共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 分析阐明胰淀素短时间作用于INS-1细胞、抑制高糖刺激的细胞内钙离子浓度([Ca2+]i)升高的机制。方法 采用钙离子荧光指示剂Fluo-4/AM负载细胞后,激光共聚焦显微镜下连续动态观察INS-1细胞经胰淀素孵育前后在葡萄糖、KCl、咖啡因和卡巴胆碱存在条件下[Ca2+]i荧光强度变化。结果 (1)单纯16.7 mmol/L葡萄糖刺激使细胞内钙离子荧光强度变化的曲线下面积(AUC)为990±16;0.5 μmol/L胰淀素使16.7 mmol/L葡萄糖刺激的胞内荧光强度有所下降(AUC为831±10), 1.0、5.0、10.0 μmol/L胰淀素均可使细胞内荧光强度显著降低(AUC分别为555±9、535±6、531±5),与单纯葡萄糖刺激组比较差异有统计学意义,且呈现剂量依赖趋势。(2)10.0 μmol/L胰淀素可使30 mmol/L KCl刺激的荧光强度明显减低,与单纯KCl刺激组相比(AUC:168±5比311±11)差异有统计学意义。(3) 10.0 μmol/L胰淀素预处理后咖啡因和卡巴胆碱刺激的胞内荧光强度与单纯咖啡因和卡巴胆碱刺激组相比差异无统计学意义。结论 高浓度胰淀素的短时间作用对INS-1细胞经咖啡因和卡巴胆碱刺激的内质网鱼尼丁受体(ryanodine receptor,RyR)、三磷酸肌醇(IP3)钙库释放没有影响,但可使高糖及KCl刺激的胞内荧光强度降低。推测胰淀素短时间作用使 [Ca2+]i减少的现象,主要是通过影响膜上钙通道实现的,与胞内钙库的释放无直接相关性。 相似文献
2.
Jillian L. LeMaistre Stobart Lingling Lu Hope D. I. Anderson Hisashi Mori Christopher M. Anderson 《Proceedings of the National Academy of Sciences of the United States of America》2013,110(8):3149-3154
Astrocytes play a critical role in neurovascular coupling by providing a physical linkage from synapses to arterioles and releasing vaso-active gliotransmitters. We identified a gliotransmitter pathway by which astrocytes influence arteriole lumen diameter. Astrocytes synthesize and release NMDA receptor coagonist, D-serine, in response to neurotransmitter input. Mouse cortical slice astrocyte activation by metabotropic glutamate receptors or photolysis of caged Ca2+ produced dilation of penetrating arterioles in a manner attenuated by scavenging D-serine with D-amino acid oxidase, deleting the enzyme responsible for D-serine synthesis (serine racemase) or blocking NMDA receptor glycine coagonist sites with 5,7-dichlorokynurenic acid. We also found that dilatory responses were dramatically reduced by inhibition or elimination of endothelial nitric oxide synthase and that the vasodilatory effect of endothelial nitric oxide synthase is likely mediated by suppressing levels of the vasoconstrictor arachidonic acid metabolite, 20-hydroxy arachidonic acid. Our results provide evidence that D-serine coactivation of NMDA receptors and endothelial nitric oxide synthase is involved in astrocyte-mediated neurovascular coupling. 相似文献
3.
Hirose M Stuyvers B Dun W Ter Keurs H Boyden PA 《Journal of molecular and cellular cardiology》2008,45(2):176-184
The purpose of this study was to determine whether IP3Rs contribute to the generation of wide long lasting perinuclear Ca2+ release events in canine Purkinje cells. Spontaneous Ca2+ release events (elevations of basal [Ca2+] equivalent to F/F0 3.4SD over F0) were imaged using Fluo-4AM and 2D confocal microscope. Only cells free of Ca2+ waves were analyzed. Subsarcolemmal region (SSL) was defined as 5 μm from cell edges. Core was the remaining cell. The majority of events (94%, 0.0035 ± 0.0007 events (ev)/μm2/s, N = 34 cells) were detected within a single frame (typical events, TE). However, a subpopulation (6.0%, 0.00022 ± 0.00005 ev/μm2/s, N = 41 cells: wide long lasting events, WLE) lasted for several frames, showed a greater spatial extent (51.0 ± 3.9 vs. TE 9.0 ± 0.3 μm2, P < 0.01) and higher amplitude (F/F0 1.38 ± 0.02 vs. TE 1.20 ± 0.003, P < 0.01). WLE event rate was increased by phenylephrine (10 μM, P < 0.01), inhibited by 2APB and U73122 (P < 0.05), and abolished by tetracaine (1 mM) and ryanodine (100 μM). While SSL WLEs were scattered randomly, Core WLEs (n = 69 events) were predominantly distributed longitudinally 18.2 ± 1.6 μm from the center of nuclei. Immunocytochemistry showed that IP3R1s were located not only at SSL region but also near both ends of nucleus overlapping with RyRs. In Purkinje cells, wide long lasting Ca2+ release events occur in SSL and in specific perinuclear regions. They are likely due to RyRs and IP3R1s evoked Ca2+ release and may play a role in Ca2+ dependent nuclear processes. 相似文献
4.
