首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was the aim of this study to develop a delivery system providing an improved efficacy of orally administered insulin utilizing a thiolated polymer. 2-Iminothiolane was covalently linked to chitosan. The resulting chitosan-TBA (chitosan-4-thiobutylamidine) conjugate exhibited 453.5+/-64.1 micromol thiol groups per gram polymer. 3.1% of these thiol groups were oxidised. Additionally, the enzyme inhibitors BBI (Bowman-Birk-Inhibitor) and elastatinal were covalently linked to chitosan representing 3.5+/-0.1% and 0.5+/-0.03% of the total weight of the resulting polymer conjugate, respectively. Chitosan-TBA conjugate (5 mg), insulin (2.75 mg), the permeation mediator reduced glutathione (0.75 mg) and the two inhibitor conjugates (in each case 0.75 mg) were compressed to so-called chitosan-TBA-insulin tablets. Control tablets consisted of unmodified chitosan (7.25 mg) and insulin (2.75 mg). Chitosan-TBA-insulin tablets showed a controlled release of insulin over 8 h. In vitro mucoadhesion studies showed that the mucoadhesive/cohesive properties of chitosan were at least 60-fold improved by the immobilisation of thiol groups on the polymer. After oral administration of chitosan-TBA-insulin tablets to non-diabetic conscious rats, the blood glucose level decreased significantly for 24 h corresponding to a pharmacological efficacy of 1.69+/-0.42% (means+/-S.D.; n=6) versus s.c. injection. In contrast, neither control tablets nor insulin given in solution showed a comparable effect. According to these results the combination of chitosan-TBA, chitosan-enzyme-inhibitor conjugates and reduced glutathione seems to represent a promising strategy for the oral application of insulin.  相似文献   

2.
Thiolated polymers (= thiomers) in combination with reduced glutathione (GSH) were shown to improve the uptake of hydrophilic macromolecules from the GI tract. The mechanism responsible for this permeation enhancing effect seems to be based on the thiol groups of the polymer. These groups inhibit protein tyrosine phosphatase, being involved in the closing process of tight junctions, via a GSH-mediated mechanism. The strong permeation enhancing effect of various thiomer/GSH systems such as poly(acrylic acid)-cysteine/GSH or chitosan-4-thio-butylamidine (chitosan-TBA)/GSH could be shown via permeation studies on freshly excised intestinal mucosa in Ussing-type chambers. Furthermore, the efficacy of the system was also shown in vivo. By utilizing poly(acrylic acid)-cysteine/GSH as carrier matrix, an absolute oral bioavailability for low molecular weight heparin of 19.9 +/- 9.3% and a pharmacological efficacy--calculated on the basis of the areas under the reduction in serum glucose levels of the oral formulation versus subcutaneous (s.c.) injection-for orally given insulin of 7% could be achieved. The incorporation of salmon calcitonin in chitosan-TBA/GSH led on the other hand to a pharmacological efficacy based on the areas under the reduction in plasma calcium levels of the oral thiomer formulation versus intravenous (i.v.) injection of 1.3%. Because of this high efficacy (i), the possibility to combine thiomer/GSH systems with additional low molecular weight permeation enhancers acting in other ways (ii) and minimal toxicological risks as these polymers are not absorbed from the GI tract (iii), thiolated polymers represent a promising novel tool for the oral administration of hydrophilic macromolecules.  相似文献   

3.
It was the aim of this study to investigate the potential of stomach targeted delivery systems for systemic peptide administration using salmon calcitonin as a model drug. Chitosan was modified by the immobilization of thiol groups utilizing 2-iminothiolane in order to obtain a chitosan-4-thiobutylamidine conjugate (chitosan-TBA). Furthermore, a chitosan-pepstatin A conjugate was synthesized by a carbodiimide mediated linkage of the pepsin inhibitor to the polymer. The protective effect of this novel conjugate for calcitonin towards pepsin was evaluated in vitro. Minitablets (5 mg) were generated by direct compression of calcitonin, chitosan, chitosan-TBA, chitosan-pepstatin A conjugate and glutathione (GSH), respectively (A, 1:0:69:20:10; B, 1:79:0:20:0; C, 1:99:0:0:0). The drug release was investigated in an artificial gastric fluid. Biofeedback studies were performed in rats by determining the decrease in plasma calcium level after oral administration. The novel chitosan-pepstatin A conjugate displayed 291+/-58 nmol inhibitor per gram polymer (mean+/-S.D., n = 5). The chitosan-inhibitor conjugate showed a very strong protective effect for salmon calcitonin towards pepsinic degradation. A controlled drug release was provided by all tested dosage forms-A, B and C. Dosage form B led only to a slight reduction of the plasma calcium level, displaying a pharmacological efficacy versus i.v. injection of 0.41%, while dosage form C did not lead to any significant effect. In contrast, dosage form A led to a decrease in the plasma calcium level of 10% for at least 12 h. The pharmacological efficacy of this formulation was determined to be 1.35%. The study suggests that stomach targeted oral delivery might be a promising novel approach for noninvasive systemic peptide administration.  相似文献   

