首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The novel Cα‐tetrasubstituted α‐amino acid Cα‐methyl, Cα‐cyclohexylglycine was prepared by hydrogenation of its Cα‐methyl, Cα‐phenylglycine precursor. Terminally protected homodi‐, homotri‐, and homotetrapeptides from Cα‐methyl, Cα‐cyclohexylglycine and co‐oligopeptides to the pentamer level in combination with Gly or α‐aminoisobutyric acid residues were prepared by solution methods and fully characterized. The results of a conformational analysis, performed by use of Fourier transform infrared (FT‐IR) spectrophotomet absorption, 1H NMR, and X‐ray diffraction techniques, support the contention that this Cα‐methylated, Cβ‐trisubstituted aliphatic α‐amino acid is an effective β‐turn and 310‐helix inducer in tri‐ and longer peptides as its Cα‐methyl valine parent compound, but partially divergent from the corresponding aromatic Cα‐methyl, Cα‐diphenylmethylglycine residue, known to promote folded and fully extended structures to a significant extent in these oligomers.  相似文献   

2.
Abstract: A series of short, amphipathic peptides incorporating 80% Cα,Cα‐disubstituted glycines has been prepared to investigate amphipathicity as a helix‐stabilizing effect. The peptides were designed to adopt 310‐ or α‐helices based on amphipathic design of the primary sequence. Characterization by circular dichroism spectroscopy in various media (1 : 1 acetonitrile/water; 9 : 1 acetonitrile/water; 9 : 1 acetonitrile/TFE; 25 mm SDS micelles in water) indicates that the peptides selectively adopt their designed conformation in micellar environments. We speculate that steric effects from ith and ith + 3 residues interactions may destabilize the 310‐helix in peptides containing amino acids with large side‐chains, as with 1‐aminocyclohexane‐1‐carboxylic acid (Ac6c). This problem may be overcome by alternating large and small amino acids in the ith and ith + 3 residues, which are staggered in the 310‐helix.  相似文献   

3.
This article describes new deltorphin I analogs in which phenylalanine residues were replaced by the corresponding (R) or (S)‐α‐benzyl‐β‐azidoalanine, α‐benzyl‐β‐(1‐pyrrolidinyl)alanine, α‐benzyl‐β‐(1‐piperidinyl)alanine, and α‐benzyl‐β‐(4‐morpholinyl)‐alanine residues. The potency and selectivity of the new analogs were evaluated by a competitive receptor binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). The affinity of analogs containing (R) or (S)‐α‐benzyl‐β‐azidoalanine in position 3 to δ‐receptors strongly depended on the chirality of the α,α‐disubstituted residue. The conformational behavior of peptides modified with (R) or (S)‐α‐benzyl‐β‐(1‐piperidinyl)Ala, which displays the opposite selectivity, was analyzed by 1H and 13C NMR. The μ‐selective Tyr‐d ‐Ala‐(R)‐α‐benzyl‐β‐(1‐piperidinyl)Ala‐Asp‐Val‐Val‐Gly‐NH2 lacks the helical conformation observed in the δ‐selective Tyr‐d ‐Ala‐(S)‐α‐benzyl‐β‐(1‐piperidinyl)Ala‐Asp‐Val‐Val‐Gly‐NH2. Our results support the proposal that differences between δ‐ and μ‐selective opioid peptides are attributable to the presence or absence of a spatial overlap between the N‐terminal message domain and the C‐terminal address domain.  相似文献   