5.
Demuro A Penna A Safrina O Yeromin AV Amcheslavsky A Cahalan MD Parker I 《Proceedings of the National Academy of Sciences of the United States of America》2011,108(43):17832-17837
We applied single-molecule photobleaching to investigate the stoichiometry of human Orai1 and Orai3 channels tagged with eGFP and expressed in mammalian cells. Orai1 was detected predominantly as dimers under resting conditions and as tetramers when coexpressed with C-STIM1 to activate Ca(2+) influx. Orai1 was also found to be tetrameric when coexpressed with STIM1 and evaluated following fixation. We show that fixation rapidly causes release of Ca(2+), redistribution of STIM1 to the plasma membrane, and STIM1/Orai1 puncta formation, and may cause the channel to be in the activated state. Consistent with this possibility, Orai1 was found predominantly as a dimer when coexpressed with STIM1 in living cells under resting conditions. We further show that Orai3, like Orai1, is dimeric under resting conditions and is predominantly tetrameric when activated by C-STIM1. Interestingly, a dimeric Orai3 stoichiometry was found both before and during application of 2-aminoethyldiphenyl borate (2-APB) to activate a nonselective cation conductance in its STIM1-independent mode. We conclude that the human Orai1 and Orai3 channels undergo a dimer-to-tetramer transition to form a Ca(2+)-selective pore during store-operated activation and that Orai3 forms a dimeric nonselective cation pore upon activation by 2-APB. 相似文献
6.
Krapivinsky G Krapivinsky L Stotz SC Manasian Y Clapham DE 《Proceedings of the National Academy of Sciences of the United States of America》2011,108(48):19234-19239
Specialized proteins in the plasma membrane, endoplasmic reticulum (ER), and mitochondria tightly regulate intracellular calcium. A unique mechanism called store-operated calcium entry is activated when ER calcium is depleted, serving to restore intra-ER calcium levels. An ER calcium sensor, stromal interaction molecule 1 (STIM1), translocates within the ER membrane upon store depletion to the juxtaplasma membrane domain, where it interacts with intracellular domains of a highly calcium-selective plasma membrane ion channel, Orai1. STIM1 gates Orai1, allowing calcium to enter the cytoplasm, where it repletes the ER store via calcium-ATPases pumps. Here, we performed affinity purification of Orai1 from Jurkat cells to identify partner of STIM1 (POST), a 10-transmembrane-spanning segment protein of unknown function. The protein is located in the plasma membrane and ER. POST-Orai1 binding is store depletion-independent. On store depletion, the protein binds STIM1 and moves within the ER to localize near the cell membrane. This protein, TMEM20 (POST), does not affect store-operated calcium entry but does reduce plasma membrane Ca(2+) pump activity. Store depletion promotes STIM1-POST complex binding to smooth ER and plasma membrane Ca(2+) ATPases (SERCAs and PMCAs, respectively), Na/K-ATPase, as well as to the nuclear transporters, importins-β and exportins. 相似文献
7.
Yi Yu 《General and comparative endocrinology》2010,169(3):231-243
Growth hormone release in goldfish is partly dependent on voltage-sensitive Ca2+ channels but somatotrope electrophysiological events affecting such channel activities have not been elucidated in this system. The electrophysiological properties of goldfish somatotropes in primary culture were studied using the whole-cell and amphotericin B-perforated patch-clamp techniques. Intracellular Ca2+ concentration ([Ca2+]i) of identified somatotropes was measured using Fura-2/AM dye. Goldfish somatotropes had an average resting membrane potential of −78.4 ± 4.6 mV and membrane input resistance of 6.2 ± 0.2 GΩ. Voltage steps from a holding potential of −90 mV elicited a non-inactivating outward current and transient inward currents at potentials more positive than 0 and −30 mV, respectively. Isolated current recordings indicate the presence of 4-aminopyridine- and tetraethylammonium (TEA)-sensitive K+, tetrodotoxin (TTX)-sensitive Na+, and nifedipine (L-type)- and ω-conotoxin GVIA (N-type)-sensitive Ca2+ channels. Goldfish somatotropes rarely fire action potentials (APs) spontaneously, but single APs can be induced at the start of a depolarizing current step; this single AP was abolished by TTX and significantly reduced by nifedipine and ω-conotoxin GVIA. TEA increased AP duration and triggered repetitive AP firing resulting in an increase in [Ca2+]i, whereas TTX, nifedipine and ω-conotoxin GVIA inhibited TEA-induced [Ca2+]i pulses. These results indicate that in goldfish somatotropes, TEA-sensitive K+ channels regulate excitability while TTX-sensitive Na+ channels together with N- and L-type Ca channels mediates the depolarization phase of APs. Opening of voltage-sensitive Ca2+ channels during AP firing leads to increases in [Ca2+]i. 相似文献
8.