4.
It was the aim of this study to develop an oral delivery system for the peptide drug antide. The stability of the therapeutic peptide towards gastrointestinal peptidases was evaluated. The therapeutic agent and the permeation mediator glutathione were embedded in the thiolated polymer chitosan-4-thio-butylamidine conjugate (chitosan-TBA conjugate) and compressed to tablets. Drug release studies were performed in the dissolution test apparatus according to the Pharmacopoeia Europea using the paddle method and demineralized water as release medium. In order to avoid mucoadhesion of these delivery systems already in the oral cavity and oesophagus tablets were coated with a triglyceride. These tablets were orally given to pigs (weight: 50+/-2 kg; Edelschwein Pietrain). Moreover, antide was administered intravenously, subcutaneously and orally in solution. Results showed stability of antide towards pepsin, trypsin and chymotrypsin. In contrast, antide was rapidly degraded by elastase. Consequently a stomach-targeted delivery system was designed. Drug release studies demonstrated an almost zero-order controlled release of antide over 8 h. In vivo studies demonstrated a relative bioavailability of 34.4% for the subcutaneous administration. Oral administration of antide in solution led to no detectable concentrations of the drug in plasma at all. In contrast, administering antide being incorporated in the thiolated polymer resulted in a significant uptake of the peptide. The absolute and relative bioavailability was determined to be 1.1% and 3.2%, respectively.  相似文献   

5.
The purpose of the present study was to prepare and characterize a novel mucoadhesive microparticulate drug delivery system. Microparticles were prepared by the solvent evaporation emulsion technique using a poly(acrylic acid)-cysteine conjugate of an average molecular mass of 450 kDa with an amount of 308 micromol thiol groups per gram polymer. The cross-linking of thiol groups via the formation of disulfide bonds during this preparation process was pH-controlled. The resulting microparticles were characterized with regard to the degree of cross-linking and the amount of remaining free thiol groups, shape, size distribution and stability. Furthermore, the drug release behaviour using bromelain as model drug and the mucoadhesive properties were evaluated.Results demonstrated that the higher the pH of the aqueous phase was during the preparation process, the higher was the degree of cross-linking within the particles. However, even at pH 9, 8.9+/-2.2% of free thiol groups remained on the microparticles. Particles were of spherical and partially porous structure and had a main size in the range of 20-60 microm with a center at 35 microm. Because of the formation of disulfide bonds within the particles, they did not disintegrate under physiological conditions within 48 h. In addition, a controlled drug release of bromelain was achieved. Due to the immobilization of thiol groups on poly(acrylic acid), the mucoadhesive properties of the corresponding microparticles were improved threefold.These features should render poly(acrylic acid)-cysteine conjugate microparticles useful as drug delivery system providing a prolonged residence time on mucosal epithelia.  相似文献   

6.
Over the last decade, there has been a particular interest in delivering drugs, especially peptides and proteins via the buccal route. It provides direct entry into the systemic circulation thus avoiding the hepatic first-pass effect and degradation in the gastrointestinal tract, ease of administration, and the ability to terminate delivery when required. However membrane permeation can be a limiting factor for many drugs administered via the buccal route, and the epithelium that lines the oral mucosa is a very effective barrier to the absorption of drugs. In order to deliver broader classes of drugs across the buccal mucosa, reversible methods of reducing the barrier potential of this tissue must be employed. This requisite has fostered the study of penetration enhancers that will safely alter the permeability restrictions of the buccal mucosa. It has been shown that buccal penetration can be improved by using various classes of transmucosal and transdermal penetration enhancers such as bile salts, surfactants, fatty acids and derivatives, chelators, cyclodextrins and chitosan. Among these chemicals used for the drug permeation enhancement, bile salts are most common. The first part of this paper focuses on work related to the elucidation of mechanisms of action of bile salts in buccal permeation enhancement of various drugs and mucosal irritation. In the second part, results showing the enhancing effect of chitosan on buccal permeation of hydrocortisone, a commonly used topical oral anti-inflammatory agent, and transforming growth factor beta (TGF-beta), which is a bioactive peptide to which the oral mucosa is relatively impermeable is presented.  相似文献   

