首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
The success of osseointegration depends on many factors. With temperatures beyond a 47 °C threshold over 1 min, bone survival may be impaired. The purpose of the study was to evaluate, in fresh human cadaver tibiae, the temperature changes during osteotomy preparations using two straight and two tapered implant systems’ drills, external irrigation, and varying revolutions per minute (RPM). The tibiae from a fresh female cadaver were harvested bilaterally. Two tapered and two straight design drills were assessed. Two-hundred and forty osteotomies were prepared at 6 mm depth following the drill sequence of the manufacturers’ protocol for each drilling speed. Difference in temperature (ΔΤ) was calculated by subtracting the baseline from the maximum temperature (ΔT = Tmax − Tbase). Drill design and drill diameter, as independent variables or synergistically, had a significant effect on ΔΤ. Tapered drills: As the drill diameter increased, ΔΤ increased at all RPM. Straight drills: As the drill diameter increased, ΔΤ remained constant or slightly decreased at all RPM. Drill diameter and design had a significant effect on ΔΤ in human tibiae, which never exceeded the critical threshold of 47 °C. Tapered drills caused significantly greater heat production compared to straight drills.  相似文献   

2.
This study compared the laser and rotary removals of prefabricated zirconia crowns in primary anterior and permanent posterior teeth. Sixty-two extracted teeth were prepared for prefabricated zirconia crowns cemented with resin-modified glass-ionomer cement. Specimens underwent crown removals by a rotary handpiece, or erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser. Pulpal temperatures, removal times, and scanning electron microscopy (SEM) examinations were compared. The average crown removal time for rotary and laser methods was 80.9 ± 19.36 s and 353.3 ± 110.6 s, respectively, for anterior primary teeth; and 114.2 ± 32.1 s and 288.5 ± 76.1 s, respectively, for posterior teeth (p < 0.001). The maximum temperature for the rotary and laser groups was 22.2 ± 8.5 °C and 27.7 ± 1.6 °C for anterior teeth, respectively (p < 0.001); and 21.8 ± 0.77 °C and 25.8 ± 0.85 °C for the posterior teeth, respectively (p < 0.001). More open dentinal tubules appeared in the rotary than the laser group. The rotary handpiece removal method may be more efficient than the laser with lower pulpal temperature changes. However, the laser method does not create noticeable tooth or crown structural damage compared to the rotary method.  相似文献   

3.
We sought to evaluate the effects of Er:YAG laser (LightTouch, LightInstruments, Israel) conditioning on enamel roughness and shear bond strength of orthodontic brackets on enamel. Eighteen human molars (n = 9) and premolars (n = 9), were divided into 3 groups depending on the enamel conditioning method; Er:YAG laser (G1, n = 6), conventional etching with 37% orthophosphoric acid (G2, n = 6), Er:YAG laser combined with conventional etching (G3, n = 6). Er:YAG laser parameters were as follows: energy: 100 mJ, frequency: 10 Hz, exposure time: 10 s, applicator diameter: 600 μm, fluence: 35.37 J/cm2, distance: 1 mm away from a tooth, cooling: 80%. An MTS 858 MiniBionix® machine was used to determine the shear bond strength (MTS System, Eden Prairie, MN, USA). The enamel structure was assessed using X-ray microtomography (SkyScan 1172, Bruker, Kontich, Belgium). The highest values of shear bond strength were obtained in the G3 group (9.23 ± 2.38 MPa) and the lowest values in the G2 group (6.44 ± 2.11 MPa) (p < 0.05). A significant change in the enamel surface was noted after applying laser, reaching up to 9% of enamel thickness, which was not observed in the etched samples. Moreover, the Er:YAG laser-irradiated enamel surface was characterized by the greatest roughness. The combined use of an Er:YAG laser with a conventional etching improves the adhesion of composite materials to the tooth.  相似文献   