Shen B Cheng KT Leung YK Kwok YC Kwan HY Wong CO Chen ZY Huang Y Yao X 《Journal of molecular and cellular cardiology》2008,45(3):437-445
Epinephrine, through its action on β-adrenoceptors, may induce endothelium-dependent vascular dilation, and this action is partly mediated by a cytosolic Ca2+ ([Ca2+]i) change in endothelial cells. In the present study, we explored the molecular identity of the channels that mediate epinephrine-induced endothelial Ca2+ influx and subsequent vascular relaxation. Patch clamp recorded an epinephrine- and cAMP-activated cation current in the primary cultured bovine aortic endothelial cells (BAECs) and H5V endothelial cells. L-cis-diltiazem and LY-83583, two selective inhibitors for cyclic nucleotide-gated channels, diminished this cation current. Furthermore, this cation current was greatly reduced by a CNGA2-specific siRNA in H5V cells. With the use of fluorescent Ca2+ dye, it was found that epinephrine and isoprenaline, a β-adrenoceptor agonist, induced endothelial Ca2+ influx in the presence of bradykinin. This Ca2+ influx was inhibited by L-cis-diltiazem and LY-83583, and by a β2-adrenoceptor antagonist ICI-118551. CNGA2-specific siRNA also diminished this Ca2+ influx in H5V cells. Furthermore, L-cis-diltiazem and LY-83583 inhibited the endothelial Ca2+ influx in isolated mouse aortic strips. L-cis-diltiazem also markedly reduced the endothelium-dependent vascular dilation to isoprenaline in isolated mouse aortic segments. In summary, CNG channels, CNGA2 in particular, mediate β-adrenoceptor agonist-induced endothelial Ca2+ influx and subsequent vascular dilation. 相似文献
9.
Yaniv Y Maltsev VA Escobar AL Spurgeon HA Ziman BD Stern MD Lakatta EG 《Journal of molecular and cellular cardiology》2011,51(6):902-905
Whether intracellular Ca2+ regulates sinoatrial node cell (SANC) action potential (AP) firing rate on a beat-to-beat basis is controversial. To directly test the hypothesis of beat-to-beat intracellular Ca2+ regulation of the rate and rhythm of SANC we loaded single isolated SANC with a caged Ca2+ buffer, NP-EGTA, and simultaneously recorded membrane potential and intracellular Ca2+. Prior to introduction of the caged Ca2+ buffer, spontaneous local Ca2+ releases (LCRs) during diastolic depolarization were tightly coupled to rhythmic APs (r2 = 0.9). The buffer markedly prolonged the decay time (T50) and moderately reduced the amplitude of the AP-induced Ca2+ transient and partially depleted the SR load, suppressed spontaneous diastolic LCRs and uncoupled them from AP generation, and caused AP firing to become markedly slower and dysrhythmic. When Ca2+ was acutely released from the caged compound by flash photolysis, intracellular Ca2+ dynamics were acutely restored and rhythmic APs resumed immediately at a normal rate. After a few rhythmic cycles, however, these effects of the flash waned as interference with Ca2+ dynamics by the caged buffer was reestablished. Our results directly support the hypothesis that intracellular Ca2+ regulates normal SANC automaticity on a beat-to-beat basis. 相似文献
10.
