首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 475 毫秒
1.
BACKGROUND: We have previously demonstrated that perfusion of isolated hearts with high concentrations of glucose results in increased glycolysis during ischemia, diminished ischemic injury, and improved functional recovery with reperfusion. OBJECTIVE: To evaluate a possible mechanism by which glucose conferred this protection. We examined the hypothesis that increased exogenous glucose concentrations results in increased concentrations of fructose-2,6-bisphosphate, a potent activator of phosphofructokinase-1, and thus increases glycolysis. METHODS: Perfused rabbit hearts were subjected to 60 min of low-flow ischemia. Control hearts were perfused with buffer containing 0.4 mmol/l palmitate, 5 mmol/l glucose, and 70 mU/l insulin, and treated hearts were perfused with buffer containing 0.4 mmol/l palmitate, 15 mmol/l glucose and 210 mU/l insulin. RESULTS: Ischemic contracture was attenuated by perfusion of high concentrations of glucose (high glucose) (P < 0.05 compared with control). Glucose uptake and lactate production were greater in hearts perfused with high glucose, as was the ATP concentration at the end of ischemia (P < 0.05 compared with controls). Exogenous glucose uptake and lactate production correlated well with fructose-2,6-bisphosphate content (P = 0.007). CONCLUSIONS: Enhancement of glycolysis in hearts perfused with high glucose may be the result of stimulation of phosphofructokinase-1 by fructose-2,6-bisphosphate. Accordingly, this may serve as an important mechanism by which cardioprotection may be achieved.  相似文献   

2.
Myocardial glycogen and the factors which primarily regulate its metabolism were studied during post-ischemic reperfusion. Myocardial [13C]glycogen was continuously monitored by 13C-NMR spectroscopy in beating rat hearts perfused with oxygenated solutions containing [1-13C]glucose (5 mM) and insulin, during normal flow at 15 ml/min (n = 5), and during reperfusion after 30 min of 1 ml/min (n = 5), or 0 ml/min (n = 4) ischemia. Mean myocardial [13C]glycogen fell during reperfusion from 1.1 +/- 0.6 at the end of zero-flow ischemia to 0.4 +/- 0.4 mumol of [13C]glucosyl units/g wet wt (P less than 0.02) over the first 7 min of reperfusion; it also fell during reflow following 1 ml/min ischemia, from 2.3 +/- 1.4 to 1.7 +/- 1.0 mumol (P less than 0.03) over the same interval. In parallel experiments, glycogen phosphorylase % a (GPA%) content was higher at the end of 30 min of 0 ml/min (37.3 +/- 7.3%, P less than 0.01), and trended higher after 1 ml/min flow (30.8 +/- 12.1%, P = 0.18) than under baseline conditions (20.1 +/- 7.4%). However GPA% returned to baseline values within 1 min of reflow after both 0 and 1 ml/min ischemic periods (20.6 +/- 3.0% and 19.0 +/- 8.0%, respectively). Inorganic phosphate, as determined by simultaneous 31P-NMR, remained elevated during early reperfusion relative to baseline, and significantly correlated with the extent of decline in [13C]glycogen during reperfusion (r = 0.79, P less than 0.01). Thus, glycogen breakdown continues to occur during early post-ischemic reperfusion, but the mechanism is not related to elevated GPA%, and may be due to persistently increased inorganic phosphate at that time.  相似文献   

3.
OBJECTIVE: Glycolysis-from-glycose may be more beneficial than glycogenolysis in protecting hearts against ischemia. We tested the hypothesis that ischemic preconditioning is mediated by increased exogenous glucose use during low-flow ischemia, an effect triggered by adenosine A1 receptor activation. METHODS: Langendorff rat hearts were subjected to 25 min low-flow ischemia (0.6 ml/min) and 30 min reperfusion. Prior to underperfusion, hearts (n = 6 per group) were subjected to two cycles of either preconditioning ischemia (PC), infusion of the adenosine A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA; 0.25 mumol/l), or PC in the presence of the adenosine antagonist 8-(p-sulfophenyl)theophylline (SPT; 50 mumol/l). Glycolysis-from-glucose during underperfusion was measured using D-[2-3H]glucose. RESULTS: At the end of reperfusion, recovery of rate-force product was enhanced in the PC and CCPA groups (62 and 67% of preischemic value) compared to the ischemic control hearts (IC, 32%; P < 0.05), whereas protection was abolished in the SPT hearts (20%; P < 0.05 vs. PC). PC improved total glycolysis-from-glucose during underperfusion by 31% (P < 0.05 vs. IC); SPT abolished this increase. CCPA reduced total lactate release and glucose uptake during ischemia by 47% and 61%, respectively (P < 0.05 vs. IC). Abolishment of the preconditioning-associated increase in glucose uptake during underperfusion, by switching to a low glucose buffer, resulted in a loss of functional protection. CONCLUSIONS: This study strongly suggests that increased exogenous glucose utilization during low-flow ischemia mediates ischemic preconditioning without increasing total anaerobic glycolytic flux. Although adenosine A1 receptor activation reduces ischemic injury, it does not facilitate the increased glucose uptake observed with ischemic preconditioning, suggesting a different mechanism of protection.  相似文献   

