共查询到20条相似文献,搜索用时 0 毫秒
1.
Motor-control models of basal ganglia function have emphasized disinhibition through reduction of tonic, inhibitory output. Although these models have shed important light on basal ganglia operations, evidence emerging from electrophysiological studies of behaving primates suggests that disinhibition alone may not adequately explain the role of the basal ganglia in movement. To assess this role in the rat, the most frequently used subject in studies of basal ganglia function, we recorded neuronal activity in the primary output nucleus, the substantia nigra pars reticulata, during an operant task. After rats were trained to nosepoke into an illuminated hole for access to a 10% sucrose solution delivered through a spout, single- and multiple-unit activity was recorded during 60-120 nosepoke trials. Compared to the period 60 s before the start of the first trial in the task, 110 of 225 reticulata units increased firing >200% while 17 of 225 decreased to 40% of baseline. Of these 225 units, >60% responded coincident with specific task events such as nosepokes and spout licking. Most nosepoke-responsive units showed either excitation (>50%) or a combination of excitation and inhibition (>25%) rather than inhibition alone (>20%). Increases in firing were also common during approach and licking at the spout, with inhibitions alone comprising 30% of responses. In some units, there was evidence of reward-related responding, with changes occurring in anticipation of reward delivery or during the delivery of sucrose, but not the persistent licking that continued for several seconds after its offset. While 70% of units responded during both nosepokes and spout licking, changes in firing were typically unique depending on the motor behavior required (i.e. nosepoking vs. licking).Our results, which indicate a prominent role for increases in nigra reticulata activity during movement, add to growing evidence that although inhibitions may allow desired motor responses to emerge, excitations may help shape behavioral output by suppressing competing motor programs. 相似文献
2.
In acute slice of substantia nigra pars reticulata (SNr), a small proportion (6.6%) of GABAergic neurons exhibited abrupt increases in spontaneous firing rate from baseline frequency ( approximately 40 Hz) to peak (>100 Hz) with periods ranging in minutes when GABA(A) receptors were blocked by 20 microM bicuculline. The combination of GABA(B), non-NMDA, and NMDA blockers, SCH50911 (10 microM), 6,7-dinitro-quinoxaline-2,3-dione (20 microM), and DL-2-amino-5-phosphonovalerate (50 microM), respectively, did not affect the incidence or properties of these multiminute oscillations, indicating that disinhibition induced by blockade of GABA(A) receptors is crucial in their generation. Incidence of oscillatory activity was increased to 16% by elevation of the K(+) concentration to 8 mM from basal level (6.24 mM). The SNr neurons exhibiting oscillatory activity with the addition of bicuculline had shown irregular fluctuations in basal firing rate, while the non-oscillatory neurons had shown a more regular baseline firing pattern. This is the first in vitro report of oscillations in firing rate of multiminute range in basal ganglia. 相似文献
3.
Glucose sensitivity of substantia nigra pars reticulata (SNr) GABAergic neurons was investigated by extracellular recording in acute slice. Approximately two thirds of the GABAergic SNr neurons tested exhibited a significant increase in spontaneous firing rate as the extracellular glucose concentration was lowered from 10 to 4-6 mM. At lower glucose concentrations, a small proportion of these glucose-sensitive GABAergic SNr neurons exhibited multiple, robust increases in spontaneous firing rate with periods ranging in minutes. Similar changes in firing rate of SNr neurons in response to lowered glucose were detected under blockade of GABAA, NMDA, and non-NMDA receptors, indicating that mechanisms other than those mediated by the major synaptic transmissions in the SNr are involved. These findings suggest involvement of previously unknown glucose dependent alterations of GABAergic SNr neuronal activity in the central regulation of glucose homeostasis. 相似文献
4.
J. P. Joseph D. Boussaoud B. Biguer 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》1985,60(2):375-379
Summary Extracellular activity of single neurons in the pars reticulata of the Substantia Nigra (SNpr) was recorded in cats during drinking. Two groups of cells were distinguished: I. Somatosensory cells which responded by a short decrease in firing rate to the arrival of water against the upper lip. We suggest that these stimulus-related responses reflect a complex process linked to preparation of buccolingual movements. II. Action-related cells which were de-activated at the beginning or during the entire drinking period but without modulation in relation to the individual movements of jaws and tongue. We suggest that de-activation of these cells during drinking operates as a gating mechanism which allows implementation of complex motor sequences by cortical and/or subcortical structures. 相似文献
5.