4.
Abstract: Replacement of Phe3 in the endogenous δ‐opioid selective peptide deltorphin I with four optically pure stereoisomers of the topographically constrained, highly hydrophobic novel amino acid β‐isopropylphenylalanine (β‐iPrPhe) produced four pharmacologically different deltorphin I peptidomimetics. Radiolabeled ligand‐binding assays and in vitro biological evaluation indicate that the stereoconfiguration of the iPrPhe residue plays a crucial role in determining the binding affinity, bioactivity and selectivity of [β‐iPrPhe3]deltorphin I analogs: a (2S,3R) configuration of the iPrPhe3 residue in [β‐iPrPhe3]deltorphin I provided the most desirable biological properties with binding affinity (IC50 = 2 n m ), bioassay potency (IC50 = 1.23 n m in MVD assay) and exceptional selectivity for the δ‐opioid receptor over the µ‐opioid receptor (30 000). Further conformational studies based on two‐dimensional NMR and computer‐assisted molecular modeling suggested a model for the possible bioactive conformation in which the Tyr1 and (2S,3R)‐β‐iPrPhe3 residues adopt trans side‐chain conformations, and the linear peptide backbone favors a distorted β‐turn conformation.  相似文献   

5.
Abstract: A protected tridehydropeptide containing (Z)‐β‐(3‐pyridyl)‐α,β‐dehydroalanine (ΔZ3Pal) residue, Boc‐Leu‐ΔZ3Pal‐Leu‐OMe ( 1 ), was synthesized via Erlenmeyer azlactone method. X‐ray crystallographic analysis revealed that the peptide 1 adopts an extended conformation, which is similar to that of a ΔZPhe analog, Boc‐Leu‐ΔZPhe‐Leu‐OMe ( 2 ).  相似文献   

6.
1. It is known that the α4‐subunit is likely to occur in the brain predominantly in α4β3δ receptors at extrasynaptic sites. Recent studies have revealed that the α1‐, α4‐, γ2‐ and δ‐subunits may colocalize extrasynaptically in dentate granule cells of the hippocampus. In the present study, we characterized a series of recombinant GABAA receptors containing human (H) and rat (R) α14‐, β23‐ and γ2S/δ‐subunits in Xenopus oocytes using the two‐electrode voltage‐clamp technique. 2. Both Hα1β3δ and Hα4β3γ2S receptors were sensitive to activation by GABA and pentobarbital. Contrary to earlier findings that the α4β3δ combination was more sensitive to agonist action than the α4β3γ2S receptor, we observed extremely small GABA‐ and pentobarbital‐activated currents at the wild‐type Hα4β3δ receptor. However, GABA and pentobarbital activated the wild‐type Rα4β3δ receptor with high potency (EC50 = 0.5 ± 0.7 and 294 ± 5 μmol/L, respectively). 3. Substituting the Hα4 subunit with Rα4 conferred a significant increase in activation on the GABA and pentobarbital site in terms of reduced EC50 and increased Imax. When the Hα4 subunit was combined with the Rβ3 and Rδ subunit in a heteropentameric form, the amplitude of GABA‐ and pentobarbital‐activated currents increased significantly compared with the wild‐type Hα4β3δ receptor. 4. Thus, the results indicate that the Rα4β3δ, Hα1β3δ and Hα4β3γ2S combinations may contribute to functions of extrasynaptic GABAA receptors. The presence of the Rα4 subunit at recombinant GABAA receptors containing the δ‐subunit is a strong determinant of agonist action. The recombinant Hα4β3δ receptor is a less sensitive subunit composition in terms of agonist activation.  相似文献   

7.
Abstract: Crystal structure analysis of a model peptide: Boc‐β‐Ala‐Aib‐β‐Ala‐NHCH3 (β‐Ala: 3‐amino propionic acid; Aib: α‐aminoisobutyric acid) revealed distinct conformational preferences for folded [φ≈136°, µ ≈ ?62°, ψ ≈100°] and semifolded [φ ≈ 83°, µ ≈ ?177°, ψ ≈ ?117°] structures of the N‐ and C‐terminus β‐Ala residues, respectively. The overall folded conformation is stabilized by unusual Ni···H‐Ni+1 and nonconventional C–H···O intramolecular hydrogen bonding interactions.  相似文献   

