首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was carried out to determine the ultrastructure and origin of previously described neurotensin-like immunoreactive (NT-LI) nerve fibres in the wall of the carotid sinus of the guinea pig. In our degeneration experiments, these NT-LI axons were unaffected by surgical sympathectomy but disappeared in response to transection of the carotid sinus nerve, thus suggesting a sensory origin. This assumption could be supported by combined retrograde tracing and immunohistochemistry. Primary afferent neurons of the sensory glossopharyngeal (petrosal) ganglion projecting to the carotid sinus were identified by injecting the retrograde fluorescent tracer, Fluoro-Gold, into the sinus wall, and some of these neurons displayed NT-LI. Within the carotid sinus, the terminals of these NT-LI sensory neurons exhibited ultrastructural features characteristic of baroreceptor endings, i.e. axonal swellings filled with mitochondria and closely associated to elastin. However, many endings also fulfilling the ultrastructural criteria for baroreceptors were devoid of immunolabelling. Thus, we conclude that the NT-LI terminals constitute a subgroup rather than the entire population of baroreceptor endings within the guinea pig carotid sinus. With respect to the established pharmacological effects of NT in guinea pig, we propose an involvement of NT-LI fibres in the modulation of baroreception at the peripheral level.  相似文献   

2.
The petrosal ganglion innervates carotid body chemoreceptors through the carotid (sinus) nerve. These primary sensory neurons are activated by transmitters released from receptor (glomus) cells, acetylcholine (ACh) having been proposed as one of the transmitters involved in this process. Since the perikarya of primary sensory neurons share several properties with peripheral sensory endings, we studied the electrical responses of the carotid nerve and glossopharyngeal branch to ACh locally applied to the cat petrosal ganglion superfused in vitro. Ganglionar applications of AChCl (1 μg−1 mg) generated bursts of action potentials conducted along the carotid nerve, while only a few spikes were exceptionally recorded from the glossopharyngeal branch in response to the largest doses. Carotid nerve responses to ACh were dose-dependent, the higher doses inducing transient desensitization. Application of nicotine to the petrosal ganglion also evoked dose-dependent excitatory responses in the carotid nerve. Responses to ACh were reversibly antagonized by adding hexamethonium to the superfusate, more intense and prolonged block of ACh responses being produced by mecamylamine. Ganglionar applications of γ-amino butyric acid and serotonin, in doses of up to 5 mg, did not induce firing of action potentials in any of the branches of the glossopharyngeal nerve. Our results indicate that petrosal ganglion neurons projecting through the carotid nerve are selectively activated by ACh acting on nicotinic ACh receptors located in the somata of these neurons. Thus, cholinosensitivity would be shared by the membranes of peripheral endings and perikarya of primary sensory neurons involved in arterial chemoreception.  相似文献   

3.
We have recently reported that application of acetylcholine (ACh) or nicotine to the petrosal ganglion—the sensory ganglion of the glossopharyngeal nerve—elicits a burst of discharges in the carotid nerve branch, innervating the carotid body and sinus, but not in the glossopharyngeal branch, innervating the tongue and pharynx. Thus, the perikarya of sensory neurons for the carotid bifurcation exhibit selective cholinosensitivity. Since dopamine (DA) modulates carotid nerve chemosensory activity, we searched for the presence of DA sensitivity at the perikarya of these neurons in the cat petrosal ganglion superfused in vitro. Applications of DA in doses of up to 5 mg to the ganglion did not modify the rate of spontaneous discharges in the carotid nerve. However, if DA was applied 30 s before ACh injections, ACh-evoked reactions were modified: low doses of DA enhanced the subsequent responses to ACh, while high doses of DA depressed the responses to ACh. This depressant effect of DA on ACh responses was partially antagonized by adding spiroperone to the superfusate. Our results show that the response to ACh of petrosal ganglion neurons projecting through the carotid nerve is modulated by DA acting on D2 receptors located in the somata of these neurons. Thus, dopaminergic modulation of cholinosensitivity could be shared also by the membranes of peripheral endings and perikarya of primary sensory neurons involved in arterial chemoreception.  相似文献   