The passive transport of calcium and cobalt and their interference were studied in human red cells using 45Ca and 57Co as tracers. In ATP-depleted cells, with the ATP concentration reduced to about 1 μM, the progress curve for 45Ca uptake at 1 mM rapidly levels off with time, consistent with a residual Ca-pump activity building up at increasing [CaT]c to reach at [CaT]c about 5 μmol (l cells)− 1 a maximal pump rate that nearly countermands the passive Ca influx, resulting in a linear net uptake at a low level. In ATP-depleted cells treated with vanadate, supposed to cause Ca-pump arrest, a residual pump activity is still present at high [CaT]c. Moreover, vanadate markedly increases the passive Ca2+ influx. The residual Ca-pump activity in ATP-depleted cells is fuelled by breakdown of the large 2,3-DPG pool, rate-limited by the sustainable ATP-turnover at about 40–50 μmol (l cells)− 1 h− 1. The apparent Ca2+ affinity of the Ca-pump appears to be markedly reduced compared to fed cells. The 2,3-DPG breakdown can be prevented by inhibition of the 2,3-DPG phosphatase by tetrathionate, and under these conditions the 45Ca uptake is markedly increased and linear with time, with the unidirectional Ca influx at 1 mM Ca2+ estimated at 50–60 μmol (l cells)− 1 h− 1. The Ca influx increases with the extracellular Ca2+ concentration with a saturating component, with K½(Ca) about 0.3 mM, plus a non-saturating component. From 45Ca-loaded, ATP-depleted cells the residual Ca-pump can also be detected as a vanadate- and tetrathionate-sensitive efflux. The 45Ca efflux is markedly accelerated by external Ca2+, both in control cells and in the presence of vanadate or tetrathionate, suggesting efflux by carrier-mediated Ca/Ca exchange.The 57Co uptake is similar in fed cells and in ATP-depleted cells (exposed to iodoacetamide), consistent with the notion that Co2+ is not transported by the Ca-pump. The transporter is thus neither SH-group nor ATP or phosphorylation dependent. The 57Co uptake shows several similarities with the 45Ca uptake in ATP-depleted cells supplemented with tetrathionate. The uptake is linear with time, and increases with the cobalt concentration with a saturating component, with Jmax about 16 μmol (l cells)− 1 h− 1 and K½(Co) about 0.1 mM, plus a non-saturating component. The 57Co and 45Ca uptake shows mutual inhibition, and at least the stochastic Ca2+ influx is inhibited by Co2+. The 57Co and 45Ca uptake are both insensitive to the 1,4-dihydropyridine Ca-channel blocker nifedipine, even at 100 μM. The 57Co uptake is increased at high negative membrane potentials, indicating that the uptake is at least partially electrogenic. The 57Co influx amounts to about half the 45Ca influx in ATP-depleted cells. It is speculated that the basal Ca2+ and Co2+ uptake could be mediated by a common transporter, probably with a channel-like and a carrier-mediated component, and that 57Co could be useful as a tracer for at least the channel-like Ca2+ entry pathway in red cells, since it is not itself transported by the Ca-pump and, moreover, is effectively buffered in the cytosol by binding to hemoglobin, without interfering with Ca2+ buffering. The molecular identity of the putative common transporter(s) remains to be defined. 相似文献
11.
Extracellular adenosine triphosphate (ATP) has distinct effects on insulin secretion from pancreatic β-cells between rats
and mice. Using a confocal microscope, we compared changes between rats and mice in cytosolic free calcium concentration ([Ca2+]c) in pancreatic β-cells stimulated by extracellular ATP. Extracellular ATP (50 μM) induced calcium release from intracellular calcium stores by activating P2Y receptors in both rat and mouse β-cells. The
intracellular calcium release stimulated by extracellular ATP is significantly smaller in amplitude and longer in duration
in rat β-cells than in mouse. In response to extracellular ATP, rat β-cells activate store-operated calcium entry following
intracellular calcium release. This response is lacking in mouse β-cells. Rat and mouse β-cells both responded to 9 mM glucose by increasing [Ca2+]c. This increase, however, was pronounced only in the rat β-cells. In 9 mM glucose, extracellular ATP induced a pro-nounced calcium release above the increased level of [Ca2+]c in rat β-cells. In mouse β-cells, however, extracellular ATP did not exhibit calcium release on top of the increased level
of [Ca2+]c in 9 mM glucose. These results demonstrate distinct responses between rat and mouse β-cells to extracellular ATP under the condition
of low and high glucose. Considering that extracellular ATP inhibits insulin secretion from mouse β-cells but stimulates insulin
secretion from rat β-cells, we suggest that store-operated Ca2+ entry may be related to exocytosis in pancreatic rat β-cells. 相似文献
12.
Levic S Nie L Tuteja D Harvey M Sokolowski BH Yamoah EN 《Proceedings of the National Academy of Sciences of the United States of America》2007,104(48):19108-19113
The structural phenotype of neural connections in the auditory brainstem is sculpted by spontaneous and stimulus-induced neural activities during development. However, functional and molecular mechanisms of spontaneous action potentials (SAPs) in the developing cochlea are unknown. Additionally, it is unclear how regenerating hair cells establish their neural ranking in the constellation of neurons in the brainstem. We have demonstrated that a transient Ca(2+) current produced by the Ca(v)3.1 channel is expressed early in development to initiate spontaneous Ca(2+) spikes. Ca(v)1.3 currents, typical of mature hair cells, appeared later in development. Moreover, there is a surprising disappearance of the Ca(v)3.1 current that coincides with the attenuation of the transient Ca(2+) current as the electrical properties of hair cells transition to the mature phenotype. Remarkably, this process is recapitulated during hair-cell regeneration, suggesting that the transient expression of Ca(v)3.1 and the ensuing SAPs are signatures of hair cell development and regeneration. 相似文献
13.