8.
Abstract: In a previous study we designed a 20‐residue peptide able to adopt a significant population of a three‐stranded antiparallel β‐sheet in aqueous solution (de Alba et al. [1999]Protein Sci. 8, 854–865). In order to better understand the factors contributing to β‐sheet folding and stability we designed and prepared nine variants of the parent peptide by substituting residues at selected positions in its strands. The ability of these peptides to form the target motif was assessed on the basis of NMR parameters, in particular NOE data and 13Cα conformational shifts. The populations of the target β‐sheet motif were lower in the variants than in the parent peptide. Comparative analysis of the conformational behavior of the peptides showed that, as expected, strand residues with low intrinsic β‐sheet propensities greatly disfavor β‐sheet folding and that, as already found in other β‐sheet models, specific cross‐strand side chain–side chain interactions contribute to β‐sheet stability. More interestingly, the performed analysis indicated that the destabilization effect of the unfavorable strand residues depends on their location at inner or edge strands, being larger at the latter. Moreover, in all the cases examined, favorable cross‐strand side chain–side chain interactions were not strong enough to counterbalance the disfavoring effect of a poor β‐sheet‐forming residue, such as Gly.  相似文献   

9.
Abstract: The chemical synthesis and X‐ray crystal structure analysis of a model peptide incorporating a conformationally flexible β‐Ala residue: Boc‐β‐Ala‐Pda, 1 (C23H46N2O3: molecular weight = 398.62) have been described. The peptide crystallized in the crystal system triclinic with space group P21: a = 5.116(3) Å, b = 5.6770(10) Å, c = 21.744(5) Å; α = 87.45°, β = 86.87°, γ = 90.0°; Z = 1. An attractive feature of the crystal molecular structure of 1 is the induction of a reasonably extended backbone conformation of the β‐Ala moiety, i.e. the torsion angles φ ≈ ?115°, µ ≈ 173° and ψ ≈ 122°, correspond to skew?, trans and skew+ conformation, respectively, by an unbranched hydrophobic alkyl chain, Pda, which prefers an all‐anti orientation (θ1 ≈ ?153°, θ2 ≈ … θ14 ≈ ±178°). The observation is remarkable because, systematic conformational investigations of short linear β‐Ala peptides of the type Boc‐β‐Ala‐Xaa‐OCH3 (Xaa = Aib or Acc6) have shown that the chemical and stereochemical characters of the neighboring moieties may be critical in dictating the overall folded and/or unfolded conformational features of the β‐Ala residue. The overall conformation of 1 is typical of a ‘bar’. It appears convincing that, in addition to a number of hydrophobic contacts between the parallel arranged molecules, an array of conventional N‐H…O=C intermolecular H‐bonding interactions stabilize the crystal molecular structure. Moreover, the resulting 14‐membered pseudo‐ring motif, generated by the amide–amide interactions between the adjacent molecules, is completely devoid of nonconventional C?H…O interaction. The potentials of the conformational adaptation of the β‐Ala residue, to influence and stabilize different structural characteristics have been highlighted.  相似文献   

10.
Abstract: Endomorphin‐1 (EM1, H‐Tyr‐Pro‐Trp‐Phe‐NH2) is a highly potent and selective agonist for the μ‐opioid receptor. A conformational analysis of this tetrapeptide was carried out by simulated annealing and molecular dynamics methods. EM1 was modeled in the neutral (NH2‐) and cationic (NH‐) forms of the N‐terminal amino group. The results of NMR measurements were utilized to perform simulations with restrained cis and trans Tyr1‐Pro2 peptide bonds. Preferred conformational regions in the Φ2–Ψ2, Φ3–Ψ3 and Φ4–Ψ4 Ramachandran plots were identified. The g(+), g(?) and trans rotamer populations of the side‐chains of the Tyr1, Trp3 and Phe4 residues were determined in χ1 space. The distances between the N‐terminal N atom and the other backbone N and O atoms, and the distances between the centers of the aromatic side‐chain rings and the Pro2 ring were measured. The preferred secondary structures were determined as different types of β‐turns and γ‐turns. In the conformers of trans‐EM1, an inverse γ‐turn can be formed in the N‐terminal region, but in the conformers of cis‐EM1 the N‐terminal inverse γ‐turn is absent. Regular and inverse γ‐turns were observed in the C‐terminal region in both isomers. These β‐ and γ‐turns were stabilized by intramolecular H‐bonds and bifurcated H‐bonds.  相似文献   