4.
Following injection of retrograde tracer to one genitofemoral nerve of male rats, motoneurones and dorsal root ganglion cells of segmental levels L1/L2 were labelled ipsilaterally. Many labelled motoneurones were calcitonin gene-related peptide- (CGRP) immunoreactive. In the ganglia, a proportion of the labelled cells were CGRP-, tachykinin- or galanin-immunoreactive (10%:6%:53% respectively). In comparison with ganglia of the contralateral side, galanin-immunoreactive cells were significantly increased in the ipsilateral ganglia. Unilateral genitofemoral nerve section induced a loss of CGRP- or tachykinin- and an increase of galanin-immunoreactive cells in the ipsilateral L1/L2 ganglia. In the ipsilateral L1/L2 dorsal horn, CGRP and tachykinin, but not galanin, immunoreactivity was reduced. In the cremaster muscle and scrotal skin of either side galanin-immunoreactive fibres were not visible and CGRP- and tachykinin-immunoreactive fibres were depleted in the ipsilateral side. Capsaicin induced a loss of CGRP- and tachykinin-immunoreactive ganglion cells and of CGRP, tachykinin or galanin immunoreactivity from the dorsal horn. In the scrotal skin, CGRP- and tachykinin-immunoreactive fibres were depleted. By contrast in the muscle, a few CGRP-immunoreactive fibres persisted. The data demonstrate that (i) the genitofemoral nerve originates at segmental levels L1/L2; (ii) CGRP- and tachykinin-immunoreactive sensory and CGRP-immunoreactive motor neurones project to the cremaster muscle and scrotal skin; and (iii) nerve pertubation induces an increase of galanin-immunoreactive sensory neurones, the significance of which remains to be elucidated.  相似文献   

5.
Neuropeptide Y (NPY)- like immunoreactive nerve cell bodies and nerve fibres have been studied in normal and colchicine-treated ganglia of the caudal lumbar sympathetic chain (LSC) and the inferior mesenteric ganglion (IMG) of the guinea pig. The great majority of noradrenergic ganglion cells in the LSC (defined as containing tyrosine hydroxylase immunoreactivity), but less than 20% of those in the IMG, were NPY-positive. These proportions correspond well to the proportions of neurones that have been found to discharge phasically in electrophysiological experiments on the same ganglia. As noradrenergic terminals innervating blood vessels contain NPY, the data are consistent with the idea that phasic discharge is a characteristic of vasoconstrictor neurones.  相似文献   

6.
The effects of the GABAB-selective agonist baclofen were studied on guinea pig nodose ganglion neurones using grease gap and intracellular recording techniques, and on peripheral mechanosensitive endings in the guinea pig oesophagus and stomach with extracellular recordings. GABA dose-dependently reduced the amplitude of the compound action potential of C-type neurones (C spikes, EC50 = 30.9 microM), which was prevented by the GABAA antagonist bicuculline (10 microM). The GABAB agonist baclofen (1-300 microM) did not produce any significant effect on the amplitude of C spikes. In microelectrode studies, baclofen (100 microM) evoked hyperpolarisation (by 2.53 +/- 0.51 mV, n = 6, N = 5) in a subset of nodose neurones (6 out of 26, N = 18). In seven out of eight neurones (N = 8) with a slow after-hyperpolarisation following action potentials, baclofen significantly inhibited its amplitude by 19 +/- 4% (n = 7, p < 0.05). GABA (100 microM) evoked a depolarisation of 9.3 +/- 2.4 mV (10 nodose neurones, N = 9, p < 0.05) associated with a decrease in input impedance of 49 +/- 12% (N = 4, p < 0.05). Baclofen (100-200 microM) did not affect either spontaneous or stretch-evoked firing of distension-sensitive vagal mechanoreceptors of the guinea pig oesophagus and stomach but did inhibit mechanoreceptors in the ferret oesophagus. Antibodies to GABAB receptor 1a splice variants labelled most of the neurones and numerous fibres in the guinea pig nodose ganglion while antibodies to GABAB receptor 1b splice variants stained only nerve cell bodies. There were numerous nerve fibres showing GABAB receptor 1a- and 1b-like immunoreactivity in the myenteric plexus in the guinea pig oesophagus and stomach but not in anterogradely labelled extrinsic vagal nerve fibres. The result indicates that most guinea pig C-type nodose ganglion neurones have GABAB receptors on their cell bodies but their density on distension-sensitive peripheral endings is too low to allow modulation of mechanotransduction. There is a significant species-dependent difference in the expression of GABAB receptors on peripheral vagal mechanosensitive endings.  相似文献   