We examined the intracellular mechanisms of substance P induced oxyradical production in rheumatoid synovial cells by the luminol-dependent chemiluminescence method. After stimulation with substance P (30 M), single synovial A (macrophage-like) or B (fibroblast-like) cells released oxyradicals such as superoxide anions (OZ) and/or hypochlorous anions (OCl–) under a microscope equipped with an ultrasensitive photonic image intensifier. The substance P induced oxyradical production was blocked by a tachykinin NK1 (NK1) receptor antagonist, GR82334, GTP-binding protein (G-protein) inactivators, GDPS and islet-activating protein (IAP), and a phospholipase C (PLC) inhibitor, U-73122. Substance P (30 M) also induced a transient increase in the intracellular Ca2+ concentration ([Ca2+]i) in both synovial A and B cells as measured by a Ca2+ indicator, fura 2. BAPTA-AM and an inositol-1,4-5-triphosphate (IP3) receptor antagonist, heparin, inhibited the substance P induced increase in [Ca2+]i, but they had no effects on oxyradical production. In contrast to the effects of BAPTA-AM and heparin, protein kinase C (PKC) inhibitors, H-7 and calphostin C, completely inhibited substance P induced oxyradical production without any significant effects on [Ca2+]i increase. These findings suggest that the NK1 receptor/PLC-linked diacylglycerol (DAG) formation with the resulting activation of PKC is the main signal transduction pathway for substance P stimulated oxyradical production in synovial cells. 相似文献
14.
Aims/hypothesis Treatments with antidepressants have been associated with modifications in glucose homeostasis. The aim of this study was to assess the effect of imipramine, a tricyclic antidepressant, on insulin-secreting cells.Methods Insulin radioimmunoassay, radioisotopic, fluorimetric and patch-clamp methods were used to characterise the effects of imipramine on ionic and secretory events in pancreatic islet cells from Wistar albino rats.Results Imipramine induced a dose-dependent decrease in glucose-stimulated insulin output (IC50=5.2 µmol/l). It also provoked a concentration-dependent reduction in 45Ca outflow from islets perifused in the presence of 16.7 mmol/l glucose. Moreover, imipramine inhibited the increase in 45Ca outflow mediated by K+ depolarisation. Patch-clamp recordings further revealed that imipramine provoked a marked and reversible decrease of the inward Ca2+ current. In single islet cells, imipramine counteracted the rise in [Ca2+]i evoked by glucose or high K+ concentrations.Conclusions/interpretation These data indicate that imipramine dose-dependently reduces the insulin secretory rate from rat pancreatic beta cells. Such an effect appears to be mediated by the inhibition of voltage-sensitive Ca2+ channels with subsequent reduction in Ca2+ entry. Thus, it is possible that some adverse effects of imipramine are related, at least in part, to its capacity to behave as a Ca2+ entry blocker.Abbreviations FOR fractional outflow rate 相似文献
15.
Cardiac Purkinje fibers, due to their unique anatomical location, cell structure and electrophysiologic characteristics, play an important role in cardiac conduction and arrhythmogenesis. Purkinje cell action potentials are longer than their ventricular counterpart, and display two levels of resting potential. Purkinje cells provide for rapid propagation of the cardiac impulse to ventricular cells and have pacemaker and triggered activity, which differs from ventricular cells. Additionally, a unique intracellular Ca2+ release coordination has been revealed recently for the normal Purkinje cell. However, since the isolation of single Purkinje cells is difficult, particularly in small animals, research using Purkinje cells has been restricted. This review concentrates on comparison of Purkinje and ventricular cells in the morphology of the action potential, ionic channel function and molecular determinants by summarizing our present day knowledge of Purkinje cells. 相似文献
16.