11.
Abstract: 2,2,6,6‐Tetramethylpiperidine‐1‐oxyl‐4‐amino‐4‐carboxylic acid (TOAC) is a topographically and conformationally restricted, nitroxide containing, Cα‐tetrasubstituted α‐amino acid. Here, we describe the molecular and crystal structures, as determined by X‐ray diffraction analyses, of a TOAC terminally protected derivative, the cyclic dipeptide c(TOAC)2·1,1,1,3,3,3‐hexafluoropropan‐2‐ol (HFIP) solvate, and five TOAC‐containing, terminally protected, linear peptides ranging in length from tetra‐ to hepta‐peptides. Incipient and fully developed, regular or distorted 310‐helical structures are formed by the linear peptides. A detailed discussion on the average geometry and preferred conformation for the TOAC piperidine ring is also reported. The X‐ray diffraction structure of an intramolecularly cyclized side product resulting from a C‐activated TOAC residue has also been determined.  相似文献   

12.
Abstract: Using a chemo‐enzymatic approach we prepared the highly lipophilic, chiral, Cα‐methylated α‐amino acid (αMe)Aun. Two series of terminally protected model peptides containing either d ‐(αMe)Aun in combination with Aib or l ‐(αMe)Aun in combination with Gly were synthesized using solution methods and fully characterized. A detailed solution conformational analysis, based on FT‐IR absorption, 1H NMR and CD techniques, allowed us to determine the preferred conformation of this amino acid and the relationship between chirality at its α‐carbon atom and screw sense of the helix that is formed. The results obtained strongly support the view that d ‐(αMe)Aun favors the formation of the left‐handed 310‐helical conformation.  相似文献   

13.
Abstract: Previous research has shown that the immunomodulatory peptide α‐melanocyte‐stimulating hormone (α‐MSH) and its carboxy‐terminal tripeptide KPV (Lys‐Pro‐Val α‐MSH11?13) have antimicrobial influences. By inserting a Cys‐Cys linker between two units of KPV, we designed the dimer [Ac‐CKPV]2 that showed excellent candidacidal effects in pilot tests and was the subject of further investigations. [Ac‐CKPV]2 was active against azole‐resistant Candida spp. Therefore, the molecule appeared a promising candidate for therapy of fungal infections and was the subject of a structural study. 1H‐NMR and restrained mechanic and dynamic calculations suggest that the peptide adopts an extended backbone structure with a β‐turn‐like structure. These results open a pathway to development of additional novel compounds that have candidacidal effects potentially useful against clinical infections.  相似文献   

14.
The crystal structure of Boc-Pro-Val-Gly-NH2 has been determined: monoclinic; P21; a = 9.331 (3) Å, b = 9.532 (4), c = 23.080 (9), β= 91.33 (3)R, Z = 4; R = 0.053 for 3400 reflections with ˙Fo˙,>α(Fo). There are two independent but very similar molecules in the crystal. The peptide main chains are in an extended form, and packed in two kinds of antiparallel β sheets, the (φ, Φ) angles of the central Val residues are (-156°, 146°) and (-139°, 155°), and the mean length of the N- H . 0 hydrogen bonds in the sheets is 2.965 Å. A detailed study of the conformations of the Val residues in oligopeptide crystals shows that the preferred conformation of Val in peptides is: the (φ, Φ) angles close to those of the antiparallel β sheet, and Cγ1 and Cγ2, against N with respect to the Cα– Cβ bond, at either (trans, gauche) or (-gauche, gauche). The mean π(NCαC') angle of such Val residues is 107.9(9)°. A twisting in the β sheets is also discussed.  相似文献   