7.
The occurrence, distribution, and origin of immunoreactive calcitonin gene-related peptide (CGRP) in nerves of rat, guinea pig, cat, and monkey eyes were investigated by immunocytochemistry, radioimmunoassay, and chromatography. A rich network of CGRP-immunoreactive nerve fibres was noted in the anterior uvea, which was widely distributed in both dilator and constrictor pupillae muscles and extended to the ciliary body and uveal blood vessels. Numerous CGRP-immunoreactive neuronal cells were present in the trigeminal ganglion. The extractable CGRP was 8.6 +/- 1.8 pmoles/gm of tissue in the iris and 44.0 +/- 8.1 pmoles/gm in the trigeminal ganglion. Following damage to the Gasserian ganglion a marked decrease of CGRP immunoreactivity was observed in the anterior uvea (control 11.3 +/- 1.6 pmoles/gm; operated 1.4 +/- 0.1 pmoles/gm) confirming the origin of the immunoreactive fibres from trigeminal primary sensory neurons. The sensory nature of the CGRP-immunoreactive fibres was substantiated by the depletion of CGRP immunoreactivity observed after treatment with capsaicin, which is known to cause selective degeneration of sensory neurons. Comparative studies on the distribution and colocalisation of CGRP and the putative sensory neurotransmitter substance P revealed a closely parallel distribution of the two peptides in certain regions of the uvea and their coexistence in a subpopulation of trigeminal primary sensory neurons. This study suggests that the sensory nervous system in the eye is more heterogeneous in terms of its putative neurotransmitters than previously indicated.  相似文献   

8.
The petrosal ganglion (PG) is entirely constituted by the perikarya of primary sensory neurons, part of which innervates the carotid body via the carotid sinus nerve (CSN). Application of acetylcholine (ACh) or nicotine (Nic) as well as adenosine 5'-triphosphate (ATP) to the PG in vitro increases the frequency of CSN discharges, an effect that is modified by the concomitant application of dopamine (DA). Since a population of PG neurons expresses tyrosine hydroxylase, and DA is released from the cat carotid body in response to electrical stimulation of C-fibers in the CSN, it is possible that DA may be released from the perikarya of PG neurons. Therefore, we studied whether ACh or Nic, ATP and high KCl could induce DA release from PG neurons in culture. Petrosal ganglia were excised from pentobarbitone-anesthetized adult cats, dissociated and their neurons maintained in culture for 7-21 days. Catecholamine release was measured by amperometry via carbon-fiber microelectrodes. In response to KCl, Nic, ACh or ATP application, about 25% of neurons exhibited electrochemical signals compatible with DA release. This percentage increased to 41% after loading the neurons with exogenous DA. The present results suggest that DA release may be induced from the perikarya of a population of PG neurons.  相似文献   