7.
We have designed a new mucoadhesive drug delivery formulation based on H-bonded complexes of poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMAA) with the poly(ethylene glycol) (PEG), of a (PEG)-drug conjugate. The PEGylated prodrugs are synthesized with degradable PEG-anhydride-drug bonds for eventual delivery of free drug from the formulation. In this work we have used indomethacin as the model drug which is PEGylated via anhydride bonds to the PEG. The complexes are designed first to dissociate as the formulation swells in contact with mucosal surfaces at pH 7.4, releasing PEG-indomethacin, which then hydrolyses to release free drug and free PEG. We found that as MW of PAA increases, the dissociation rate of the complex decreases, which results in decreased rate of release of the drug. On the other hand, the drug release from PEG-indomethacin alone and from solid mixture of PEG-indomethacin+PAA was much faster than that from the H-bonded complexes. Due to the differences in the thermal stability, PMAA complex exhibited slightly faster drug release than that of the PAA complex of comparable MW. These H-bonded complexes of degradable PEGylated drugs with bioadhesive polymers should be useful for mucosal drug delivery.  相似文献   

8.
Multi-stimulation responsive nanomaterial-based drug delivery systems promise enhanced therapeutic efficacy in cancer therapy. This work examines a smart pH/GSH dual-responsive drug delivery system by using dialdehyde dextrin (DAD) end-capped mesoporous silica nanoparticles (MSNs). Specifically, DAD was applied as a “gatekeeper polymer” agent to seal drug loads inside the mesoporous of MSNs via a pH-sensitive Schiff bond, whereas the formed DAD polymer shells were further cross-linked by GSH-sensitive disulfide bonds. Results revealed that the DAD gatekeeper polymer could tightly close the mesopores of MSNs to control premature drug release under physiological conditions and respond to acidic and GSH conditions to release the trapped drugs. Significantly, fluorescent microscopy observation and cytotoxicity studies indicated that drug-loaded nanoparticles could be rapidly internalized through a passive targeting effect to inhibit cancer growth. Taken together, these polymer-modified pH/GSH dual-responsive MSNs could be used as promising candidates for “on-demand” anticancer drug delivery applications.

A smart pH/GSH dual-responsive drug delivery system by using DAD as a “gatekeeper polymer” to end-cap MSNs via pH-sensitive Schiff bond, whereas DAD polymer shell were cross-linked by GSH-sensitive disulfide bond.  相似文献   

9.
Chitosan is a biocompatible polysaccharide of natural origin that can act as a permeation enhancer. In this study, we used an integral in vitro/in vivo correlation approach to: a) investigate polysaccharide-mediated absorption kinetics of the peptide drug octreotide across mammalian airway epithelium, b) assess formulation toxicity, c) correlate the mechanism of permeation enhancement. The 20% and 60% N-trimethylated chitosan derivatives (TMC20 and TMC60) were synthesized by alkaline methylation using chitosan as starting material. Octreotide was administered in control buffers or in 1.5% (w/v) gel-phase formulations of pH 5.5 for chitosan and pH 7.4 for TMCs. In vitro, reconstituted Calu-3 cell monolayers were used for trans-epithelial electrical resistance (TEER), transport and cytotoxicity assays. Intratracheal instillation in rats was used to determine octreotide kinetics and formulation toxicity in vivo. Chitosan, TMC20 and TMC60 decreased TEER significantly and enhanced octreotide permeation in vitro by 21-, 16- and 30-fold. In vivo, sustained release properties of the formulations were observed and the bio-availability was enhanced by 2.4-, 2.5- and 3.9-fold, respectively. Interestingly, we found a linear in vitro/in vivo correlation between calculated absorption rates (R2=0.93), suggesting that the permeation enhancement by polysaccharides, both in vitro and in vivo, proceeds via an analogous mechanism. Cell viability and histology studies showed that the TMCs are safer than chitosan and that Calu-3 cell monolayers are a valuable model for predicting paracellular transport kinetics in airway epithelia. Additionally, cationic polysaccharides are promising enhancers for peptide drug absorption with prospect for sustained-release formulations.  相似文献   