15.
Abstract: Conformational studies of three agonists of V2 receptor modified with 1‐aminocyclohexane‐1‐carboxylic acid (Acc), [Acc2,DArg8]VP, [Acc3]AVP and [Cpa1,Acc3]AVP, using 2D NMR and theoretical calculations are presented in this paper. It is believed that α,α‐disubstituted amino acids, such as Acc, affect the formation of either 310 or α‐helical conformation. Moreover, a peptide with Acc may adopt either the γ‐ or an inverse γ‐turn over it. Thus, incorporation of Acc into the arginine‐vasopressin sequence induced C7‐membered ring conformation with Acc at the top of it, and additional formation of β‐bend involving residues in the 2–5 fragment of the peptides. Furthermore, the analogues are also characterized by type I of β‐turn involving residues Acc3‐Cys6 in [Acc3]AVP and [Cpa1,Acc3]AVP, and by type IV or II′ in [Acc2,DArg8]VP. Replacement of Tyr at position 2 of [Acc2,DArg8]VP with Acc afforded a hydrogen bond between the guanidine moiety of DArg8 and the side chain of either Asn5 or Gln4. In the remaining analogues, the β‐turn comprising the Cys6‐Gly9 residues allows the positively charged side chain of Arg8 to be directed toward Tyr2. The substitution of Cys1 with Cpa1 enhances hydrophobic properties of N‐terminal part of the molecule strengthening thereby the affinity to the binding pocket of receptors.  相似文献   

16.
Abstract: Hofmann rearrangement of Nα‐Boc‐l ‐Gln‐OH mediated by a polymer‐supported hypervalent iodine reagent poly[(4‐diacetoxyiodo)styrene] (PSDIB) in water afforded Nα‐Boc‐l ‐α,γ‐diaminobutyric acid (Boc‐Dab‐OH, 1 ) in 87% yield. Nα‐Z‐derivative (Z‐Dab‐OH, 2 ) was prepared with PSDIB in 83% yield. Since the reaction of Nα‐Fmoc‐Gln‐OH by this procedure did not proceed because of the insolubility of Fmoc‐Gln‐OH in aqueous media, we synthesized Fmoc‐Dab(Boc)‐OH ( 5 ) from 2 in 54% yield. Polymyxin B heptapeptide (PMBH) which contains four Dab residues was successfully synthesized in a solution‐phase synthesis.  相似文献   

17.
Abstract: Two complete series of N‐protected oligopeptide esters to the pentamer level from 1‐amino‐cyclodecane‐1‐carboxylic acid (Ac10c), an α‐amino acid conformationally constrained through a medium‐ring Cαi ? Cαi cyclization, and either the l ‐Ala or Aib residue, along with the N‐protected Ac10c monomer and homo‐dimer alkylamides, were synthesized using solution methods and fully characterized. The preferred conformation of these model peptides was assessed in deuterochloroform solution using FT‐IR absorption and 1H NMR techniques. Furthermore, the molecular structures of two derivatives (Z‐Ac10c‐OH and Fmoc‐Ac10c‐OH) and two peptides (the dipeptide ester Z‐Ac10c‐l ‐Phe‐OMe and the tripeptide ester Z‐Aib‐Ac10c‐Aib‐OtBu) were determined in the crystal state using X‐ray diffraction. The experimental results support the view that β‐bends and 310‐helices are preferentially adopted by peptides rich in Ac10c, the third largest cycloaliphatic Cα,α‐disubstituted glycine known. This investigation allowed us to complete a detailed conformational analysis of the whole 1‐amino‐cycloalkane‐1‐carboxylic acid (Acnc, with n = 3–12) series, which represents the prerequisite for our recent proposal of the ‘Acnc scan’ concept.  相似文献   