4.
BACKGROUND. Although there are many factors that might contribute to tissue injury during ischemia and reperfusion, the loss of adenine nucleotides has long been considered to be of importance. This has led to the study of interventions designed to limit the loss of nucleotides or to enhance the rate of nucleotide resynthesis during reperfusion. Alternatively, the breakdown of adenosine triphosphate to adenosine might represent a protective response of the ischemic heart because adenosine is considered an anti-injury autocoid. Augmentation of endogenous adenosine levels might be beneficial. For these reasons, the protective properties of acadesine (AICAr: 5-amino-4-imidazole carboxamide riboside) were assessed in a rat model of myocardial ischemia and reperfusion. METHODS AND RESULTS. The protective properties of acadesine were studied in the isolated, perfused rat heart subjected to global hypothermic (20 degrees C) ischemia and reperfusion. When acadesine was given as an in vivo pretreatment (100 mg/kg i.v. 15 minutes before study) followed by being administered as an additive (20 mumol/l) to the St. Thomas' Hospital cardioplegic solution (single dose) and then as an additive (20 mumol/l) to the initial reperfusion (15 minutes) solution, the recovery of aortic flow after 2.5 hours of ischemia was improved from its control value of 16.5 +/- 3.9 ml/min to 28.9 +/- 4.1 ml/min (n = 8 per group; p less than 0.05). Similar protection was seen with other indexes of cardiac function. Analysis of hearts obtained at the end of 2.5 hours of ischemia and 35 minutes of reperfusion revealed no significant differences in metabolite content between control and drug-treated hearts with the exception of inosine monophosphate, which was increased from its drug-free control value of 0.10 +/- 0.01 mumol/g dry wt to 0.86 +/- 0.06 mumol/g dry wt (p less than 0.05). In further studies (n = 8 per group), with multidose (every 30 minutes) cardioplegia and extended periods (6 hours) of hypothermic ischemia, acadesine consistently led to higher mean recoveries of function and lower levels of creatine kinase leakage. Again, the only significant metabolic effect was an increase in tissue inosine monophosphate content. In studies (n = 12 per group) to determine whether acadesine was acting before, during, or after ischemia, the drug was given 1) only as pretreatment (100 mg/kg i.v.), 2) only during single-dose cardioplegia (20 mumol/l), or 3) only during reperfusion (20 mumol/l). Significant protection was observed in the first two groups (recovery of aortic flow increased from 10.6 +/- 2.6 ml/min in the acadesine-free control to 22.6 +/- 2.8 and 23.6 +/- 3.1 ml/min, respectively; p less than 0.05). No significant protection was observed when acadesine was given only during reperfusion. In dose-response studies, acadesine (0, 5, 20, 50, 200, and 1,000 mumol/l; n = 12 per group) was given only as a cardioplegic additive; the postischemic recoveries of aortic flow were 15.4 +/- 2.8, 16.9 +/- 3.6, 29.5 +/- 3.8, 27.4 +/- 3.8, 26.7 +/- 4.2, and 27.1 +/- 2.7 ml/min, respectively. CONCLUSIONS. Acadesine improves the ability of the heart to recover from ischemia and reperfusion when administered before ischemia or with cardioplegia. The mechanism underlying the protection remains to be resolved.  相似文献   