The effect of noradrenaline was studied in principal neurons of the substantia nigra pars reticulata in rat brain slices using patch clamp recordings. Perfusion of noradrenaline or the alpha(1)-adrenoceptor agonist phenylephrine increased the spontaneous firing activity of reticulata cells. The alpha(1)-adrenoceptor antagonist prazosin counteracted the effects of noradrenaline. In contrast, the beta-adrenoceptor agonist isoproterenol did not affect the activity of reticulata cells and the beta-adrenoceptor antagonist pindolol did not prevent noradrenaline's effect. In whole-cell recordings, at -60 mV holding potential, noradrenaline caused a tetrodotoxin-resistant inward current with a time-course similar to the increase in firing activity. Analysis of the reversal potential of this current did not give homogeneous results. The net noradrenaline current could be associated with a conductance decrease or increase, or in some cases it did not reverse over a range from -120 to -30 mV. It is suggested that noradrenaline increases the excitability of substantia nigra reticulata cells through alpha(1)-adrenoceptors. Both a reduction and an increase in membrane conductance may mediate this effect.The increase in the tonic firing of principal reticulata cells caused by noradrenaline may have significant consequences in regulating the final output of the basal ganglia and consequently in motor-related behaviours. 相似文献
6.
GABAergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata 总被引:6,自引:0,他引:6
Dopaminergic neurons in vivo fire spontaneously in three distinct patterns or modes. It has previously been shown that the firing pattern of substantia nigra dopaminergic neurons can be differentially modulated by local application of GABA(A) and GABA(B) receptor antagonists. The GABA(A) antagonists, bicuculline or picrotoxin, greatly increase burst firing in dopaminergic neurons whereas GABA(B) antagonists cause a modest shift away from burst firing towards pacemaker-like firing. The three principal GABAergic inputs to nigral dopaminergic neurons arise from striatum, globus pallidus and from the axon collaterals of nigral pars reticulata projection neurons, each of which appear to act in vivo primarily on GABA(A) receptors (see preceding paper). In this study we attempted to determine on which afferent pathway(s) GABA(A) antagonists were acting to cause burst firing. Substantia nigra dopaminergic neurons were studied by single unit extracellular recordings in urethane anesthetized rats during pharmacologically induced inhibition and excitation of globus pallidus. Muscimol-induced inhibition of pallidal neurons produced an increase in the regularity of firing of nigral dopaminergic neurons together with a slight decrease in firing rate. Bicuculline-induced excitation of globus pallidus neurons produced a marked increase in burst firing together with a modest increase in firing rate. These changes in firing rate were in the opposite direction to what would be expected for a monosynaptic GABAergic pallidonigral input. Examination of the response of pars reticulata GABAergic neurons to similar manipulations of globus pallidus revealed that the firing rates of these neurons were much more sensitive to changes in globus pallidus neuron firing rate than dopaminergic neurons and that they responded in the opposite direction. Pallidal inhibition produced a dramatic increase in the firing rate of pars reticulata GABAergic neurons while pallidal excitation suppressed the spontaneous activity of pars reticulata GABAergic neurons. These data suggest that globus pallidus exerts significant control over the firing rate and pattern of substantia nigra dopaminergic neurons through a disynaptic pathway involving nigral pars reticulata GABAergic neurons and that at least one important way in which local application of bicuculline induces burst firing of dopaminergic neurons is by disinhibition of this tonic inhibitory input. 相似文献
7.
Substantia nigra reticulata is the major output structure of the basal ganglia involved in somatosensory integration and organization of movement. While previous work in vitro and in anesthetized animal preparations suggests that these neurons are autoactive and points to GABA as a primary input regulating their activity, single-unit recording coupled with iontophoresis was used in awake, unrestrained rats to further clarify the role of tonic and phasic GABA input in maintenance and fluctuations of substantia nigra reticulata neuronal activity under physiologically relevant conditions. In contrast to glutamate, which was virtually ineffective at stimulating substantia nigra reticulata neurons in awake rats, all substantia nigra reticulata neurons tested were inhibited by iontophoretic GABA and strongly excited by bicuculline, a GABA-A receptor blocker. The GABA-induced inhibition had short onset and offset latencies, a fading response pattern (a rapid decrease in rate followed by its relative restoration), and was independent of basal discharge rate. The bicuculline-induced excitation was inversely related to discharge rate and current (dose)-dependent in individual units. However, the average discharge rate during bicuculline applications at different currents increased to a similar plateau (60 impulses/s), which was about twice the mean basal rates. The excitatory effects of bicuculline were phasically inhibited or completely blocked by brief GABA applications and generally mimicked by gabazine, another selective GABA antagonist. These data as well as neuronal inhibitions induced by nipecotic acid, a selective GABA uptake inhibitor, suggest that substantia nigra reticulata neurons in awake, quietly resting conditions are under tonic, GABA-mediated inhibition.