4.
In the current study, we evaluated the effects of heat treatment (by Er:YAG or furnace) and various surface treatments on the microtensile bond strength (μTBS) of silanized lithium disilicate ceramic. Seventy lithium disilicate (IPS e. max Press; Ivoclar Vivadent) and composite resin (Tetric N-Ceram; Ivoclar Vivadent) blocks were made and distributed into seven groups (n = 10) at random: S: silanization alone; ALS: airborne particle abrasion (APA) and silanization; SC: APA modified with silica and silanization; SHT1: silanization and heat treatment by Er:YAG; SHT2: silanization and heat treatment performed in the furnace (100 °C, 1 min); HF: etching with HF; and HFS: etching with HF and silanization. Every ceramic specimen was cemented to a composite resin block after surface treatment. Cemented specimens were embedded into acrylic resin and were tested with the μTBS test. Data were analyzed using one-way ANOVA and Tamhane T2 tests (α = 0.05). The SHT1 group had the highest bond of strength compared to the other groups (27.46 MPa). The ALS group had the lowest strength of the groups (15.56 MPa). Between SHT2 and HFS (p = 1), the comparison of the mean µTBS values showed no significant differences. It was concluded that silane heat treatment increased the resin composite–ceramic bond strength; however, within the terms of μTBS, the Er:YAG laser treatment was more successful than other surface treatment applications.  相似文献   

5.
We report hydrogen deuterium exchange by mass spectrometry (HDX-MS) as a function of temperature in a thermophilic dihydrofolate reductase from Bacillus stearothermophilus (Bs-DHFR). Protein stability, probed with circular dichroism, established an accessible temperature range of 10 °C to 55 °C for the interrogation of HDX-MS. Although both the rate and extent of HDX are sensitive to temperature, the majority of peptides showed rapid kinetics of exchange, allowing us to focus on plateau values for the maximal extent of exchange at each temperature. Arrhenius plots of the ratio of hydrogens exchanged at 5 h normalized to the number of exchangeable hydrogens vs. 1/T provides an estimate for the apparent enthalpic change of local unfolding, ΔH°unf(avg). Most regions in the enzyme show ΔH°unf(avg) ≤ 2.0 kcal/mol, close to the value of kT; by contrast, significantly elevated values for ΔH°unf(avg) are observed in regions within the core of protein that contain the cofactor and substrate-binding sites. Our technique introduces a new strategy for probing the temperature dependence of local protein unfolding within native proteins. These findings are discussed in the context of the demonstrated role for nuclear tunneling in hydride transfer from NADPH to dihydrofolate, and relate the observed enthalpic changes to two classes of motion, preorganization and reorganization, that have been proposed to control the efficiency of hydrogenic wave function overlap. Our findings suggest that the enthalpic contribution to the heavy atom environmental reorganizations controlling the hydrogenic wave function overlap will be dominated by regions of the protein proximal to the bound cofactor and substrate.  相似文献   

6.
Thin-layer spectroelectrochemical methods have been employed to measure the reduction potentials of the blue copper in Polyporus versicolor laccase (EC 1.10.3.2) between 7°C and 41°C (0.2 M sodium phosphate, pH 5.4). Thermodynamic parameters are: ΔS° = -13.9 ± 2 cal/mol-K; ΔH° = -22.1 ± 0.5 kcal/mol; E° (25°C) = 780 ± 3 mV vs. the normal hydrogen electrode. Comparison of the ΔS° and ΔH° values with those for single-site proteins suggests that the high potential of the blue copper in fungal laccase is attributable mainly to stabilization of the copper (I) center by enhanced ligand binding interactions and that protein solvation effects play a lesser role.  相似文献   