5.
Current therapy of myocardial infarction may include early reperfusion. We simulated myocardial perfusion conditions during evolving myocardial infarction in isolated, normothermic, isovolumic rabbit hearts perfused with buffer containing bovine red blood cells (hematocrit of 40%), and we assessed the effects of high levels of glucose and insulin as "therapy" during prolonged (150-minute) severe underperfusion and reperfusion. Protocol 1 consisted of underperfusion at a constant coronary perfusion pressure of 8 mm Hg. The control group (n = 8) received 5.5 mmol/l glucose and 15 microunits/ml insulin; the group treated with high levels of glucose and insulin (G + I) (n = 8) received 19.5 mmol/l glucose and 250 microunits/ml insulin during both underperfusion and reperfusion. Relative to the control group, the G + I group experienced 1) greater developed pressure during underperfusion and increased recovery during reperfusion, 2) preserved diastolic function during underperfusion and reperfusion, 3) lower coronary resistance and greater coronary flow during the underperfusion period, 4) increased glycolytic flux and preserved glycogen stores and high energy phosphate levels, and 5) less loss of myocyte enzymes (creatine kinase and alanine aminotransferase). In protocol 2, coronary flow was kept identical in control (n = 8) and G + I hearts (n = 8) during the underperfusion period, and left ventricular end-diastolic pressure was kept below 10 mm Hg in both groups to minimize subendocardial damage and vascular compression. In this protocol, the effect of the G + I intervention in the prevention of an increase in coronary resistance during the underperfusion period was distinguished from its myocellular metabolic effects; the high G + I substrate had protective effects on mechanical and metabolic function that were less marked than, but similar to, those in protocol 1, indicating that its mechanisms of protection during underperfusion affected both cardiac function and coronary resistance. We conclude that the G + I intervention, in clinically relevant concentrations, markedly protected severely underperfused myocardium for 150 minutes and may be a beneficial intervention in combination with reperfusion therapy in acute myocardial infarction.  相似文献   

6.
This study was designed to assess the effects of chronic estrogen replacement therapy on mechanical function and glucose utilization in aerobic and post-ischemic hearts. Ovariectomized female rats were either untreated or were treated subcutaneously with 17 beta -estradiol (0.25 mg 21-day slow release pellets). After 14 days, when serum concentrations of 17 beta -estradiol were 3.8+/-0.8 and 148+/-15 pg/ml, respectively, hearts were isolated and perfused in working mode with Krebs-Henseleit solution containing 1.2 m m palmitate and 11 m m[5-(3)H/U-(14)C]glucose. Hearts were perfused aerobically (60 min) and then subjected to low-flow ischemia (0.5 ml/min, 60 min) followed by reperfusion (30 min). During reperfusion, hearts from rats treated chronically with 17 beta -estradiol had an improved (two-fold) recovery of mechanical function. 17 beta -estradiol (400 p m, 109 pg/ml), when present acutely in heart perfusate during ischemia and reperfusion, did not improve recovery. Chronic 17 beta -estradiol increased glucose oxidation during reperfusion as well as during aerobic perfusion but had no effect on glycolysis. Chronic 17 beta -estradiol also altered post-ischemic glycogen metabolism and increased glycogen content and glycogen synthase activity at the end of reperfusion. As stimulation of glucose oxidation has been shown previously to be cardioprotective, and as the enhanced rate of glucose oxidation was not simply a consequence of enhanced recovery of mechanical function, alterations in glycogen and glucose utilization may contribute to the direct cardioprotective effects of chronic estrogen treatment.  相似文献   

7.
Using the isolated perfused rat heart with regional ischemia and reperfusion, we have two antiarrhythmic interventions (the spin trap agent PBN [N-tert-butyl-alpha-phenylnitrone] and perfusate calcium reduction), administered just before reperfusion, to investigate mechanisms determining the vulnerability of the heart to reperfusion-induced ventricular fibrillation. Hearts were subjected to regional ischemia (5, 10, 20, 30 or 40 min) followed by reperfusion. Four groups were studied for each ischemic time: (i) control hearts with no antiarrhythmic intervention; (ii) hearts perfused with PBN (30 mumol/l) during the final 1 min of ischemia and throughout reperfusion, (iii) hearts perfused with low-calcium buffer (0.4 mmol/l) during the final 1 min of ischemia and throughout reperfusion and (iv) hearts perfused with PBN (30 mumol/l) and low-calcium (0.4 mmol/l) during the final 1 min of ischemia and throughout reperfusion. In control hearts, a bell-shaped time-vulnerability curve was obtained with 0, 91, 67, 33 and 17% of the hearts exhibiting irreversible fibrillation during reperfusion after 5, 10, 20, 30 and 40 min of ischemia, respectively. In the PBN group, the values were 8, 41 (P less than 0.05), 41, 33 and 8%, respectively. In the calcium reduction group the values were 17, 50, 8 (P less than 0.05), 8 and 0, respectively. Thus, PBN caused a significant reduction in reperfusion-induced ventricular fibrillation after 10 min of ischemia but had no significant effect with reperfusion after 20 min of ischemia. In contrast, calcium reduction had no significant effect after 10 min of ischemia but caused a significant reduction after 20 min of ischemia. When PBN treatment with calcium reduction were combined we obtained significant anti-arrhythmic effects after both 10 min (P less than 0.05) and 20 min (P less than 0.05) of ischemia. The additive effects of these two interventions, and the different ischemic-times after which they are most effective, has led us to propose that multiple triggers, each with different underlying mechanisms may be capable of initiating events which lead to ventricular fibrillation.  相似文献   