Therefore, because of inherent autoactivity and specifics of afferent inputs, substantia nigra reticulata neurons are very sensitive to phasic alterations in GABA input, which appears to be the primary factor determining fluctuations in their activity states under physiological conditions. While these cells are relatively insensitive to direct activation by glutamate, and resistant to a continuous increase in GABA input, they appear to be very sensitive to a diminished GABA input, which may release them from tonic inhibition and determine their functional hyperactivity. 相似文献
8.
We have examined the morphology of the somatodendritic domain of projection neurons located in different sectors of rat substantia nigra pars reticulata (SNr) or having distinct axonal arborizations. Forty-three neurons - 23 located in the dorsal half and 20 in the ventral half of SNr - were injected with biotinylated dextran amine and their somatodendritic domain was reconstructed from serial sagittal sections with a camera lucida. The axonal arborization of 14 neurons was also reconstructed. Dorsally located SNr neurons had a larger perikaryon, a higher number of primary dendrites and a more extensive dendritic arbor than the ventrally located ones. However, irrespective of their location in the SNr, the somatodendritic domain was always longer along the rostrocaudal axis than along the dorsoventral and mediolateral axes. Specific correlations between somatodendritic morphology and axonal arborization could be established for some SNr neurons, but among SNr neurons with similar efferent projections, those lying dorsally always exhibited a larger perikaryon and a more widespread dendritic arbor than those located ventrally. These results indicate that the morphology of the somatodendritic domain of SNr projection neurons is related to the location of their perikaryon within the structure rather than to the pattern of their axonal projections. 相似文献
9.
J. M. Deniau Prof. S. T. Kitai J. P. Donoghue I. Grofova 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》1982,47(1):105-113
Summary Substantia nigra pars reticulata (SNr) neurons, antidromically activated following stimulation of the dorsal thalamus and/or superior colliculus were intracellularly stained with HRP. Light microscopic analysis revealed that the labeled SNr neurons have axon collaterals arborizing within SNr. Axon collaterals of SNr neurons partially overlapped with the dendritic fields of their parent cells and also extended beyond the parent dendritic fields. The labeled axon terminals did not closely appose the parent cell processes, suggesting that the collaterals most likely terminate on neurons other than the parent cell.Electrical stimulation of either the thalamus or the superior colliculus induced monosynaptic and polysynaptic IPSPs in SNr cells. The polysynaptic IPSPs evoked from thalamic stimulation disappeared following hemitransection of the brain just rostral to the thalamus while the monosynaptic IPSPs remained the same. Since there are no known afferents from either thalamus or superior colliculus to SNr, we consider that these monosynaptic IPSPs are due to activation of the recurrent collaterals of SNr projection cells. The results of this study indicate that projection neurons of SNr also have an inhibitory role within the SNr.Supported by USPHS NIH Grant NS 14866 to S.T. Kitai and F32 NS 06249 to J.P. Donoghue. Foundation Simone el Cino del Duca, Paris, France, furnished travel funds to J.M. Deniau 相似文献
10.
The substantia nigra pars reticulata belongs to the brain regions with the highest density of CB(1) cannabinoid receptors. Since the level of CB(1) receptor messenger RNA is very low in the pars reticulata, most of the receptors are probably localized on terminals of afferent axons. The hypothesis was tested that terminals of glutamatergic afferents of substantia nigra pars reticulata neurons possess CB(1) cannnabinoid receptors, the activation of which presynaptically modulates neurotransmission.Rat midbrain slices were superfused and the electrophysiological properties of substantia nigra pars reticulata neurons were studied with the patch-clamp technique. Focal electrical stimulation in the presence of bicuculline evoked excitatory postsynaptic currents mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate glutamate receptors. The excitatory postsynaptic currents were reduced by the metabotropic glutamate receptor agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD; 10(-4)M). The mixed CB(1)/CB(2) cannabinoid receptor agonists R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2, 3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone (WIN55212-2; 10(-8)-10(-5)M) and (-)-cis-3-[2-hydroxy-4-(1, 1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940; 10(-6)M) also produced inhibition. The maximal inhibition by WIN55212-2 was 54+/-6%. The CB(1) cannabinoid antagonist N-piperidino-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (SR141716A; 10(-6)M) prevented the effect of WIN55212-2, but had no effect when superfused alone. WIN55212-2 (10(-6)M) increased the amplitude ratio of two excitatory postsynaptic currents evoked with an interstimulus interval of 100ms. Currents evoked by short ejection of glutamate on to the surface of the slices were not changed by WIN55212-2.The results show that activation of CB(1) cannabinoid receptors inhibits glutamatergic synaptic transmission between afferent axons and neurons in the substantia nigra pars reticulata. The lack of effect of the cannabinoids on glutamate-evoked currents and the increase of the paired-pulse ratio indicate that the mechanism of action is presynaptic inhibition of transmitter release. 相似文献
11.