10.
In vitro iontophoretic transdermal delivery (ITD) of a tripeptide, enalaprilat (EP) and a non-peptide, cromolyn sodium (CS), across frozen hairless guinea pig (HGP) skin were investigated. Parameters for optimization of ITD included the influence of ionic strength (μ), buffer type and size, drug loading in the donor and the effect of pH. Drug permeation into the receptor compartment was monitored using HPLC assay methods developed for the study. An optimum μ of 6.66 mM in acetate buffer was found necessary for efficient ITD of CS. An exponential decrease in the flux of CS was observed with an increasing μ. Buffer ions larger than acetate ions inhibited the transport of CS ions. With an increase in the donor concentration of CS, a hyperbolic relationship for the increase in flux was observed. For EP, permeation was not detectable when μ was increased to greater than 31 mM in phosphate-buffered solution. With an increase in pH above the pKa1 (3.55) for EP, a linear decrease in flux was observed. Higher drug loading of EP in the donor compartment provided better permeation. Effect of freezing of HGP skin on the iontophoretic delivery of EP and CS was also evaluated. Flux values for either of the drugs studied were similar when frozen or fresh skins were used. Reversibility studies indicated that no gross current induced permeation changes occurred with the HGP skin. Passive permeation of either of the drugs investigated was negligible.  相似文献   

11.
Aminated gelatin microspheres (AGMS) was investigated as a nasal drug delivery system for peptide drugs. The in vitro drug release from microspheres was evaluated using a fluorescein-labeled insulin (RITC-insulin) and FITC-dextran with a molecular weight of 4.4 kDa (FD-4) as model drugs. RITC-insulin release from AGMS was significantly slower than from native gelatin microspheres (GMS), with a cumulate release of 18.4% and 32.4% within 30 min, and 56.9% and 75.1% within 8 h respectively. However, the release of FD-4 from both AGMS and GMS was quite rapid and no difference was observed for the two microspheres. The electrostatic interactions between the model drugs and the microspheres were supposed to be the main factor that controlled the release behavior. The absorption enhancing effect was estimated by measuring the changes of plasma glucose concentrations of healthy rats following intranasal administration of insulin-incorporated microspheres in both suspension and dry powder forms. AGMS could significantly increase the nasal absorption of insulin in rats when administered in a dry powder formulation, but no significant hypoglycemic effect was observed when given in suspensions. One of the mechanisms for the increased insulin absorption was attributed to the hydrogel nature of the microspheres that could absorb water from the nasal mucosa and thus resulted in a temporarily dehydration of the epithelium membrane and opening of the tight junctions. The positive charge of the AGMS has also evidently contributed to the absorption enhancing effect. In addition, the mucoadhesive properties of AGMS might also have played a role to the total effect. AGMS might be a new candidate carrier for the nasal delivery of peptide drugs.  相似文献   

12.
Rapid mucociliary clearance of intranasally administered drugs is often a key factor in determining the bioavailability of such therapeutic agents. The use of mucoadhesive microparticles provide a potential strategy for improving retention of drugs within the nasal cavity, and thereby improve the resultant pharmacokinetic profile. This study describes the comparison of a number of novel, potentially mucoadhesive microspheres, prepared by solvent evaporation, composed of hyaluronic acid (HA), chitosan glutamate (CH) and a combination of the two with microcapsules of HA and gelatin prepared by complex coacervation. The microspheres had a mean particle size of 19.91+/-1.57 microm (HA), 28.60+/-1.34 microm (HA/CH), 29.47+/-3.58 microm (CH). The incorporation of a model drug, gentamicin sulphate (%) was 46.90+/-0.53 (HA), 28.04+/-1.21 (HA/CH) and 13.32+/-1.04 (CH). The in vitro release profiles of microsphere formulations prepared by solvent evaporation were determined. The release of gentamicin from HA and HA/CH was 50% longer than CH and was best modelled as a release from a matrix. The degree of mucoadhesion of each formulation was investigated by determining the mucociliary transport rate (MTR) of the microparticles across an isolated frog palate. Acacia/gelatin microcapsules were used as a positive control. The rank order of mucoadhesion for the microspheres and the microparticles was HA=HA/CH>CH>HA/gelatin>CHins. The entrapment of gentamicin did not affect the mucoadhesive properties (P>0.05, Mann--Whitney U-test). The combination of HA with chitosan may afford additional advantages in combining the mucoadhesive potential of HA with the penetration enhancing effect of chitosan.  相似文献   