7.
High-speed drill is the main osteotomy instrument in pedicle subtraction osteotomy (PSO) currently. Considering the long duration of surgery, the large amount of blood loss, and the high incidence of neurovascular injury, the osteotomy procedure is challenging. Use of trephine for the osteotomy displays high efficiency by shortening surgery time and reducing blood loss in anterior cervical corpectomy and fusion. However, the potential risk of neurological injury is high. We modified the trephine by adding locking instrument, when the serrated top of the trephine reaches the tip of the probe; the locking instrument on the probe restricts the trephine and improves security during the osteotomy procedure.The aim of this study was to compare the clinical and radiological improvement between the modified trephine and high-speed drill as main osteotomy instrument in PSO.From February 2009 to 2013, 50 patients with severe thoracolumbar kyphotic deformity caused by old compressive vertebrae were prospectively reviewed. All patients were randomly assigned to the experimental group (27 patients received PSO with modified trephine) and the control group (23 patients received PSO with high-speed drill). The clinical records were reviewed and compared for surgical time, operative blood loss, functional improvement (Oswestry Disability Index), and pain relief (visual analog scale). The radiological records were reviewed and compared for correction of kyphotic deformity postoperatively and correction loss at 2-year follow-up.All patients successfully finished the PSO procedure, and got satisfactory kyphotic deformity correction and overall function improvement. The surgery time was shorter in the experimental group than that in the control group (132.7 ± 12.6 vs 141.7 ± 16.7 min; P = 0.03). No significant difference was found in blood loss (882.9 ± 98.9 mL vs 902.2 ± 84.9 mL; P = 0.47) or correction of the kyphotic angle (33.4 ± 3.4° vs 32.1 ± 2.5°, P = 0.13) postoperatively between the 2 groups. At 24-month follow-up, no difference was discovered in loss of the correction (4.9 ± 1.6° vs 4.5 ± 1.6°; P = 0.42), change of Oswestry Disability Index (49.4 ± 6.2% vs 48.2 ± 4.2%; P = 0.44), or in back pain relief (6.2 ± 1.4 vs 6.4 ± 1.2 min; P = 0.51) between the 2 groups. No internal fixation related complication occurred and bony fusion was detected in lateral X-ray in all patients. In the control group, 2 patients had transient nerve root deficit, 14 patients at 3-month follow-up and 3 patients at 2-year follow-up experienced graft donor site morbidity, and pain killer medicine was always required.In conclusion, the modified trephine obviously shortens surgery time, and prevents graft donor site morbidity when compared to a high-speed drill. The learning curve for using the modified trephine in PSO procedure is short.  相似文献   

8.
Thermal modification of wood in nitrogen atmosphere permits its usability value to be improved. The aim of the research was to determine the impact of technological modification parameters at different levels on the colour of black poplar (Populus nigra L.). Black poplar was thermally modified in nitrogen atmosphere at a range of temperatures from 160 °C to 220 °C, at times between 2 h and 8 h. The parameters of wood colour were measured according to the CIE L*a*b* colour space model. The changes in a* and b* had a non-linear profile. The maximum value of a* for black poplar wood was achieved after a modification at the temperature of 200 °C, while the maximum value of the b* parameter was achieved after modification at 190 °C. Colour changes in the ΔE of black poplar after modification at 160 °C and 170 °C were similar, and the dynamics of changes increased after modification at the temperature of 180 °C. The highest value of ΔE, around 40, was observed after modification at the temperature of 220 °C and time of 8 h. There were no statistically significant differences between the ΔE for radial and tangential sections. Statistical analysis showed that modification temperature was responsible for the variability of the L* value in 90%, and in ca. 70% for the changes in parameters a* and b*. The influence of the modification time on the colour parameters was minor—below 4%. The influence of the interaction between modification temperature and time on the colour parameters was below 10%. As a consequence, in the case of ΔE of black poplar wood, the influence of temperature was at a level of ca. 80%. On the other hand, the influence of time and the interaction between temperature and time of modification was low—below 3%.  相似文献   

9.
(1) Background: This study aimed to evaluate the microporosity of the tooth surface structure adjacent to the cemento-enamel junction (CEJ) after the removal of composite fillings with a drill in comparison with removal by an Er:YAG laser and after cleaning with a periodontal curette, chemical EDTA and NaOCl (sodium hypochlorite) conditioning. (2) Methods: The research material consisted of 30 extracted premolars with cervical composite fillings. The teeth were divided into six groups according to the method of tooth preparation: group G1 (n = 5)—a diamond drill; group G2 (n = 5)—a diamond drill + curette; group G3 (n = 5)—a diamond drill + 24% EDTA (PrefGel, Straumann, Switzerland); group G4 (n = 5)—an Er:YAG laser (LightWalker, Fotona, Ljubljana, Slovenia) set with the following parameters: power: 1.65 W (composite removal, CR), 1.2 (tooth conditioning, TC), energy: 110 mJ (CR), 80 mJ (TC), frequency: 15 Hz, pulse duration: 50 μs, tip diameter: 1 mm, air/fluid cooling: 4, distance 1.5 mm, energy density: 14.01 J/cm2 (CR), 10.19 J/cm2 (TC); group G5 (n = 5)—an Er:YAG laser + 2% sodium hypochlorite (NaOCl); group G6 (n = 5)—an Er:YAG laser + 5.25% NaOCl. In each tooth, three cavities were made and subjected to analysis. The dentin surface was evaluated using a scanning electron microscope (SEM). (3) Results: Groups G1 and G2 exhibited mechanical damage to the tooth surface structure caused by the rotary motion of a diamond drill. The SEM image showed a smear layer that could only be removed chemically using 24% EDTA gel (group G3). The tooth surfaces prepared with the Er:YAG laser (groups G4–G6) revealed a homogeneous structure without damage along with open dentinal tubules (without smear layer) and visible denaturation of collagen fibers. The sodium hypochlorite (NaOCl) conditioning did not increase the visibility of dentinal tubules. (4) Conclusions: Dentin surfaces have open dentinal tubules after removal of the composite filling using the Er:YAG laser and therefore do not require additional NaOCl conditioning.  相似文献   