9.
The sensory apparatus of the extraocular muscles attains special interest because of the great variation among different species with respect to the proprioceptors. The sensory innervation of the guinea pig extraocular muscles, lacking both muscle spindles and tendon organs, was investigated with a fluorescence double-labelling method. Primary sensory perikarya were assessed by postmortem application of 1,1′-dioctadecyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate (Di-I) to the extraocular muscle nerves. Traced neurons were found in the ipsilateral ophthalmic part of the trigeminal ganglion. This is in line with findings in other species. Calcitonin gene-related peptide (CGRP) was detected immunohistochemically within the trigeminal ganglion. No somatotopic organization was observed for CGRP-like immunoreactive perikarya. Small (maximal diameter below 30 μm), medium (maximal diameter between 30 and 50 μm), and large (maximal diameter larger than 50 μm) trigeminal ganglion cells were found among the primary afferent perikarya from extraocular muscles. Among CGRP-like immunoreactive cells, only small and medium cells were observed. Double-labelling experiments indicated the CGRP content of primary afferents of the guinea pig extraocular muscles. The relationship to former morphological categories of ganglion cells is discussed. Primary afferent neurons with CGRP-like immunoreactivity might have efferent functions and might also be involved in inflammatory processes of extraocular muscles. J. Comp. Neuol. 380:16–22, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Immunohistochemical studies of sympathetic ganglia have indicated that the normal rat superior cervical ganglion contains both SP-IR and CGRP-IR fibres, and CGRP- and SP-immunoreactivity coexist in some fibres. In rat sympathetic ganglia decentralization by preganglionic denervation leads to intraganglionic increase of peptidergic fibres immunoreactive (IR) for substance P (SP) and calcitonin gene-related peptide. We explored the sources of SP- and CGRP-IR fibres in normal and in chronically decentralized rat SCGs.The distribution of immunoreactivities for CGRP and SP was determined in SCGs of normal rats and of rats following preganglionic denervation followed by sensory denervation. Ganglia were studied after short-term (2–5 days) sensory denervation, and long-term (7–16 months) sympathetic denervation followed by short-term (2 days) sensory denervation. To explore for the production of SP and CGRP by intrinsic neurones within the ganglion, normal and chronically decentralized SCGs were examined following pretreatment by local in vivo application of colchicine. Normal and chronically decentralized ganglia were also injected with fluorescent tracer Fluorogold for retrograde tracing of extrinsic fibres back to their neurones of origin.The observations suggest that in normal SCG in the rat the SP-IR and CGRP-IR nerve fibres are derived via direct links from vagus and glossopharyngeal nerves and the cervical plexus, or from nerve fibres running along the cervical sympathetic trunk, and the external carotid and the internal carotid nerves.Sensory nerve inputs to the rat SCG following decentralization may contribute to the low levels of ganglionic activation observable in the autonomic failure of multiple system atrophy in man.  相似文献   

11.
The origin, course and distribution of pre- and postganglionic neurons of the pterygopalatine ganglion (PPG) in the rat were studied using acetylcholinesterase staining, wheat germ agglutinin coupled to horseradish peroxidase (WGA-HRP) histochemistry and autoradiography. These methods were used in a selected and planned fashion to reveal details concerning the innervation of the lacrimal gland and portions of the eye. The PPG in rats consists of a rostral triangular portion and additional perikarya surrounding the distal part of the major petrosal nerve. Fibres from the superior cervical ganglion (SCG) reach the PPG via the inferior petrosal sinus. Application of WGA-HRP was made after transections: (1) rostral to the PPG; and (2) caudal to the PPG. The first of these applications labelled mainly fibres in the PPG; the second application labelled preganglionic parasympathetic brainstem neurons dorsolateral to the facial nucleus (i.e. the lacrimal nucleus), rostral cells in the SCG and trigeminal sensory fibres. WGA-HRP injections of the lacrimal gland, the conjunctiva and the anterior chamber of the eye all labelled cells in different parts of the PPG. This means that the PPG contains sensory and sympathetic nerve fibres and that the PPG has a topographical organisation along the rostrocaudal axis. Isotope injections of the PPG anterogradely labelled fibres passing through the ciliary ganglion that innervated the conjunctiva, the limbus and parts of the choroid.  相似文献   

12.
NaCN is a classical stimulus used to elicit discharges from carotid body chemoreceptors. The effect is assumed to be mediated by glomus (type I) cells, which release an excitatory transmitter for the excitation of carotid nerve endings. Since the sensory perikarya of the glossopharyngeal nerve (from which the carotid nerve branches) are located in the petrosal ganglion, we tested whether application of this drug to the petrosal ganglion superfused in vitro elicits antidromic discharges in the carotid nerve. NaCN did indeed cause an intense and prolonged burst of nerve impulses in the carotid nerve, while provoking a less intense and much briefer burst of discharges in the glossopharyngeal branch. Carotid nerve responses to NaCN were reduced and shortened by prior or following application of dopamine to the ganglion. Sodium azide applied to the petrosal ganglion evoked a less intense and much briefer burst of impulses in the carotid nerve. Ganglionar application of 2,4-dinitrophenol did not induce discharges in the carotid nerve. Switching the superfusion of the ganglion from a normoxic to a hypoxic solution did not evoke discharges in the carotid nerve. Therefore, the perikarya of carotid nerve neurons are sensitive to NaCN, but are not excited by reducing the pO(2) of the superfusing solution.  相似文献   