Summary Exposure of acinar carcinoma cells and normal acinar cells of rat pancreas to the muscarinic agonist drug carbamylcholine
stimulated45Ca2+ outflux from45Ca2+-labeled cells. More rapid outflux of45Ca2+ was detected for carcinoma cells following muscarinic stimulation than for normal cells. Direct flurometric measurement of
cytosolic Ca2+ under basal (unstimulated) conditions in quin 2-loaded cells revealed significantly lower concentration of free Ca2+ in carcinoma cells (≈180 nM) than in normal cells (≈200 nM). Stimulation with 1 mM carbamylcholine increased the cytosolic
Ca2+ concentration in carcinoma and normal cells to ≈ 1900 nM, after which carcinoma cells removed cytosolic Ca2+ at a faster rate to a post-stimulation plateau concentration of ≈140 nM, in comparison to normal cells which, obtained a
poststimulation stimulation plateau concentration of ≈ 300 nM. Essentially identical differences between carcinoma and normal
cells were detected upon stimulation with the peptidergic agonist cholecystokinin octapeptide. Finally, carcinoma cells demonstrated
≈ times greater calmodulin concentration than normal acinar cells. Also, the calmodulin antagonist drug W7 (N-6-(aminohexyl)-5-chloro-1-naphthalene sulfonamide) inhibited the carbamylcholine-induced release of intracellular Ca2+ in acinar carcinoma cells. These results indicate that neoplastic pancreatic acinar cells have retained mechanisms of muscarinic-
and peptidergic-stimulated intracellular Ca2+ release, and implicate calmodulin as a regualatory in secretagogue activation of intracellular Ca2+ release. We propose that the more rapid decline of intracellular Ca2+ concentration following muscarinic or peptidergic stimulation and the increased intracellular calmodulin concentration indicate
calmodulin-mediated down-regulation of free cytosolic Ca2+ in acinar carcinoma cells to levels lower than those of normal cells. 相似文献
17.
Migration of primary cultured rabbit gastric epithelial cells requires intact protein kinase C and Ca2+/calmodulin activity 总被引:3,自引:0,他引:3
Ranta-Knuuttila T Kiviluoto T Mustonen H Puolakkainen P Watanabe S Sato N Kivilaakso E 《Digestive diseases and sciences》2002,47(5):1008-1014
Superficial gastric mucosal injury is rapidly repaired by epithelial cell migration. This study aims to characterize the intracellular signal transduction pathways underlying the repair process. Primary monolayer cultures of rabbit gastric epithelial cells were wounded. The measured spontaneous cell migration speed at the edge of the wound was 457 ± 89 m/24 hr. Epidermal growth factor stimulated and genistein (receptor tyrosine protein kinase inhibitor) inhibited cell migration significantly. Down-regulation of protein Kinase C (PKC) with long-term phorbol 12-myristate 13-acsetate or inhibition with calphostin-C significantly inhibited cell migration. Blocking of Ca2+ channels with verapamil and endogenous Ca2+ release with TMB-8 or inhibition of the Ca2+/calmodulin complex with calmidazolium likewise significantly inhibited migration speed and also abolished the rise of [Ca2+]i, which was measured in migrating cells. Modulation of the cAMP-PKA pathway or prostaglandin synthesis had no influence on cell migration. Gastric epithelial cell migration implies activation of receptor tyrosine kinase. It is associated with increased [Ca2+]i and requires an intact Ca2+/calmodulin complex. Intact PKC activity also is needed. 相似文献
18.
Henden T Aasum E Folkow L Mjøs OD Lathrop DA Larsen TS 《Journal of molecular and cellular cardiology》2004,37(1):43-50
The purpose of this study was to determine if elevated myocardial glycogen content could obviate Ca(2+) overload and subsequent myocardial injury in the setting of low oxygen and diminished exogenous substrate supplies. Isolated harp seal cardiomyocytes, recognized as having large glycogen stores, were incubated under conditions simulating ischemia (oxygen and substrate deprivation) for 1 h. Rat cardiomyocytes were used for comparison. Freshly isolated seal cardiomyocytes contained approximately 10 times more glycogen than those from rats (479 +/- 39 vs. 48 +/- 5 nmol glucose/mg dry weight (dry wt), mean +/- S.E., n = 6), and during ischemia lactate production was significantly greater in seal compared to rat cardiomyocytes (660 +/- 99 vs. 97 +/- 14 nmol/mg dry wt), while glycogen content decreased both in seal (from 479 +/- 39 to 315 +/- 58 nmol glucose/mg dry wt) and rat cardiomyocytes (from 48 +/- 5 to 18 +/- 5 nmol glucose/mg dry wt). Cellular ATP was well maintained in ischemic seal cardiomyocytes, whereas it showed a 65% decline (from 31 +/- 3 to 11 +/- 1 nmol ATP/mg dry wt) in rat cardiomyocytes. Similarly, total seal cardiomyocyte Ca(2+) content was not affected by ischemia, while Ca(2+) increased from 8.5 +/- 2.0 to 13.3 +/- 2.0 nmol/mg dry wt in ischemic rat myocytes. Rat cardiomyocytes also showed a notable decline in the percentage of rod-shaped cells in response to ischemia (from 66 +/- 4% to 30 +/- 3%), and cell morphology was unaffected in seal incubations. Addition of iodoacetate (IAA, an inhibitor of glycolysis) to seal cardiomyocytes, on top of substrate and oxygen deprivation, reduced the cellular content of ATP by 52.9 +/- 4.4% (from 25 +/- 4 to 11 +/- 2 nmol ATP/mg dry wt) and the percentage of rod-shaped myocytes from 51 +/- 3% to 28 +/- 4%, while total Ca(2+) content was unchanged by these conditions. Seal cardiomyocytes thus tolerate low oxygen conditions better than rat cardiomyocytes. This finding is most likely due to a higher glycolysis rate in seals, fueled by larger myocardial glycogen stores. 相似文献
19.