8.
Maintenance of low coronary flow (1 ml/min) during 40 or 70 min of anoxia maintained function and prevented Ca2+ overload during reoxygenation in isolated rat hearts. In comparison, recovery from 40 min of global ischemia resulted in only 20% of preischemic function and an increase in end-diastolic pressure (LVEDP) to 39 mmHg. Reperfusion Ca2+ uptake rose from 0.6 to 10.2 mumol/g dry tissue. Intracellular Na+ (Nai+) increased from 13 to 61 mumol/g dry tissue after 40 min of global ischemia, but was unchanged in hearts with low flow anoxia. When glucose and pyruvate were omitted from buffer used for anoxic perfusion, recovery was only 15% of preanoxic values, LVEDP rose to 32 mmHg, and reperfusion Ca2+ uptake was 7.2 mumol/g dry. In addition, Nai+ increased (47.4 mumol/g dry tissue) and ATP was depleted (1.0 mumol/g dry tissue) in the absence of substrate. In anoxic hearts supplied substrate, Nai+ stayed low (12 mumol/g dry tissue) and ATP was preserved (11.6 mumol/g dry tissue). Addition of ouabain (100 or 200 microM) and provision of zero-K+ buffer increased Nai+ and resulted in impaired functional recovery, increased LVEDP, and greater reperfusion Ca2+ uptake. These interventions also decreased energy availability in anoxic hearts. To distinguish between effects of Na+ accumulation and ATP depletion, monensin, a Na+ ionophore, was added during low flow anoxia. Monensin increased Nai+, decreased functional recovery and increased reperfusion Ca2+ uptake in a dose-dependent manner (1-10 microM) without changing ATP content. These results suggested that reduction of Nai+ accumulation by maintenance of Na+, K+ pump activity was the major mechanism of the beneficial effects of low coronary flow on reperfusion injury.  相似文献   

9.
OBJECTIVES: This study was designed to determine if the fatty acid-induced increase in H(+) production from glycolysis uncoupled from glucose oxidation delays the recovery of intracellular pH (pH(i)) during reperfusion of ischemic hearts. BACKGROUND: High rates of fatty acid oxidation inhibit glucose oxidation and impair the recovery of mechanical function and cardiac efficiency during reperfusion of ischemic hearts. METHODS: pH(i) was measured by 31P nuclear magnetic resonance spectroscopy in isolated working rat hearts perfused in the absence (5.5 mmol/l glucose) or presence of 1.2 mmol/l palmitate (glucose+palmitate). Glycolysis and glucose oxidation were measured using [5-3H/U-14C]glucose. RESULTS: When glucose+palmitate hearts were subjected to 20 min of no-flow ischemia, recoveries of mechanical function and cardiac efficiency were significantly impaired compared with glucose hearts. Glucose oxidation rates were significantly lower in glucose+palmitate hearts during reperfusion compared with glucose hearts, whereas glycolysis rates were unchanged. This resulted in an increase in H(+) production from uncoupled glucose metabolism, and a decreased rate of recovery of pH(i) in glucose+palmitate hearts during reperfusion compared with glucose-perfused hearts. Dichloroacetate (3 mmol/l) given at reperfusion to glucose+palmitate hearts resulted in a 3.2-fold increase in glucose oxidation, a 35% +/- 3% decrease in H(+) production from glucose metabolism, a 1.7-fold increase in cardiac efficiency and a 2.2-fold increase in the rate of pH(i) recovery during reperfusion. CONCLUSIONS: A high level of fatty acid delays the recovery of pH(i) during reperfusion of ischemic hearts because of an increased H(+) production from glycolysis uncoupled from glucose oxidation. Improving the coupling of glucose metabolism by stimulating glucose oxidation accelerates the recovery of pH(i) and improves both mechanical function and cardiac efficiency.  相似文献   