10.
Compression creep tests were performed on the ternary 91.84Sn-3.33Ag-4.83Bi (wt.%, abbreviated Sn-Ag-Bi) Pb-free alloy. The test temperatures were: −25 °C, 25 °C, 75 °C, 125 °C, and 160 °C (± 0.5 °C). Four loads were used at the two lowest temperatures and five at the higher temperatures. The specimens were tested in the as-fabricated condition or after having been subjected to one of two air aging conditions: 24 hours at either 125 °C or 150 °C. The strain-time curves exhibited frequent occurrences of negative creep and small-scale fluctuations, particularly at the slower strain rates, that were indicative of dynamic recrystallization (DRX) activity. The source of tertiary creep behavior at faster strain rates was likely to also be DRX rather than a damage accumulation mechanism. Overall, the strain-time curves did not display a consistent trend that could be directly attributed to the aging condition. The sinh law equation satisfactorily represented the minimum strain rate as a function of stress and temperature so as to investigate the deformation rate kinetics: dε/dtmin = Asinhn (ασ) exp (−ΔH/RT). The values of α, n, and ΔH were in the following ranges (±95% confidence interval): α, 0.010–0.015 (±0.005 1/MPa); n, 2.2–3.1 (±0.5); and ΔH, 54–66 (±8 kJ/mol). The rate kinetics analysis indicated that short-circuit diffusion was a contributing mechanism to dislocation motion during creep. The rate kinetics analysis also determined that a minimum creep rate trend could not be developed between the as-fabricated versus aged conditions. This study showed that the elevated temperature aging treatments introduced multiple changes to the Sn-Ag-Bi microstructure that did not result in a simple loss (“softening”) of its mechanical strength.  相似文献   

11.
This paper presents studies on the processing of enrichment tailings as a component of a raw mixture in order to obtain cement clinker, with simultaneous distillation of zinc. Thermodynamic studies were carried out in the temperature range of 600–1600 °C using the software application “HSC Chemistry 6” developed by the metallurgical company Outokumpu (Finland). As a result of the conducted studies, we found that zinc contributes to the intensification of mineral formation of cement clinker. In particular, it was found that the formation of belite is possible in the temperature range from 990.7 to 1500 °C with Gibbs energy values of −0.01 and −323.8 kJ (which is better than the standard process by −11.4 kJ), respectively; the formation of alite is possible in the temperature range from 982.9 to 1500 °C with Gibbs energy values of −0.05 and −402.1 kJ (better than the standard process by −11.4 kJ), respectively; the formation of tricalcium aluminate is thermodynamically possible in the temperature range from 600 °C at ΔGTo = −893.8 kJ to 1500 °C at ΔGTo = −1899.3 kJ (better than the standard process by −1570.1 kJ), respectively; and the formation of four calcium aluminoferrite is possible in the temperature range from 600 °C at ΔGTo = −898.9 kJ to 1500 °C at ΔGTo = −1959.3 kJ (better than the standard process by −1570.2 kJ), respectively, with simultaneous distillation of zinc into a gaseous state for its further capture.  相似文献   

