlusion. 5. Verapamil did not influence collateral perfusion at either of the concentrations used (50 nM and 3 microM), even though it was a potent vasodilator. 6. The results of this study indicate that BRL 38227, and to a much lesser extent sodium nitroprusside, selectively improve collateral perfusion following arterial occlusion, even in the presence of effects of EDRF on acute collateralization, while verapamil has no effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. The importance of adenylate cyclase-mediated vascular relaxation in the macro and microcirculation was assessed in rabbit aortic and coeliac artery bioassay rings in vitro and skin microvessels in vivo. 2. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP38), the beta-agonist, isoprenaline, and the prostaglandins, PGE1 and PGE2, were compared with the activity of nitroprusside, which acts by stimulating guanylate cyclase. 3. In aortic tissue the relative relaxant potencies were (-log M EC50, 100% = response to nitroprusside 10(-6) M): nitroprusside 7.0, PACAP38 6.8, isoprenaline 6.3; PGE1 and PGE2 were weak constrictors. In coeliac artery rings relative potencies were (-log M EC50, 100% = response to nitroprusside 10(-5) M): PACAP38 6.6, PGE1 6.6, nitroprusside 6.5, PGE2 4.9, and isoprenaline 4.3. 4. Comparative potencies when injected into anaesthetized rabbit skin in vivo were (-log mol/site required to increase blood red cell flux by 75%): PACAP38 13.0, PGE2 10.7, isoprenaline 9.7, PGE1 9.1, nitroprusside < 7. 5. Nitroprusside, the most effective relaxant tested in the aorta, was 10(7) fold less potent than PACAP in its effect on skin blood flow. PGE1 and PGE2 were constrictors of the aorta, of intermediate effect in the coeliac artery, but potent vasodilators of the microcirculation. 6. In this model, the importance of adenylate cyclase-mediated vascular relaxation increases with decreasing vessel size.  相似文献   

18.
The P(2)-purinoceptor antagonist, suramin, was used to investigate the possible involvement of adenosine 5'-triphosphate (ATP) in the inhibitory non-adrenergic non-cholinergic (NANC) innervation of the rat gastric fundus. ATP (1-30 microM) produced biphasic responses consisting of concentration-dependent relaxations followed by concentration-dependent contractions. Suramin (200 microM) significantly reduced relaxations and abolished contractions to ATP. Under NANC conditions, electrical field stimulation (EFS) induced frequency-dependent relaxations. Suramin (200 microM) and the peptidase alpha-chymotrypsin (1 u ml(-1)) had the same effects on EFS-induced relaxations: their duration was reduced, but their magnitude was unaffected. Cumulative relaxations to vasoactive intestinal peptide (VIP; 0.1-100 nM), and to the VIP analogue pituitary adenylate cyclase activating peptide 1-27 (PACAP; 0.2-100 nM), were almost completely abolished by alpha-chymotrypsin (1 u ml(-1)), and were inhibited by suramin (3-200 microM) in an apparently competitive manner. Schild plot analysis indicated that suramin had pA(2) values of 5.1+/-0.2 (Hill slope=0.9+/-0.2) and 5.6+/-0.1 (Hill slope=1.0+/-0.1), against VIP and PACAP, respectively. Concentration-dependent relaxations to nitric oxide (1-30 microM) and cumulative relaxations to isoprenaline (0.1-300 nM) were not affected by suramin (200 microM). No conclusions can be made regarding the possible involvement of ATP in EFS-induced NANC relaxations. The results suggest that suramin acts as a competitive antagonist at VIP receptors in the rat gastric fundus.  相似文献   