Yihan Shen Nagendra Babu Thillaiappan Colin W. Taylor 《Proceedings of the National Academy of Sciences of the United States of America》2021,118(10)
Increases in cytosolic Ca2+ concentration regulate diverse cellular activities and are usually evoked by opening of Ca2+ channels in intracellular Ca2+ stores and the plasma membrane (PM). For the many signals that evoke formation of inositol 1,4,5-trisphosphate (IP3), IP3 receptors coordinate the contributions of these two Ca2+ sources by mediating Ca2+ release from the endoplasmic reticulum (ER). Loss of Ca2+ from the ER then activates store-operated Ca2+ entry (SOCE) by causing dimers of STIM1 to cluster and unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open. The relative concentrations of STIM1 and Orai1 are important, but most analyses of their interactions use overexpressed proteins that perturb the stoichiometry. We tagged endogenous STIM1 with EGFP using CRISPR/Cas9. SOCE evoked by loss of ER Ca2+ was unaffected by the tag. Step-photobleaching analysis of cells with empty Ca2+ stores revealed an average of 14.5 STIM1 molecules within each sub-PM punctum. The fluorescence intensity distributions of immunostained Orai1 puncta were minimally affected by store depletion, and similar for Orai1 colocalized with STIM1 puncta or remote from them. We conclude that each native SOCE complex is likely to include only a few STIM1 dimers associated with a single Orai1 channel. Our results, demonstrating that STIM1 does not assemble clusters of interacting Orai channels, suggest mechanisms for digital regulation of SOCE by local depletion of the ER.In generating the cytosolic Ca2+ signals that regulate cellular activities, cells call upon two sources of Ca2+: the extracellular space, accessed through Ca2+ channels in the plasma membrane (PM), and Ca2+ sequestered within intracellular stores, primarily within the endoplasmic reticulum (ER). In animal cells, the many receptors that stimulate formation of inositol 1,4,5-trisphosphate (IP3) provide coordinated access to both Ca2+ sources (1). IP3 stimulates the opening of IP3 receptors (IP3R), which are large Ca2+-permeable channels expressed mostly within ER membranes. IP3 thereby triggers Ca2+ release from the ER (2, 3). The link to extracellular Ca2+ is provided by store-operated Ca2+ entry (SOCE), which is activated by loss of Ca2+ from the ER. The reduction in ER free-Ca2+ concentration causes Ca2+ to dissociate from the luminal Ca2+-binding sites of stromal interaction molecule 1 (STIM1), a dimeric protein embedded in ER membranes. This loss of Ca2+ causes STIM1 to unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open and Ca2+ to flow into the cell through the SOCE pathway (Fig. 1A) (4, 5). Available evidence suggests that STIM1 must bind to the C-terminal tail of each of the six subunits of an Orai1 channel for optimal activity, with lesser occupancies reducing activity and modifying channel properties (6–10). The interactions between STIM1 and Orai1 occur at membrane contact sites (MCS), where the two membranes are organized to provide a gap of about 10–30 nm, across which the two proteins directly interact (11–13). Orai channels are unusual in having no structural semblance to other ion channels and in having their opening controlled by direct interactions between proteins in different membranes (Fig. 1A). Competing models suggest that dimeric STIM1 binds either to a pair of C-terminal tails within a single channel (6 STIM1 molecules per hexameric Orai1 channel) (Fig. 1 B, a), or that each dimer interacts with only a single C-terminal tail leaving the remaining STIM1 subunit free to cross-link with a different Orai1 channel (12 STIM1 molecules around a single Orai1 channel) (Fig. 1 B, b) (see references in ref. 14). The latter arrangement has been proposed to allow assembly of close-packed Orai1 clusters (Fig. 1 B, c) and to explain the variable stoichiometry of Orai1 to STIM1 at MCS (14).Open in a separate windowFig. 