12.
Over the last few decades, rising greenhouse gas emissions have promoted poleward expansion of the large-scale atmospheric Hadley circulation that dominates the Tropics, thereby affecting behavior of the Intertropical Convergence Zone (ITCZ) and North Atlantic Oscillation (NAO). Expression of these changes in tropical marine ecosystems is poorly understood because of sparse observational datasets. We link contemporary ecological changes in the southern Caribbean Sea to global climate change indices. Monthly observations from the CARIACO Ocean Time-Series between 1996 and 2010 document significant decadal scale trends, including a net sea surface temperature (SST) rise of ∼1.0 ± 0.14 °C (±SE), intensified stratification, reduced delivery of upwelled nutrients to surface waters, and diminished phytoplankton bloom intensities evident as overall declines in chlorophyll a concentrations (ΔChla = −2.8 ± 0.5%⋅y−1) and net primary production (ΔNPP = −1.5 ± 0.3%⋅y−1). Additionally, phytoplankton taxon dominance shifted from diatoms, dinoflagellates, and coccolithophorids to smaller taxa after 2004, whereas mesozooplankton biomass increased and commercial landings of planktivorous sardines collapsed. Collectively, our results reveal an ecological state change in this planktonic system. The weakening trend in Trade Winds (−1.9 ± 0.3%⋅y−1) and dependent local variables are largely explained by trends in two climatic indices, namely the northward migration of the Azores High pressure center (descending branch of Hadley cell) by 1.12 ± 0.42°N latitude and the northeasterly progression of the ITCZ Atlantic centroid (ascending branch of Hadley cell), the March position of which shifted by about 800 km between 1996 and 2009.  相似文献   

13.
An Al2O3/5 vol%·ZrO2/5 vol%·Y3Al5O12 (YAG) tri-phase composite was manufactured by surface modification of an alumina powder with inorganic precursors of the second phases. The bulk materials were produced by die-pressing and pressureless sintering at 1500 °C, obtaining fully dense, homogenous samples, with ultra-fine ZrO2 and YAG grains dispersed in a sub-micronic alumina matrix. The high temperature mechanical properties were investigated by four-point bending tests up to 1500 °C, and the grain size stability was assessed by observing the microstructural evolution of the samples heat treated up to 1700 °C. Dynamic indentation measures were performed on as-sintered and heat-treated Al2O3/ZrO2/YAG samples in order to evaluate the micro-hardness and elastic modulus as a function of re-heating temperature. The high temperature bending tests highlighted a transition from brittle to plastic behavior comprised between 1350 and 1400 °C and a considerable flexural strength reduction at temperatures higher than 1400 °C; moreover, the microstructural investigations carried out on the re-heated samples showed a very limited grain growth up to 1650 °C.  相似文献   

14.
The surface of titanium (Ti) dental implants must be modified to improve their applicability, owing to the biological inertness of Ti. This study aims to use sandblasting as a pretreatment method and prepare a hydroxyapatite (HA) coating on Ti to improve its biocompatibility and induce bone bonding and osteogenesis. In this paper, sandblasted Ti discs were coated with α-tricalcium phosphate (α-TCP) via Er:YAG pulsed laser deposition (Er:YAG-PLD). An HA coating was then obtained via the hydrothermal treatment of the discs at 90 °C for 10 h. The surface characteristics of the samples were evaluated by SEM, SPM, XPS, XRD, FTIR, and tensile tests. Rat bone marrow mesenchymal stem cells were seeded on the HA-coated discs to determine cellular responses in vitro. The surface characterization results indicated the successful transformation of the HA coating with a nanorod-like morphology, and its surface roughness increased. In vitro experiments revealed increased cell attachment on the HA-coated discs, as did the cell morphology of fluorescence staining and SEM analysis; in contrast, there was no increase in cell proliferation. This study confirms that Er:YAG-PLD could be used as an implant surface-modification technique to prepare HA coatings with a nanorod-like morphology on Ti discs.  相似文献   

15.
Standard dental procedures, when using a water coolant and rotary instruments, generate aerosols with a significantly higher number of various dangerous pathogens (viruses, bacteria, and fungi). Reducing the amount of aerosols to a minimum is mandatory, especially during the new coronavirus disease, COVID-19. The study aimed to evaluate the amount of aerosol generated during standard dental procedures such as caries removal (using dental bur on a high and low-speed handpiece and Er:YAG laser), ultrasonic scaling, and tooth polishing (using silicon rubber on low-speed handpiece) combined with various suction systems. The airborne aerosols containing particles in a range of 0.3–10.0 μm were measured using the PC200 laser particle counter (Trotec GmbH, Schwerin, Germany) at three following sites, manikin, operator, and assistant mouth, respectively. The following suction systems were used to remove aerosols: saliva ejector, high volume evacuator, saliva ejector with extraoral vacuum, high volume evacuator with extraoral vacuum, Zirc® evacuator (Mr.Thirsty One-Step®), and two customized high volume evacuators (white and black). The study results showed that caries removal with a high-speed handpiece and saliva ejector generates the highest amount of spray particles at each measured site. The aerosol measurement at the manikin mouth showed the highest particle amount during caries removal with the low and high-speed handpiece. The results for the new high volume evacuator (black) and the Zirc® evacuator showed the lowest increase in aerosol level during caries removal with a high-speed handpiece. The Er:YAG laser used for caries removal produced the lowest aerosol amount at the manikin mouth level compared to conventional dental handpieces. Furthermore, ultrasonic scaling caused a minimal aerosol rise in terms of the caries removal with bur. The Er:YAG laser and the new wider high volume evacuators improved significantly suction efficiency during dental treatment. The use of new suction systems and the Er:YAG laser allows for the improvement of biological safety in the dental office, which is especially crucial during the COVID-19 pandemic.  相似文献   