19.
1. The mediators of nonadrenergic, noncholinergic (NANC) inhibitory responses in longitudinal muscle of rat distal colon were studied. 2. An antagonist of pituitary adenylate cyclase activating peptide (PACAP) receptors, PACAP6-38, concentration-dependently inhibited the rapid relaxation of the longitudinal muscle induced by electrical field stimulation (EFS), resulting in a maximal inhibition of 47% at 3 microM. 3. PACAP6-38 inhibited the relaxation by 75% in the presence of the vasoactive intestinal peptide (VIP) receptor antagonist, VIP10-28 at 3 microM, which inhibited the relaxation by 44%. 4. An antagonist of large conductance Ca(2+)-activated K+ channels, charybdotoxin, concentration-dependently inhibited the rapid relaxation of the longitudinal muscle, resulting in a maximal inhibition of 58% at 100 nM. 5. An antagonist of small conductance Ca(2+)-activated K+ channels, apamin, concentration-dependently inhibited the relaxation (58% at 1 microM). 6. Treatment with both K+ channel antagonists resulted in 84% inhibition of the EFS-induced relaxation, which is comparable to the extent of inhibition induced by PACAP6-38 plus VIP10-28. 7. The inhibitory effect of VIP10-28 and of apamin, but not of charybdotoxin was additive: the same applied to PACAP6-38 and charybdotoxin, but not apamin. 8. Exogenously added VIP (100 nM 1 microM) induced a slow gradual relaxation of the longitudinal muscle. Charybdotoxin, but not apamin significantly inhibited the VIP-induced relaxation VIP10-28, but not PACAP6-38 selectively inhibited the VIP-induced relaxation. 9. Exogenously added PACAP (10-100 nM) also induced slow relaxation. Apamin and to a lesser extent, charybdotoxin, inhibited the PACAP-induced relaxation. PACAP6-38, but not VIP10-28 selectively inhibited the PACAP-induced relaxation. 10. Apamin at 100 nM inhibited inhibitory junction potentials (i.j.ps) induced by a single pulse of EFS Apamin also inhibited a rapid phase, but not a delayed phase of i.j.ps induced by two pulses at 10 Hz. VIP10-28 did not inhibit i.j.ps induced by a single pulse, but significantly inhibited the delayed phase at two pulses. A combination of apamin and VIP10-28 abolished the i.j.ps induced by two pulses. 11. Both VIP and PACAP induced slow hyperpolarization of the cell membrane of the longitudinal muscle. Apamin inhibited the PACAP-, but not VIP-induced hyperpolarization. 12. From these findings it is suggested that VIP and PACAP are involved in NANC inhibitory responses of longitudinal muscle of the rat distal colon via activation of charybdotoxin- and apamin-sensitive K+ channels, respectively.  相似文献   

20.
The contractile effect of capsaicin in the guinea-pig small intestine involves an activation of enteric cholinergic neurons. Our present data show that the P(2) purinoceptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 30 microM) significantly reduces the contractile response to capsaicin (2 microM) in the presence, but not in the absence, of the tachykinin receptor antagonists [O-Pro(9), (Spiro-gamma-lactam)Leu(10), Trp(11)]physalaemin (1-11) (GR 82334; 3 microM) and (S)-(N)-(1-(3-(1-benzoyl-3-(3, 4-dichlorophenyl)piperidin-3-yl)propyl)-4-phenylpiperidine-4-yl)-N -methylacetamide (SR 142804: 100 nM) (for blocking tachykinin NK1 and NK3 receptors, respectively). PPADS (30 microM) fails to influence submaximal cholinergic contractions evoked by cholecystokinin octapeptide (CCK-8; 2-3 nM) or senktide (1 nM), or the direct smooth muscle-contracting effect of histamine (100-200 nM). A higher concentration (300 microM) of PPADS is also without effect against the stimulatory action of cholecystokinin octapeptide. This means that PPADS can probably be safely used as a purinoceptor antagonist in intestinal preparations. The putative pituitary adenylate cyclase activating peptide (PACAP) receptor antagonist PACAP-(6-38) (3 microM) significantly reduces the contractile effect of PACAP-(1-38) (10 nM) and abolishes that of vasoactive intestinal polypeptide (VIP; 10 nM). PACAP-(6-38) (3 microM) fails to influence the effect of capsaicin (2 microM) both in the absence and in the presence of tachykinin receptor antagonists. The nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine (L-NOARG; 100 microM) also fails to inhibit the capsaicin-induced motor response. We conclude that an endogenous ligand of PPADS-sensitive P(2) purinoceptors (possibly ATP), but not a VIP/PACAP-like peptide or NO, is involved in the nontachykininergic activation of cholinergic neurons in the course of the capsaicin-induced contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号