13.
The distribution of sensory trigeminal nerve fibres in the anterior eye segment and the autonomic eye related ganglia, i.e. the parasympathetic ciliary and pterygopalatine ganglia and the sympathetic superior cervical ganglion, was studied in rats. For this the trigeminal ganglion was injected with tritiated leucine and wheat germ agglutinin coupled to horseradish peroxidase (WGA-HRP). After injection of WGA-HRP into the trigeminal ganglion, ganglion cell somata in the superior cervical and the pterygopalatine ganglion were labelled. As labelling of these cell bodies with WGA-HRP is the result of retrograde transport it must be assumed that cell bodies in these ganglia project to the trigeminal ganglion. [3H]Leucine injection into the trigeminal ganglion revealed the presence of labelled nerve fibres in the pterygopalatine ganglion and the nodose ganglion i.e. the sensory ganglion of the vagus nerve. Labelled nerve fibres were absent in the ciliary and superior cervical ganglion. As [3H]leucine labelling of nerve fibres is the result of anterograde transport exclusively, it can be concluded that trigeminal nerve fibres project to the nodose ganglion and the pterygopalatine ganglion, but not to the ciliary and superior cervical ganglion. In the retrobulbar structures, sensory nerve fibres occurred between the inferior oblique and the lateral rectus muscle and were present medial to the medial rectus muscle. Within the anterior eye segment, sensory nerve fibres were found in the cornea epithelium, stroma and adjacent to the endothelium. In addition, labelled fibres were found in the anterior stroma of the ciliary body, throughout the iris up to the pupillary border and in the conjunctiva. Most sensory nerve fibres which innervate the cornea, the iris and the ciliary body traverse the ciliary cleft.  相似文献   

14.
The presence and coexistence of tyrosine hydroxylase (TH), vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), substance P (SP) and galanin (GAL) were studied in the petrosal and jugular neurons innervating the carotid body and carotid sinus of the rat. The retrograde labeling of the carotid sinus nerve with Fluoro-gold (FG) demonstrated that most (94.5%) FG-labeled ganglionic neurons were observed in the petrosal ganglion. Fewer (5.2%) FG-labeled neurons were seen in the jugular ganglion and very few (0.3%) were observed in the nodose ganglion. Immunohistochemistry revealed that subpopulations of TH-, VIP-, CGRP-, SP- and GAL-immunoreactive (-ir) neurons in the petrosal ganglion projected to the carotid sinus nerve. Approximately 4% of FG-labeled neurons contained TH-ir and were predominantly found in the caudal portion of the petrosal ganglion. Nearly 90% of total TH-ir neurons in the petrosal ganglion were labeled with FG. Less than 1% of FG-labeled neurons were immunoreactive for VIP in this ganglion. In the petrosal ganglion, 25% of FG-labeled neurons contained CGRP-ir, and 16.7% of FG-labeled neurons contained SP-ir. 30% of CGRP-ir or SP-ir neurons in the petrosal ganglion were labeled with FG. In the jugular ganglion, no TH- or VIP-ir neurons projected to the carotid sinus nerve and only small populations of CGRP- or SP-ir neurons projected to the carotid sinus nerve. Many FG-labeled and GAL-ir neurons were observed in the petrosal and jugular ganglia. The double-immunofluorescence method revealed the coexistence of CGRP- and SP-ir in carotid sinus nerve-projecting neurons in the petrosal and jugular ganglia. Likewise, GAL-ir coexisted with CGRP- and SP-ir in these ganglionic neurons. There was no coexistence of TH-ir and VIP-ir in carotid sinus nerve projections. The present study demonstrates the presence of multiple putative transmitters in baro- and chemoreceptor afferent neurons of the carotid sinus nerve. These neurochemicals are likely to contribute to transmission of signals from the carotid body and carotid sinus to neurons of the brainstem.  相似文献   