13.
Retinal drug delivery is a challenging area in the field of ophthalmic drug delivery. An ideal drug delivery system for the retina and vitreous humor has not yet been found, despite extensive research. Drug delivery to retinal tissue and vitreous via systemic administration is constrained due to the presence of a blood-retinal barrier (BRB) which regulates permeation of substances from blood to the retina. Although intravitreal administration overcomes this barrier, it is associated with several other problems. In recent years, transporter targeted drug delivery has become a clinically significant drug delivery approach for enhancing the bioavailabilities of drug molecules with poor membrane permeability characteristics. Various nutrient transporters, which include peptide, amino acid, folate, monocarboxylic acid transporters and so on, have been reported to be expressed on the retina and BRB. Prodrug derivatisation of drug molecules which target these transporters could result in enhanced ocular bioavailability. Highlighted in this review are various strategies currently employed for drug delivery to the posterior chamber, and novel opportunities that can be exploited to enhance ocular bioavailability of drugs.  相似文献   

14.
A variety of delivery systems have been devised, in recent years, to improve the oral bioavailability of drugs including enterically coated tablets, capsules, particles, and liposomes. Microfabrication technology may offer some potential advantages over conventional drug delivery technologies. This technology, combined with appropriate surface chemistry, may permit the highly localized and unidirectional release of drugs, permeation enhancers, and/or promoters. In this study, we demonstrate the fabrication of prototype reservoir-containing microdevices and a surface chemistry protocol that can be used to bind lectin via avidin-biotin interactions to these micromachined drug delivery vehicles. The use of microfabrication allows one to tailor the size, shape, reservoir volume, and surface characteristics of the drug delivery vehicle. In vitro studies show enhanced bioadhesion of these lectin conjugated silicon microdevices. This approach may be used to improve the absorption of pharmacologically active biopolymers such as peptides, proteins and oligonucleotides into circulation at targeted sites in the GI system via the creation of a robust hybrid organic/inorganic delivery system. This paper describes one of the first applications of microfabrication to oral drug delivery.  相似文献   

15.
Absorption enhancers in pulmonary protein delivery.   总被引:7,自引:0,他引:7  
Extensive research efforts have been directed towards the systemic administration of therapeutic proteins and poorly absorbed macromolecules via various nontraditional, injection-free administration sites such as the lung. As a portal for noninvasive delivery, pulmonary administration possesses several attractive features including a large surface area for drug absorption. Nevertheless, achieving substantial bioavailability of proteins and macromolecules by this route has remained a challenge, chiefly due to poor absorption across the epithelium. The lungs are relatively impermeable to most drugs when formulated without an absorption enhancer/promoter. In an attempt to circumvent this problem, many novel absorption promoters have been tested for enhancing the systemic availability of drugs from the lungs. Various protease inhibitors, surfactants, lipids, polymers and agents from other classes have been tested for their efficacy in improving the systemic availability of protein and macromolecular drugs after pulmonary administration. The purpose of this article is to provide the reader with a summary of recent advances made in the field of pulmonary protein delivery utilizing absorption enhancers. This report reviews the various agents used to increase the bioavailability of these drugs from the lungs, their mechanisms of action and effectiveness, and their potential for toxicity.  相似文献   

16.
This study evaluated and characterized the use of chitosan gels as matrices for electrically modulated drug delivery. Chitosan gels were prepared by acetylation of chitosan and subsequently hydrated to facilitate further studies. After determining the degree of deacetylation, hydrated and unhydrated gel formulations were characterized for their microviscosity and compression strength. In the electrification studies, gel mass variation, surface pH changes, and later, release-time profiles for neutral (hydrocortisone), anionic (benzoic acid), and cationic (lidocaine hydrochloride) drug molecules from hydrated chitosan gels were monitored in response to different milliamperages of current as a function of time. Hydrated gels had very similar microviscosity while exhibiting differences in the gel strength, results which are not inconsistent as they pertain to different aspects of the gel. The cumulative gel mass loss and rate of gel mass loss increased with an increase in the milliamperage (mA) of the applied current. Gel syneresis - principally involving electroosmosis and gel collapse - was pronounced, particularly at higher mAs and for chitosan gels with lower degrees of acetylation. The surface pH values of the gels were lower at the anode and higher at the cathode, in accordance with reports in the literature. The release of the model drugs from the gel matrix was in the order benzoic acid>hydrocortisone>lidocaine, which is consistent with the electrokinetically competing forces that are involved in these gels. Adequate characterization of electrical effects on formulation matrices, such as chitosan gels, is critical to the development of effective and reliable electrically modulated drug delivery systems.  相似文献   