16.
The partitioning and diffusion of solute elements in hot rolling and the effect of the partitioning and diffusion on the ferrite-bainite banding formation after hot rolling in the 20CrMnTi steel were experimentally examined by EPMA (electron probe microanalysis) technology and simulated by DICTRTA and MATLAB software. The austenite grain size related to the hot rolling process and the effect of austenite grain size on the ferrite-bainite banding formation were studied. The results show that experimental steel without banding has the most uniform hardness distribution, which is taken from the edge of the cast slab and 1/4 diameter position of the cast slab, heating at 1100 °C for 2 h and above 1200 °C for 2–4 h during the hot rolling, respectively. Cr, Mn, and Si diffuse and inhomogeneously concentrate in austenite during hot rolling, while C homogeneously concentrates in austenite. After the same hot rolling process, ΔAe3 increases and ferrite-bainite banding intensifies with increasing initial segregation width and segregation coefficient K of solute elements. Under the same initial segregation of solute elements, ΔAe3 drops and ferrite-bainite banding reduces with increasing heating temperature and extension heating time. When ΔAe3 drops below 14 °C, ferrite-bainite banding even disappears. What is more, the austenite grain size increases with increasing heating temperature and extension heating time. When the austenite grain size is above 21 μm, the experimental steel will not appear to have a banded structure after hot rolling.  相似文献   

17.
The impact of aircraft on airport pavements is varied and closely related to their operational durability. The article presents the impact of the annealing process related to the forced impact of airplanes on airport pavements. The composition of cement concrete with ceramic dust, which is characterized by increased thermal resistance, has been proposed. Two research cycles were programmed, differentiated by the annealing scheme and the way in which the temperature influences the annealing time. Samples stored at a temperature of 20 ± 2 °C were subjected to testing. The tests were carried out for two diagrams: A and B. The first—diagram A—included the continuous impact of the flue gas stream on the samples for a period of 350 min with a test step every 25 min. For the second—diagram B—the samples were alternately heated (1 min) and cooled (15 min). The influence of the proposed pavement mix on changes in the internal structure of cement concrete and the increase in its resistance to high temperatures was determined. In the microstructure of the CC-1 concrete matrix, it was found that there were plate-granular portlandite crystals up to 10 µm in size and ettringite crystals with a length of 8 µm. In the CC-2 concrete, the ettringite crystals were less numerous and had a length of up to 5 µm, there were also continuous contact zones between the aggregate grains and the cement matrix (diagrams A). The alternating annealing/cooling (diagram B) resulted in the ettringite crystals in the CC-1 matrix being up to 10 µm long, and in the CC-2 concrete up to 7 µm long. The contact zone between the aggregate grain and the matrix in CC-2 concrete was continuous, and the microcracks in CC-1 concrete were up to 8 nm. Regardless of the heating diagram, in the surface zone, there were larger microcracks in the CC-1 concrete than in the CC-2 concrete. For diagram A they were 14 µm and 4 µm and for diagram B they were 35 µm and 5 µm, respectively. It was found that concrete with ceramic dust is characterized by a lower and more stable temperature increase. In scheme A, the average temperature increase on the heated surface ranged from 46 °C to 79.5 °C for CC-1 concrete, and from 33.3 °C to 61.3 °C for CC-2 concrete. However, in scheme B, the temperature after 350 heating cycles for CC-1 concrete increased to 129.8 °C, and for CC-2 concrete to 116.6 °C. After the cooling period, the temperature of CC-1 and CC-2 concrete was comparable and amounted to 76.4 C and 76.3 °C, respectively. CC-2 concrete heats to lower values, and favorable changes in internal structure translate into higher strength and durability (after 350 heating cycles according to scheme A, the strength of CC-1 concrete was 67.1 MPa and of CC-2 concrete 83.9 MPa, while in scheme B, respectively, 55.4 MPa for CC-1 and 75 MPa for CC-2).  相似文献   