15.
This study was done to determine whether a pathway of efferent axons in the carotid sinus nerve is necessary for the phenomenon of “efferent inhibition” (inhibition induced in carotid body chemoreceptors by electrical stimulation of the carotid sinus nerve). Our approach was to eliminate efferent axons in the carotid sinus nerve of cats without destroying the sensory axons. This was achieved by cutting the ipsilateral glossopharyngeal and vagus nerves central to their sensory ganglia and/or by removing the nodose and superior cervical ganglia. In neurophysiological studies we found that the response of chemoreceptors in cats 10 days after surgery was the same as that in controls. Chemoreceptor activity was decreased by electrical stimulation of the carotid sinus nerve and was increased by hypoxia and cyanide. In operated cats as in control animals, “efferent inhibition” was abolished by haloperidol and dihydroergotamine, drugs that block the inhibitory action of dopamine. Electron microscopic studies disclosed that the number of nerve endings in glomus cell/sheath cell complexes was not measurably different in control and experimental carotid bodies. By contrast, 10 days after the carotid sinus nerve was cut the number of nerve endings next to such cells was reduced by more than 99%. Cutting the nerve roots and excising the ganglia eliminated most nerve endings on blood vessels: The number of noradrenergictype nerve endings was reduced by 99% and other types of nerve endings (presumptive cholinergic and peptidergic types) were reduced by more than 90%. Our experiments indicate that “efferent inhibition” is not abolished by operations that destroy inputs to blood vessels and to carotid body glomus cells from (1) the nodose ganglion, (2) superior cervical ganglion, or from (3) neurons in the brain stem whose axons run in the glossopharyngeal or vagus nerves. We conclude that “efferent inhibition” may be caused by antidromic stimulation of sensory axons.  相似文献   

16.
Glomus cells in the carotid body respond to decreases in oxygen tension of the blood and transmit this sensory information in the carotid sinus nerve to the brain via neurons in the petrosal ganglion. G-protein-coupled membrane receptors linked to phospholipase C may play an important role in this response through the activation of the cation channels formed by the transient receptor potential (TRP) proteins. In the present study, expression of TRPC proteins in the rat carotid body and petrosal ganglion was examined using immunohistochemical techniques. TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 were present in neurons throughout the ganglion. TRPC1 was expressed in only 28% of petrosal neurons, and of this population, 45% were tyrosine hydroxylase (TH)-positive, accounting for essentially all the TH-expressing neurons in the ganglion. Because TH-positive neurons project to the carotid body, this result suggests that TRPC1 is selectively associated with the chemosensory pathway. Confocal images through the carotid body showed that TRPC1/3/4/5/6 proteins localize to the carotid sinus nerve fibers, some of which were immunoreactive to an anti-neurofilament (NF) antibody cocktail. TRPC1 and TRPC3 were present in both NF-positive and NF-negative fibers, whereas TPRC4, TRPC5, and TRPC6 expression was primarily localized to NF-negative fibers. Only TRPC1 and TRPC4 were localized in the afferent nerve terminals that encircle individual glomus cells. TRPC7 was not expressed in sensory fibers. All the TRPC proteins studied were present in type I glomus cells. Although their role as receptor-activated cation channels in the chemosensory pathway is yet to be established, the presence of TRPC channels in glomus cells and sensory nerves of the carotid body suggests a role in facilitating and/or sustaining the hypoxic response.  相似文献   

17.
The distribution, chemical coding and origin of nitric oxide synthase (NOS)-containing nerve fibres in the respiratory mucosa of the nasal septum of the guinea pig were examined using nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and immunohistochemistry. A rich supply of NADPH-d-positive nerve fibres was observed around blood vessels and in nasal glands where nerve fibres frequently penetrated into the epithelia of acini and intralobular ducts. NADPH-d reactivity was also found in the nerve fibres located under or within the respiratory epithelium. Combined immunofluorescence and histochemical staining of the same preparation demonstrated virtually complete overlapping of NOS immunoreactivity and NADPH-d reactivity in nerve fibres, indicating that NADPH-d can be used as a marker for NOS-containing neurons. Double-labelling using antibodies to vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) revealed that NADPH-d-positive nerve fibres frequently contained VIP or NPY, but not CGRP. Pterygopalatine ganglionectomy significantly reduced the number of NADPH-d-positive nerve fibres innervating the respiratory epithelium as well as blood vessels and nasal glands. Neither superior cervical ganglionectomy nor sensory denervation by capsaicin treatment affected the distribution of NADPH-d-positive fibres. These results indicate that NOS-containing nerve fibres innervating the respiratory epithelium as well as blood vessels and nasal glands in the guinea pig originate mainly from the pterygopalatine ganglion, and suggest that NO may play a significant role as a neurotransmitter and/or neuromodulator in the control of the respiratory epithelium as well as vasculature and nasal glands.  相似文献   