10.
Background Ischemic preconditioning (IPC) is considered the most potent mechanism to improve ischemia tolerance. We have demonstrated that insulin addition during reperfusion improves recovery of function in the isolated working rat heart. We herein compare the relative importance of these two mechanisms in improving recovery of postischemic function.Methods Isolated working rat hearts were perfused with Krebs-Henseleit buffer containing glucose (5 mmol/l) plus oleate (0.4 mmol/l) for 20 min and were then subjected to 15 min of ischemia followed by 35 min of reperfusion. IPC was achieved by an ischemic period of ve minutes followed by 10 minutes of reperfusion before ischemia. Insulin (1 mU/ml) was or was not added at the beginning of reperfusion. Wortmannin (WM, 3 µmol/l), an inhibitor of phosphatidylinositol 3-kinase, was or was not present in the perfusate from the beginning of the experiments. We measured glucose uptake with [2-3H]glucose, cardiac power and tissue metabolite content at the end of the experiments.Results Cardiac power before ischemia ranged from 7.17 to 10.4 mW. After ischemia, cardiac power recovered to 65.7 ± 3.8% (Control). Insulin signicantly improved recovery (96.3 ± 10.8%, p < 0.05 vs. Control). This effect was also achieved by IPC (recovery 86.2 ± 6.2%, p < 0.05). The effects of insulin and IPC were not additive (recovery 83.4 ± 6.2%, p < 0.05). WM fully inihibited the effects of both insulin and IPC (69.5 ± 3.3, 72.0 ± 6.9, respectively). Basal glucose uptake ranged from 2.53 to 3.46 µmol/gdry, and was signicantly lower after ischemia in the presence of WM.Conclusions Insulin is a potent tool to improve postischemic contractile function. The improvement of recovery afforded by insulin added after ischemia may be mediated through a similar mechanism as ischemic preconditioning.  相似文献   

11.
We undertook this study to determine if the metabolism of exogenous glucose and glycogen in hypertrophied hearts differed from that in normal hearts during severe ischemia. Thus, rates of glycolysis (3H2O production) and oxidation (14CO2 production) from exogenous glucose and glycogen were measured in isolated working control (n = 13) and hypertrophied (n = 12) hearts from sham-operated and aortic-banded rats during 40 min of severe low-flow ischemia. Hearts, in which glycogen was prelabelled with [5-3H]- or [14C]-glucose, were paced and perfused with Krebs-Henseleit solution containing 1.2 mM palmitate, 5.5 mM [5-3H]- or [14C]-glucose (different from the isotope used to label glycogen), 0.5 mM lactate and 100 microU/ml insulin during ischemia. Rates of glycolysis from exogenous glucose (3301 +/- 122 v 2467 +/- 167 nmol/min/g dry wt, mean +/- S.E.M., P < 0.05) and glucose from glycogen (808 +/- 27 v 725 +/- 21 nmol/min/g dry wt, P < 0.05) were accelerated in hypertrophied hearts compared to control hearts. However, rates of oxidation of exogenous glucose and glucose from glycogen were not significantly different between the two groups. As observed in normoxic non-ischemic hearts, glucose from glycogen was preferentially oxidized compared to exogenous glucose. Additionally, rates of glycogen synthesis (167 +/- 7 v 140 +/- 9 nmol/min/g dry wt, P < 0.05) were increased in hypertrophied hearts compared to control hearts during severe low-flow ischemia indicating that glycogen turnover (i.e. simultaneous synthesis and degradation) was accelerated in the hypertrophied heart. Thus, we demonstrate that glucose utilization and glycogen turnover are accelerated in the hypertrophied heart during severe low-flow ischemia as compared to the normal heart.  相似文献   

12.
OBJECTIVE: Many patients with heart failure have whole-body insulin resistance and reduced cardiac fluorodeoxyglucose uptake, but whether these metabolic changes have detrimental effects on the heart is unknown. Here, we tested whether there is a link between insulin resistance and ischemic damage in the chronically infarcted Wistar rat heart, postulating that the heart would have decreased insulin sensitivity, with lower GLUT4 glucose transporter protein levels due to high circulating free fatty acid (FFA) concentrations. A decreased capacity for glucose uptake would lower glycolytic adenosine triphosphate (ATP) production and thereby increase ischemic injury in the infarcted heart. METHODS AND RESULTS: In vivo left ventricular ejection fractions, measured using echocardiography, were 40% lower in rats 10 weeks after coronary artery ligation than in sham-operated control rats. Insulin-stimulated D[2-3H]glucose uptake was 42% lower in isolated, perfused, infarcted hearts. Myocardial GLUT4 glucose transporter protein levels were 28% lower in the infarcted hearts and correlated negatively with ejection fractions and with fasting plasma FFA concentrations. Compared with controls, chronically infarcted hearts had 46% lower total glucose uptake and three-fold faster ATP hydrolysis rates, measured using phosphorus-31 nuclear magnetic resonance spectroscopy, during 32-min ischemia at 0.4 ml/min/gww. During reperfusion, recovery of left ventricular developed pressure in infarcted hearts was 42% lower than in control hearts. CONCLUSIONS: Glucose uptake, in response to insulin or ischemia, was lower in the chronically infarcted rat heart and associated with increased circulating FFA concentrations and decreased GLUT4 levels. Thus, infarcted hearts had greater ATP depletion, and consequently incurred greater damage, during ischemia.  相似文献   