18.
Conformational studies have been carried out on the X-cis-Pro tripeptide system (a system of three linked peptide units, in the trans-cis-trans configuration) using energy minimization techniques. For X, residues Gly, L-Ala, D-Ala and L-Pro have been used. The energy minima have been classified into different groups based upon the conformational similarity. There are 15, 20, 18 and 6 minima that are possible for the four cases respectively arid these fall into 11 different groups. A study of these minima shows that, (i) some minima contain hydrogen bonds - either 4→1 or 1→2 type, (ii) the low energy minima qualify themselves as bend conformations, (iii) cis′ and trans′ conformations are possible for the prolyl residue as also the Cγ-endo and Cγ-exo puckerings, and (iv) for Pro-cis-Pro, cis′ at the first prolyl residue is ruled out, due to the high energy. The available crystal structure data on proteins and peptides, containing cis-Pro segment have been examined with a view to find the minima that occur in solid state. The data from protein show that they fall under two groups. The conformation at X in X-cis-Pro is near extended when it is a non-glycyl residue. In both peptides and proteins there exists a preference for trans′ conformation at prolyl residue over cis′ when X is a non-glycyl residue. The minima obtained can be useful in modelling studies.  相似文献   

19.
Two different models for the receptor-bound conformation of δ-opioid peptide antagonists containing the N-terminal dipeptide segment H-Tyr-Tic (Tic = 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) have been proposed. Both models are based on spatial overlap of the Tyr and Tic2 aromatic rings and N-terminal amino group with the corresponding aromatic rings and nitrogen atom of the nonpeptide δ-antagonist naltrindole. However, in one model the peptide bond between the Tyr and Tic2 residues assumes the trans conformation, whereas in the other it is in the cis conformation. To distinguish between these two models, we prepared the two peptides H-Tyrψ[CH2NH]. Tic-Phe-Phe-OH and H-Tyrψ[CH2NH]. MeTic-Phe-Phe-OH (MeTic = 3-methyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) in which a cis peptide bond between the Tyr and Tic (or MeTic) residues is sterically forbidden. Both compounds turned out to be moderately potent δ-opioid antagonists in the mouse vas deferens assay. A molecular mechanics study performed with both peptides resulted in low-energy conformations in which the torsional angle (“ω1”) of the reduced peptide bond between Tyr and Tic (or MeTic) had a value of 180°(trans conformation) and which were in good agreement with the proposed model with all trans peptide bonds. Furthermore, this study confirmed that neither of these two peptides could assume low-energy conformations in which “ω1” had a value of 0°(cis conformation). Conformers with that same bond in the gauche- conformation (“ω1”= -60“) were also identified, but were higher in energy and showed no spatial overlap with naltrindole. On the basis of these results it is concluded that the receptor-bound conformation of δ-peptide antagonists containing an N-terminal H-Tyr-Tic-dipeptide segment must have all trans peptide bonds. © Munksgaard 1998.  相似文献   

20.
Abstract: A brief survey of the history of peptide chemistry from Theodore Curtius to Emil Fischer to Bruce Merrifield is first presented. The discovery and development of peptide ligation, i.e. of actual chemical synthesis of proteins are described. In the main chapter, ‘ Synthesis of Proteins by Chemical Ligation ’ a detailed discussion of the principles, reactivities and mechanisms involved in the various coupling strategies now applied (ligation, chemical ligation, native chemical ligation) is given. These include coupling sites with cysteine and methionine (as well as the seleno analogs), histidine, glycine and pseudo‐prolines, ‘unrestricted’ amino‐acid residues (using the Staudinger reaction), as well as solid‐phase segment coupling by thioligation of unprotected peptides. In another section, ‘ Synthesis of β‐peptides by Thioligation ’, couplings involving β2‐ and β3‐peptides are described (with experimental details).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号