Ibáñez-Sandoval O Carrillo-Reid L Galarraga E Tapia D Mendoza E Gomora JC Aceves J Bargas J 《Journal of neurophysiology》2007,98(4):2311-2323
Projection neurons of the substantia nigra reticulata (SNr) convey basal ganglia (BG) processing to thalamocortical and brain stem circuits responsible for movement. Two models try to explain pathological BG performance during Parkinson disease (PD): the rate model, which posits an overexcitation of SNr neurons due to hyperactivity in the indirect pathway and hypoactivity of the direct pathway, and the oscillatory model, which explains PD as the product of pathological pattern generators disclosed by dopamine reduction. These models are, apparently, incompatible. We tested the predictions of the rate model by increasing the excitatory drive and reducing the inhibition on SNr neurons in vitro. This was done pharmacologically with bath application of glutamate agonist N-methyl-d-aspartate and GABA(A) receptor blockers, respectively. Both maneuvers induced bursting behavior in SNr neurons. Therefore synaptic changes forecasted by the rate model induce the electrical behavior predicted by the oscillatory model. In addition, we found evidence that Ca(V)3.2 Ca(2+) channels are a critical step in generating the bursting firing pattern in SNr neurons. Other ion channels involved are: hyperpolarization-activated cation channels, high-voltage-activated Ca(2+) channels, and Ca(2+)-activated K(+) channels. However, although these channels shape the temporal structure of bursting, only Ca(V)3.2 Ca(2+) channels are indispensable for the initiation of the bursting pattern. 相似文献
12.
Using a semihorizontal section plane tangential to the ventral surface of the cerebral peduncle, the authors re-examined cyto-, myelo- and dendroarchitecture, acetylcholinesterase activity, afferent fibers, and efferent projection neurons of the substantia nigra pars reticulata. In the semihorizontal section plane, the substantia nigra pars reticulata was a disc-shaped nucleus and contained two to three myelinated fiber bundles running from anteromedial to posterolateral. Bands of high acetylcholinesterase activity existed parallel to the anteromedial-posterolateral direction. The Golgi silver impregnation study revealed that many nigral neurons extended their varicose dendrites anteromedially and posterolaterally. In cases with injections of wheat germ agglutinated horseradish peroxidase into the neostriatum or injections of tritiated leucine into the subthalamic nucleus, anterogradely labeled afferent fibers and axon terminals in the substantia nigra pars reticulata were organized into bands in the same anteromedial-posterolateral direction. In cases with injections of wheat germ agglutinated horseradish peroxidase into either the superior colliculus, the pedunculopontine tegmental nucleus or the ventromedial nucleus of the thalamus, retrogradely labeled neurons were also clustered along the anteromedial-posterolateral direction with their dendrites extending anteromedially and posterolaterally. The present findings strongly suggest that the substantia nigra pars reticulata has a laminar organization. 相似文献
13.