17.
Diblock PEG-p(CL-co-TMC) [methoxypoly(ethylene glycol)-poly(caprolactone/trimethylene carbonate)] copolymers form micelles spontaneously and significantly increase the solubility of poorly water-soluble drugs. The aim of this work was to assess these diblock copolymers as oral drug delivery systems in both in vitro and in vivo experiments using risperidone as a model drug. The permeation of risperidone through Caco-2 cell monolayers showed that the apparent permeation coefficient (Papp) was slightly reduced when risperidone was formulated with the copolymer. Based on the higher apparent drug solubility, the copolymer increased drug flux or the total amount of drug which crossed the Caco-2 monolayers. The Papp of the micelle formulation was higher at 37 degrees C than at 4 degrees C. After oral administration to rats, the pharmacokinetic parameters and the pharmacological effect were evaluated. Time courses of receptor occupancy by risperidone after oral administration were similar when risperidone was encapsulated in PEG-p(CL-co-TMC) micelles or solubilized in an aqueous tartaric acid vehicle. The areas under the curve (AUC) were not significantly different although the maximal concentration (Cmax) was twofold lower with the copolymer. The polymeric micelles of PEG-p(CL-co-TMC) seem to be a good candidate for oral drug delivery of poorly soluble drugs.  相似文献   

18.
The vagina as a route for systemic drug delivery.   总被引:4,自引:0,他引:4  
Exhaustive efforts have been made toward the administration of drugs, via alternative routes, that are poorly absorbed after the oral administration. The vagina as a route of drug delivery has been known since ancient times. In recent years, the vaginal route has been rediscovered as a potential route for systemic delivery of peptides and other therapeutically important macromolecules. However, successful delivery of drugs through the vagina remains a challenge, primarily due to the poor absorption across the vaginal epithelium. The rate and extent of drug absorption after intravaginal administration may vary depending on formulation factors, vaginal physiology, age of the patient and menstrual cycle. Suppositories, creams, gels, tablets and vaginal rings are commonly used vaginal drug delivery systems. The purpose of this communication is to provide the reader with a summary of advances made in the field of vaginal drug delivery. This report, therefore, summarizes various vaginal drug delivery systems with an introduction to vaginal physiology and factors affecting drug absorption from the vaginal route.  相似文献   

19.
A novel non-viral gene vector based on poly[poly(ethylene glycol) methacrylate] (PMPEG) and l-glutathione (GSH) grafted chitosan (CS) has been fabricated. First, well-defined brush-like PMPEG living polymers with dithioester residues were prepared by the reversible addition-fragmentation chain transfer (RAFT) polymerization and grafted onto the allylchitosan via radical coupling method. Then, the tripeptide GSH was introduced onto the end of PMPEG chain to give a CS-PMPEG-GSH conjugate. In comparison with pristine chitosan, CS-PMPEG-GSH conjugate could not only condense plasmid DNA (pDNA) and prevent the condensed CS-PMPEG-GSH/pDNA nanoparticle self-aggregation, but also increase the binding ability to cell membrane efficiently and improve decondensed ability of pDNA from the nanoparticles in cytoplasm which thus has resulted in the higher transfection efficiency in mouse embryonic fibroblast cells (NIH3T3). In addition, cytotoxicity assays showed that the conjugate is less cytotoxic than CS, and still retain the cationic polyelectrolyte characteristic as chitosan. These results indicate that the non-viral vector is a promising candidate for gene therapy in clinical application.  相似文献   

20.
Chitosan-based gastrointestinal delivery systems.   总被引:21,自引:0,他引:21  
Chitosan, a natural polymer obtained by alkaline deacetylation of chitin, is non-toxic, biocompatible, and biodegradable. These properties make chitosan a good candidate for the development of conventional and novel gastrointestinal (GI) drug and gene delivery systems. The objective of this review is to summarize the recent applications of chitosan in oral and/or buccal delivery, stomach-specific drug delivery, intestinal delivery, and colon-specific drug delivery. The use of chitosan for targeting of drugs to each of these sites in the GI tract is illustrated by examples supported by in vivo studies. Chitosan appears to be a promising material for GI drug and gene delivery applications as many derivatives and formulations are being examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号