18.
The immunocytochemical distribution of substance P (SP) in guinea pig vestibular endorgans and the vestibular ganglion was investigated. Two kinds of SP-immunoreactive fibers were distinguished. Most were thick, and found around or beneath sensory hair cells. These SP-immunoreactive fibers were distributed predominantly on the slope of the crista and the peripheral region of the macula. By electron microscopy, we confirmed this type of SP-like immunoreactivity to be restricted within primary afferent neurons. Some vestibular ganglion cells also showed SP-like immunoreactivity, suggesting that SP is present in some primary afferent neurons, and is involved in afferent neurotransmission. The characteristic distribution of SP may indicate functional differences within each endorgan. The other group of immunoreactive nerve fibers, varicous thin fibers, could be found in the stroma of vestibular endorgans, nerve trunk, vestibular ganglion, and along blood vessels of the vestibular ganglion. These fibers may have a different origin, and have an influence on blood flow and certain other functions.  相似文献   

19.
Vasoactive intestinal peptide (VIP) has been suggested to be a mediator of vagal inhibition of airway tone and it has been assumed that VIP-containing nerve fibres in the airway arise from intrinsic ganglia. We have used a combination of double- and triple-labelling immunohistochemistry, retrograde axonal tracing, organotypic culture and nerve lesion studies, to identify the origin and distribution of neurons containing immunoreactivity (IR) to VIP in guinea pig airway smooth muscle. We also investigated whether immunoreactivity to other neuropeptides coexisted with VIP-IR within these neurons. We found that all VIP-IR nerve fibres in guinea pig tracheal smooth muscle also contained IR to neuropeptide Y (NPY) but not to tyrosine hydroxylase (TH), a marker for noradrenergic neurons. Both VIP-IR and NPY-IR were absent from nerve cell bodies in the tracheal plexus. After maintenance of isolated trachea in organotypic culture for 4 days, to allow degeneration of extrinsic nerve fibres, nerve fibres containing VIP-IR or NPY-IR were almost completely absent from tracheal smooth muscle. Of ganglia known to supply the trachea, coexistence of VIP-IR and NPY-IR was found only in cell bodies of the stellate ganglion. Retrograde tracing studies using the fluorescent tracer, DiI, confirmed that the stellate ganglion was the site of origin of neurons containing VIP-IR and NPY-IR supplying the airways. These neurons projected to the airways from the stellate ganglion both directly through the mediastinum, and via the cervical sympathetic trunk and vagus nerves. These results suggest that nerve fibres containing both VIP-IR and NPY-IR in the tracheal smooth muscle of the guinea pig are derived from non-noradrenergic cell bodies in the stellate ganglion. The absence of VIP-IR from vagal post-ganglionic neurons suggests that VIP cannot be a mediator of vagal inhibitory transmission in tracheal smooth muscle of this species.  相似文献   

20.
The vasculature of the guinea pig tongue is supplied by parasympathetic vasodilator nerve fibres of intrinsic origin. Here, we investigated first to what extent neuropeptides and the synthesizing enzymes of NO, CO and acetylcholine are contained and colocalized within periarterial lingual vasodilator axons of intrinsic origin. Then it was determined whether perivascular innervation by these fibre types changes with vascular diameter, in particular in comparison with the sensory substance P (SP)-positive and sympathetic noradrenergic vascular innervation. To this end, single, double and triple labelling histochemical techniques were performed on control tongues and tongues kept in short-term organotypic culture to induce degeneration of extrinsically originating nerve fibres. Cell bodies of intrinsic microganglia and their periarterial axons contained, simultaneously, NO synthase, vasoactive intestinal peptide and the acetylcholine-synthesizing enzyme choline acetyltransferase. Additionally, neuropeptide Y (NPY) was observed in a small percentage (12%) of neurons that increased to 39% after 36 h of organotypic culture. The CO synthesizing enzyme heme oxygenase-2 was detected only in perikarya but not in periarterial axons. Intrinsic vasodilator fibres were invariably present at arteries down to a luminal diameter of 150 microm, and reached 65% of section profiles of smallest arterioles, while noradrenergic and substance P-positive axons reached 80% of arteriolar profiles. These findings show that the intrinsic lingual vasodilator innervation of the guinea pig is far extending although slightly less developed than that by sensory and sympathetic axons, and differs both in this aspect and in patterns of colocalization from that reported for other organs, e.g. lung and pelvic organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号