18.
The mechanical strength, thermal stability, thermal performance, and microstructure of Qtech T26 blast mitigation polyurea (T26 polyurea) were studied using quasi-static and dynamic mechanical experiments, thermogravimetric experiments, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) experiments, and contact explosion and non-contact explosion experiments with polyurea-coated reinforced concrete slabs. Additionally, the energy dissipation mechanism of the coating was analyzed. The blast mitigation ability and blast mitigation mechanism of T26 polyurea-coated reinforced concrete slabs were investigated by analyzing the macroscopic morphology of reinforced concrete slabs with or without coatings and the contact explosion simulation of polyurea-coated reinforced concrete slabs. The results showed that T26 polyurea exhibited a certain strain rate effect. Its initial thermal decomposition temperature reached 286 °C, and its thermal stability was good. After carbonization, carbon slag can form and adhere to the structural surface. The glass transition temperature Tgs of the soft segment was −44.9 °C, and the glass transition temperature Tgh of the hard segment was 36.5 °C, showing a certain amount of microphase separation morphology. After the explosion test, there was a small pit on the front surface of the coated reinforced concrete plate, and there was no damage on the back surface. The integrity of the plate was good. The uncoated reinforced concrete slab had a large crater on the front of the explosion surface, and the back of the explosion surface experienced explosion collapse, concrete crushing, and an overall loss of stability. The numerical simulation results showed that the failure mode of the coated plate was consistent with the test. The kinetic energy conversion rate of the uncoated reinforced concrete plate was 87.27%, and the kinetic energy conversion rate of the coated reinforced concrete plate was 95.36%. The T26 coating improved the kinetic energy conversion rate of the structure and improved the blast mitigation ability of the reinforced concrete plate structure.  相似文献   

19.
In the present study, the shape, memory, and mechanical properties of cold-rolled and annealed Fe-17Mn-5Si-5Cr-4Ni-1Ti-0.3C (wt.%) alloy were investigated. The cold-rolled alloy was annealing heat-treated at different temperatures in the range of 500–900 °C for 30 min. The shape recovery behavior of the alloy was investigated using strip bending test followed by recovery heating. The microstructural evolution and the stress-strain response of the alloy heat-treated at different temperatures revealed that the recovery took place at a heat-treatment temperature higher than 600 °C. Recrystallization occurred when the heat-treatment temperature was higher than 800 °C. Meaningful shape recovery was observed only when the alloy was annealed at temperatures higher than 600 °C. The highest recovery strain of up to 2.56% was achieved with a pre-strain of 5.26% and recovery heating temperature of 400 °C, when the alloy was heat-treated at 700 °C. Conversely, the yield strength reduced significantly with increasing annealing heat-treatment temperature. The experimental observations presented in this paper provide a guideline for post-annealing heat-treatment when a good compromise between mechanical property and shape recovery performance is required.  相似文献   

20.
There are treatments available for enamel demineralization or acid erosion, but they have limitations. We aimed to manufacture a device that could directly form a hydroxyapatite (HAp) film coating on the enamel with a chairside erbium-doped yttrium aluminum garnet (Er:YAG) laser using the pulsed laser deposition (PLD) method for repairing enamel defects. We used decalcified bovine enamel specimens and compacted α-tricalcium phosphate (α-TCP) as targets of Er:YAG-PLD. With irradiation, an α-TCP coating layer was immediately deposited on the specimen surface. The morphological, mechanical, and chemical characteristics of the coatings were evaluated using scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray diffractometry (XRD), and a micro-Vickers hardness tester. Wear resistance, cell attachment of the HAp coatings, and temperature changes during the Er:YAG-PLD procedure were also observed. SEM demonstrated that the α-TCP powder turned into microparticles by irradiation. XRD peaks revealed that the coatings were almost hydrolyzed into HAp within 2 days. Micro-Vickers hardness indicated that the hardness lost by decalcification was almost recovered by the coatings. The results suggest that the Er:YAG-PLD technique is useful for repairing enamel defects and has great potential for future clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号