13.
Studies were conducted in extracorporeally perfused, intact, working pig hearts to determine whether, in heart muscle, trace-labeled deoxyglucose serves as an accurate marker of glycolytic flux in reperfusion after exposures to mild to moderate regional ischemia. In the main study, two groups of hearts were compared, as distinguished by levels of glucose in the whole-blood perfusate (euglycemic hearts [group I], blood glucose of 7.4 +/- 0.2 mumol/ml, n = 7; hyperglycemic hearts [group II], blood glucose of 12.9 +/- 0.5 mumol/ml, n = 8). Both groups were subjected to a 60% reduction in anterior descending coronary flow for 30 minutes followed by reperfusion for 40 minutes. Modest and comparable regional mechanical stunning during reflow was noted in both groups. Glucose utilization, as estimated from the release of 3H2O from the steady-state infusion of [5-3H]glucose during aerobic perfusion, was modest but during reperfusion was noted to increase significantly above aerobic values in each of the two groups, with a doubling of rates in group II hearts compared with group I hearts (p less than 0.041 or p less than 0.090). Net lactate extraction was comparable in reflow in both groups, suggesting in this specific instance a preferential enhancement of glucose oxidation in hyperglycemic group II hearts. Shifts in accumulation of tissue radioactivity of [U-14C]2-deoxyglucose in reperfused myocardium were not able to track these trends. The variability of 14C-labeled radioactivity among animals was marked and essentially masked any ability to discern trends in glycolysis as described by tritiated glucose between the aerobic and reperfusion intervals. When the data were arrayed by linear regression analysis, the slopes derived from 14C-labeled deoxyglucose were either discordant or insensitive to those described by 3H-labeled glucose. Tissue glycogen levels were slow to recover in early reflow and at end reperfusion were still significantly depressed from aerobic levels. The present data indicate that coronary reperfusion and hyperglycemia have influence in determining glycolytic flux in myocardium. Labeled deoxyglucose, considered solely as a marker of exogenous glucose utilization, appears to be an insensitive agent in describing these events at conditions of relatively low glucose flux.  相似文献   

14.
Feedback inhibition of glucose-mediated insulin release has repeatedly been demonstrated in isolated pancreatic islets and in the perfused pancreas. It was the aim of the present study to determine whether inhibition occurs through a long-loop (plasma concentration of insulin) or a short-loop (local concentration) action of insulin. The perfused rat pancreas was used, with different perfusion rates and different insulin concentrations in the medium. Increasing the flow rate from 1 to either 3 or 6 ml/min gradually decreased the insulin concentration in the effluent, at stimulatory concentrations of glucose (11.1 and 16.7 mmol/l). Under the same conditions, however, the integrated amount of insulin released over a period of 30 min was significantly enhanced. When exogenous insulin (2.7 and 5.4 mumol/l) was added to the perfusion medium, insulin secretion in the presence of 11.1 or 16.7 mmol glucose/l at flow rates of 3 and 6 ml/min was diminished. This effect was most prominent with 11.1 mmol glucose/l and 2.7 mumol exogenous insulin/l at all flow rates (except 1 ml/min), as well as at the high perfusion flow rates with other glucose concentrations. Insulin secretion was not affected by 5.4 mumol exogenous insulin/l at 1 ml/min or by 2.7 mumol exogenous insulin/l at 3 ml/min. The data support a negative feedback inhibition of insulin secretion by secreted insulin, since insulin secretion was decreased by either adding exogenous insulin or by lowering endogenous insulin as the consequence of increased flow rates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Thyroxine and T3 induced oxygen consumption and glucose uptake were studied in vitro in mononuclear blood cells isolated from patients with non-insulin-dependent diabetes mellitus (NIDDM) and from non-diabetic control persons. Cellular oxygen consumption and glucose uptake were promptly increased by physiological and supraphysiological concentrations of T3 and T4 in a dose-dependent manner (50-5000 nmol/l), whereas rT3 and T2 had no stimulatory effect. The effect of T3 and T4 was independent of new protein synthesis in that it was not blocked by tunicamycin (1 mg/l) and tiothepa (75 mg/l). Examination of stimulation of cells from control subjects and patients with NIDDM revealed an identical oxygen consumption, whereas the thyroid hormone-induced glucose uptake was significantly increased in cells from patients with NIDDM. T4 (5 mumol/l) stimulation in controls: 1.34 +/- 0.23 mmol.l-1 (mg DNA)-1.h-1, in NIDDM: 3.24 +/- 0.77 mmol.l-1.(mg DNA)-1.h-1, P less than 0.05 (mean +/- SD). These studies indicate that T4 as well as T3 increases cellular oxygen consumption and glucose uptake and that this stimulation is independent of new protein synthesis. Examination of cells from patients with NIDDM revealed an increased thyroid hormone induced glucose uptake, indicating increased thyroid hormone sensitivity. This observation contrasts the well known insulin insensitivity, suggesting separate mechanisms for glucose uptake elicited by insulin and thyroid hormones.  相似文献   