Neurons in substantia nigra pars reticulata express the messenger RNA for SK2 but not for SK3 subunits that form small-conductance, Ca2+-dependent K+ channels in dopamine neurons. To determine pathways for the activation of small-conductance, Ca2+-dependent K+ channels in substantia nigra pars reticulata neurons of rats and mice, we studied effects of the selective blocker of small-conductance, Ca2+-dependent K+ channels, apamin (0.01 or 0.3 microM). Apamin diminished the afterhyperpolarization following each action potential and induced burst discharges in substantia nigra pars reticulata neurons. Apamin had a robust effect already at a low (10 nM) concentration consistent with the expression of the SK2 subunit. Afterhyperpolarizations were also reduced by the Ca2+ channel blockers Ni2+ (100 microM) and omega-conotoxin GVIA (1 microM). Depletion of intracellular Ca2+ stores did not change the afterhyperpolarization. However, we observed outward current pulses that occurred independently from action potentials and were abrogated by apamin. Apart from a faster time course, they shared all properties with spontaneous hyperpolarizations or outward currents that ryanodine receptor-mediated Ca2+ release from intracellular stores induces in juvenile dopamine neurons. Sensitization of ryanodine receptors by caffeine silenced substantia nigra pars reticulata neurons. This effect was abolished by the depletion of intracellular Ca2+ stores. We conclude that SK2 channels in substantia nigra pars reticulata neurons are activated by Ca2+ influx through at least two types of Ca2+ channels in the membrane and by ryanodine receptor-mediated Ca2+ release from intracellular stores. Ryanodine receptors do not amplify small-conductance, Ca2+-dependent K+ channel activation by the Ca2+ influx during a single spike. Yet, ryanodine receptor-mediated Ca2+ release and, thereby, an activation of small-conductance, Ca2+-dependent K+ channels by intracellular Ca2+ are available for excitability modulation in these output neurons of the basal ganglia system. 相似文献
14.
As a major output station of the basal ganglia, the pars reticulata of the substantia nigra has stimulated much interest. In the past two decades there has been a growing body of evidence for a partition of this structure into separate channels to express the striatal processing. To further our knowledge on the functional partitioning of the rodent substantia nigra pars reticulata, the regional distribution of the nigral efferent cell groups that provide innervation of thalamus, colliculus and tegmentum has been detailed in rat using the wheatgerm agglutinin conjugated with horseradish peroxidase as an axonal tracer. To ensure a total visualization of the nigral efferent neurons we have, in a preliminary study, determined the total extent of the nigral terminal field in each of the nigral target structures using the anterograde transport of wheatgerm agglutinin-horseradish peroxidase and Phaseolus vulgaris leucoagglutinin. At variance with the classical view that nigral cells innervating distinct target structures form functionally distinct subnuclei, the results suggest a nigral compartmentation that rather relies upon specific associations of efferent cell groups. As disclosed, these associations are specified by topographic rules and spatially ordered in a series of curved laminae enveloping an excentrated dorsolateral core. In this onion-like model of the substantia nigra pars reticulata, each lamella defines an associative unit composed of a set of neurons innervating particular loci of thalamus, colliculus and/or tegmentum. This lamellar partitioning bestows the ability upon the substantia nigra to dispatch the striatal outflow via parallel and divergent channels to functionally associated target areas in thalamus and brainstem. 相似文献
15.
Involuntary movements (dyskinesia) are a common symptom of dopamine-replacement therapy in parkinsonian patients, neuroleptic drug treatment of mental patients, and tic disorders. Levodopa-induced dyskinesia has been shown to be associated with substantial reduction of firing rate in the internal part of the globus pallidus. This study characterizes the changes that occur in the activity of the substantia nigra pars reticulata (SNr) of non-parkinsonian (normal) monkeys with apomorphine (APO)-induced orofacial dyskinesia. We conducted extracellular recordings of SNr neurons of two monkeys before and after induction of orofacial dyskinesia by systemic administration of APO. Involuntary orofacial movements appeared a few minutes after the injections and lasted 20-40 min. Almost all recorded neurons changed their firing rate after APO injection (96%), and most declined (70%). The mean amplitude of decreases was also larger than that of increases (40 vs. 21% of the control rate). Changes in firing pattern were not significant on average. Pairs of SNr neurons were uncorrelated before APO injection, similar to the normal pallidum. However, unlike the increased correlations in the pallidum that accompany parkinsonism, orofacilal dyskinesia in non-parkinsonian monkeys was not associated with changes in correlation between SNr neurons. We conclude that normal monkeys treated with APO can model orofacial dyskinesia and tic disorders that are a consequence of dopaminergic over-activity. These symptoms appear to be more related to reduced firing rate of SNr neurons and thus to disinhibition of their targets, than to changes in pattern and synchronization. 相似文献
16.
In order to study the function of multiple pathways between the sensorimotor cortex (Cx) and the substantia nigra pars reticulata (SNr), responses of SNr units to stimulation of the Cx were studied in anesthetized rats. Most of the units (229 of 236) exhibited repetitive firing with fairly short, regular intervals. The other 7 units displayed long duration spikes, irregular firing intervals and slow spontaneous firing. Stimulation of the Cx usually resulted in a short latency excitation and occasionally a long latency inhibition in both types of units. When strong stimulation was applied, multiple excitatory and inhibitory responses alternating each other with about a 25 ms interval were observed. SNr units responded with different patterns and latencies to stimulation of different sites of the sensorimotor Cx. The results indicate that signals derived from the sensorimotor Cx reach the SNr via multiple pathways and converge on many SNr neurons. 相似文献
17.