1.SOCE is unaffected by tagging of endogenous STIM1. (A) SOCE is activated when loss of Ca2+ from the ER, usually mediated by IP3Rs, causes Ca2+ to dissociate from the EF hands of dimeric STIM1. This causes STIM1 to unfurl its cytosolic domain, unmasking the C-terminal polybasic tail (PBT) and CRAC (Ca2+-release-activated channel)-activation domain (CAD) Association of the PBT with PM phosphoinositides causes STIM1 to accumulate at MCS, where the CAD captures the C-terminal tail of Orai1. Binding of STIM1 to each of the six subunits of Orai1 opens the Ca2+ channel, allowing SOCE to occur (9). (B) Orai1 is a hexamer, comprising three pairs of dimers (33). Dimeric STIM1 may activate Orai1 by binding as three dimers (B, a), or as six dimers (B, b) with the residual STIM1 subunit free to interact with another Orai1 channel (B, c) (14). (C) Structure of the edited STIM1-EGFP. (D) TIRF images of STIM1-EGFP HeLa cells treated with STIM1 or nonsilencing (NS) shRNA before emptying of Ca2+ stores. (Scale bar, 10 µm.) (E) Summary results (individual values, mean ± SD, n = 3 independent experiments, each with ∼30 cells analyzed) show whole-cell fluorescence intensities from TIRF images of STIM1-EGFP HeLa cells treated with the indicated shRNA. Results from WT cells are also shown (n = 4). ****P < 0.0001, ANOVA with Bonferroni test, relative to WT cells. (F) In-gel fluorescence of lysates from WT or STIM1-EGFP HeLa cells (protein loadings in μg). The STIM1-EGFP band (arrow) and molecular mass markers (kDa) are shown. Similar results were obtained in four independent analyses. (G) WB for STIM1 and β-actin for WT and STIM1-EGFP HeLa cells. Protein loadings (μg) and molecular mass markers (kDa) are shown. Arrows show positions of native and EGFP-tagged STIM1. (H) Summary results (individual values, mean ± SD, n = 9) show expression of STIM1-EGFP relative to all STIM1 in STIM1-EGFP HeLa cells (red), and total STIM1 expression in WT and edited cells (black). (I) Effects of histamine in Ca2+-free HBS on the peak increase in [Ca2+]c (Δ[Ca2+]c) in populations of WT and STIM1-EGFP HeLa cells. Mean ± SEM from four experiments, each with six determinations. (J) Effects of CPA in Ca2+-free HBS on the peak increase in [Ca2+]c (Δ[Ca2+]c) in populations of WT and STIM1-EGFP HeLa cells. Mean ± SEM from four experiments, each with six determinations. (K) Populations of cells were treated (5 min) with CPA in Ca2+-free HBS to evoke graded depletion of ER Ca2+ stores before addition of extracellular Ca2+ (final free [Ca2+] ∼10 mM). Results (mean ± SEM, n = 6, each with six determinations) show the amplitude of the SOCE in WT and STIM1-EGFP HeLa cells. See also SI Appendix, Figs. S1 and S2.Opening of most ion channels is regulated by changes in membrane potential or by binding of soluble stimuli, where the relationship between stimulus intensity and response is readily amenable to experimental analysis. The unusual behavior of SOCE, where direct interactions between proteins embedded in different membranes control channel opening (Fig. 1A), makes it more difficult to define stimulus–response relationships and highlights the need to understand the amounts of STIM1 and Orai1 within the MCS where the interactions occur. When STIM1 or Orai1 are overexpressed their behaviors are perturbed, yet most analyses of their interactions have involved overexpression of the proteins. These difficulties motivated the present study, which was designed to determine the number of native STIM1 molecules associated with each SOCE signaling complex. 相似文献
20.
Summary Changes in intracellular Ca2+ release in the diaphragm muscle of alloxan-diabetic mice were compared with changes in normal muscles and non-diabetic denervated muscles. We measured Ca2+ transient aequorin luminescence by direct electrical stimulation of these muscles. External Ca2+-free solution readily decreased the Ca2+ transient in normal muscles but had less of an effect in diabetic muscles. Only when the muscles were pre-injected with EGTA (reducing intracellular levels of free Ca2+) did the Ca2+ transients decrease significantly in diabetic muscles, however, there was no effect in denervated muscles. The caffeine-induced increase in Ca2+ transients, however, was delayed in both diabetic muscles and non-diabetic denervated muscles. The caffeine response was observed in normal muscles under the external Ca2+-free conditions even after EGTA-pretreatment, whereas it was suppressed, after a brief increase, in both diabetic and non-diabetic denervated muscles. These results demonstrate (1) the insensitivity of intracellular Ca2+ mobilization to external Ca2+ levels and the ready accumulation of intracellular Ca2+ in the cytosol in the diabetic state, (2) increased permeability to Ca2+ in the denervated state and (3) impairment of the Ca2+ pool which responds to caffeine in both diabetes and the non-diabetic denervated state. Diabetic neuromyopathy thus appears to be a state of abnormal Ca2+-mobilization caused secondarily by high levels of blood glucose. 相似文献