16.
A possible pathogenetic link between absence of first-phase insulin secretion and development of impaired glucose metabolism has been suggested by the results of several cross-sectional studies. First-phase insulin secretion measured during a +7 mmol/l hyperglycemic glucose clamp correlated with total glucose disposal during the clamp (r = 0.65, p < 0.001, N = 59). To examine whether restoration of first-phase insulin secretion improves peripheral glucose uptake in subjects with impaired glucose utilization, seven insulin-resistant subjects (age 54 (38-62) years: BMI 29.3 (21.7-35.8); fasting plasma glucose 5.5 (4.8-7.2) mmol/l; fasting insulin 57 (37-105) pmol/l with impaired first-phase (148 (29-587) vs controls 485 (326-1086) pmol/l x 10 min; p < 0.05) and normal second-phase (1604 (777-4480) vs controls (1799 (763-2771) pmol/l x 110 min) insulin secretion were restudied. The impaired first-phase insulin secretion was restored by an iv insulin bolus at the start of the hyperglycemic clamp. Substrate oxidation rates and hepatic glucose production were determined by indirect calorimetry and [3-3H]glucose infusion. Total glucose uptake was impaired in the insulin-resistant subjects with impaired first-phase insulin secretion compared to controls (18.8 (13.2-22.2) vs 34.8 (24.3-62.1) mumol.kg-1 x min-1; p < 0.01). Restoration of first-phase insulin secretion (1467 (746-2440) pmol/l x 10 min) did not affect glucose uptake (20.2 (9.9-23.8) mumol.kg-1.min-1), with no difference in oxidative and non-oxidative glucose metabolism between the experiments. Second-phase insulin secretion was similar during both experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
OBJECTIVE: Metabolic interventions that promote glucose use during ischemia have been shown to protect the myocardium and improve functional recovery on reperfusion. In this study we evaluated if cardioprotection can be accomplished by inhibiting fatty acid uptake, which would be expected to increase glycolytic metabolism. METHODS: Diisothiocyanostilbene sulfonic acid (DIDS), commonly used to inhibit Band-3 mediated anion exchanger, and has also been demonstrated to inhibit fatty acid transport in adipocytes, was used to inhibit fatty acid uptake prior to ischemia. Isolated rat hearts were perfused with buffer containing 5 mM glucose, 70 mU/l insulin, 0.4 mM palmitate, and 0.4 mM albumin, paced at 300 beats/min, and subjected to 50 min of low-flow ischemia followed by 60 min of reperfusion. RESULTS: Ischemic injury, as assessed by creatine kinase release, was diminished in hearts perfused with DIDS (334+/-72 in DIDS vs. 565+/-314 IU/g dry wt in controls, P<0.04). Increases in LVEDP during ischemia were attenuated (8+/-3 mmHg in DIDS vs. 15+/-18 mmHg in controls, P<0.03) and the % recovery of LV function with reperfusion was enhanced in DIDS-treated hearts (78+/-10% of baseline in DIDS vs. 62+/-19% of baseline in controls, P<0.04). These beneficial effects of DIDS were associated with increased glucose metabolism and ATP content during ischemia and reperfusion. Furthermore, treatment with DIDS lowered the accumulation of long chain acyl carnitines. CONCLUSIONS: This study demonstrates that DIDS protects ischemic myocardium, and is associated with inhibition of fatty acid uptake, improved glucose metabolism, and enhanced functional recovery on reperfusion. The data presented here suggest a potential role for therapeutic agents that lower fatty acid uptake as a metabolic adjunct in the treatment of myocardial ischemia.  相似文献   