The control of movement by the basal ganglia is influenced by inputs from diverse brain structures. Unfortunately, the mechanisms of modulation are poorly defined. Based on neuroanatomical evidence for alpha2A and alpha2C subtypes of alpha2 adrenergic receptors within this region, we hypothesize that noradrenergic alpha2-receptors can influence transmitter release in the SNr. To test this hypothesis we examined the effect of the alpha 2 adrenergic agonist, clonidine, and antagonist, rauwolscine, on the efflux of [3H]-GABA and [3H]-noradrenaline from brain slices of the rat substantia nigra pars reticulata. At low concentrations (10 nM), rauwolscine caused an 84.2 +/- 18.51% (p < 0.01) increase in KCl-evoked GABA release. At higher concentrations, rauwolscine caused a dose-dependent return to basal levels. Rauwolscine also enhanced basal GABA efflux after KCl washout with a similar biphasic concentration-dependence. Surprisingly, clonidine also enhanced [3H]-GABA release but had no effect on KCl-evoked [3H]-GABA release at concentrations which inhibited [3H]-NA efflux. These effects were potentiated by the GABA re-uptake inhibitor nipecotic acid. Together, our data indicate an important role for noradrenergic modulation in the SNr. The enhancing effect of both the alpha2 adrenoceptor agonist and antagonist on GABA release, while appearing paradoxical, can be rationalised by actions at distinct subsets of alpha2 adrenoceptors, using a simple model where alpha2A adrenoceptors are localized on the terminals of noradrenergic afferents impinging upon alpha2C adrenoceptor-containing GABAergic striato-nigral neurones. 相似文献
18.
Bayer HM Handel A Glimcher PW 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》2004,154(4):428-441
The substantia nigra pars reticulata (SNr), a major output nucleus of the basal ganglia, has been implicated anatomically, pharmacologically and physiologically in the generation of saccadic eye movements. However, the unique contribution of the SNr to saccade generation remains elusive. We studied the activity of SNr neurons while rhesus monkeys made saccades from different initial orbital positions, to determine what effects, if any, eye position had on SNr neuronal activity. We found that there was no effect of eye position on SNr neuronal responses. We also examined the responses of SNr neurons during memory-guided saccades to determine whether SNr discharges were affected by whether the target of the upcoming saccade was visible. We found that there was no change in response properties during memory saccade trials as compared to otherwise identical visually guided trials. SNr neurons appear to carry no information about either eye position or whether a movement is guided by a visible or remembered target. These results suggest that nigral signals are encoded in the same coordinate frame as those in the SC and FEF, but that unlike neuronal responses in these areas, SNr activity is not influenced by whether the saccade target remains visible until the movement is executed. 相似文献
19.
A. Berényi P. Gombköt? Á. Farkas Z. Paróczy Z. Márkus R.G. Averkin G. Benedek A. Nagy 《Neuroscience》2009
The orientation of spatial attention via saccades is modulated by a pathway from the substantia nigra pars reticularis (SNr) to the superior colliculus, which enhances the ability to respond to novel stimuli. However, the algorithm whereby the SNr translates visual input to saccade-related information is still unknown. We recorded extracellular single-unit responses of 343 SNr cells to visual stimuli in anesthetized cats. Depending on the size, velocity and direction of the visual stimulus, SNr neurons responded by either increasing or decreasing their firing rate. Using artificial neuronal networks, visual SNr neurons could be classified into distinct groups. Some of the units showed a clear preference for one specific combination of direction and velocity (simple neurons), while other SNr neurons were sensitive to the direction (direction-tuned neurons) or the velocity (velocity-tuned neurons) of the movement. Furthermore, a subset of SNr neurons exhibited a narrow inhibitory/excitatory domain in the velocity/direction plane with an opposing surround (concentric neurons). According to our results, spatiotemporally represented visual information may determine the discharge pattern of the SNr. We suggest that the SNr utilizes spatiotemporal properties of the visual information to generate vector-based commands, which could modulate the activity of the superior colliculus and enhance or inhibit the reflexive initiation of complex and accurate saccades. 相似文献
20.