18.
The effects of ischemia on metabolism and reperfusion arrhythmias   总被引:1,自引:0,他引:1  
In attempts to determine the mechanism(s) underlying reflow rhythm disturbances, we have studied the relationship between extent of coronary flow impairment and incidence of reperfusion arrhythmias. In isolated guinea pig hearts perfused with pyruvate (10 mmol/l) and glucose (0.5 mmol/l), coronary flow was reduced to different extents (18, 11, 6, 1, and 0.5%). Following 10 minutes of ischemia, reflow arrhythmias were quantitated with computer-aided statistical determination of rate-independent variations in beat intervals. The results (19 +/- 1, 13 +/- 5, 22 +/- 4, 8 +/- 3 and 6 +/- 1, n = 6, Rhythm Disturbance Units respectively) revealed that rhythm disturbances were more serious after less severe ischemia than after more severe ischemia. To investigate this "paradoxical" observation, we compared the metabolic changes during ischemia and the severity of subsequent reflow arrhythmias. Electrical instability during reperfusion was not related to accumulation of lactate, increase in cyclic AMP or decline in energy status. These were at a maximum in the severely ischemic myocardium. The reduced incidence of arrhythmias following severe (1% and 0.5% flow) as opposed to moderate ischemia, however, may have been associated with a major increase in glycogenolysis (from 1.2 to 7.4 and 7.6 mumol glucose equivalents/min per g dry weight).  相似文献   

19.
The euglycaemic hyperinsulaemic clamp technique in conscious unrestrained rats was used to compile insulin dose response curves of glucose metabolism in the heart in vivo. An estimate of heart glucose uptake (Rg') was obtained using [3H]-2-deoxyglucose and glucose disposal was examined by measuring cardiac glycogen content. Elevation of insulin from 29 to 54 mU/l resulted in a significant increase in Rg' in heart from 41 +/- 6 to 77 +/- 4 mumol/100 g/min (P less than 0.01) with no effect on glycogen content. This is consistent with increased glucose oxidation. At 150 mU/l of insulin both Rg' and glycogen synthesis were increased. Glycogen content increased from 18.5 +/- 1.7 mumol/g under basal conditions to 27.9 +/- 1.6 mumol/g with insulin. However, at subsequent insulin doses producing plasma levels exceeding 600 mU/l there was an anomalous reversal of Rg' back to basal levels while glycogen content was significantly elevated (2.4-fold, P less than 0.01). This effect may be related to feedback inhibition of tissue glycogen on glucose transport or to accumulation of tissue metabolites such as glucose-6-phosphate. The dose response curve for insulin stimulated Rg' in heart does not resemble either the whole body glucose utilization curve or that in individual skeletal muscles.  相似文献   

20.
Glucose uptake (Ru) is dependent upon the concentrations of both glucose and insulin. The metabolic clearance rate of glucose (MCRG), has been used as an in vivo measure of insulin action, because it was said to be independent of the prevailing glucose concentration. The validity of this assumption has recently been challenged. In this study, the effect of insulin concentration on the rate of glucose uptake (Ru) and on the MCRG was studied during euglycemia (5.1 +/- 0.3 mmol/L) and moderate hyperglycemia (10.4 +/- 0.5 mmol/L) in 17 experiments on nine normal ambulant volunteers. Stable plasma insulin levels were maintained with fixed infusion rates of insulin (0-300 mU/kg/h) and somatostatin (7.5 micrograms/min). At low insulin concentrations (less than 5 microU/mL) the increase in glucose uptake in response to hyperglycemia was small (5.3 +/- 2.3 mumol/kg/min). In contrast, with insulin levels more than 25 microU/mL, there was a steep rise in glucose uptake with hyperglycemia (55 +/- 3 mumol/kg/min; range: 44-74 mumol/kg/min). The metabolic clearance rate of glucose fell by an average of 32% with hyperglycemia in the studies at the lowest insulin levels (2.2 +/- 0.6 v 1.5 +/- 0.1 mL/kg/min; 0.15 greater than P greater than 0.1). There was no change in the MCRG in the subjects studied at higher insulin levels. It is concluded that (1) low concentrations of insulin are essential for the increase in glucose disposal during hyperglycemia; and (2) provided insulin levels are more than 25 microU/mL and plasma glucose less than 11 mmol/L, MCRG is independent of the plasma glucose concentration and is therefore a valid measure of insulin-mediated glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号