首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was designed to determine whether the changes that occur during aging in the expression of the N-methyl-D-aspartate (NMDA) receptor and two NMDA receptor subunits, zeta1 and epsilon2, are a continuation of developmental processes and whether protein and mRNA expression patterns of the subunits are similar across the lifespan. The prefrontal/frontal cortex of C57BL/6 mice of eight different ages (7-8, 13-15, 30-32, 49-53, and 70-72 days and 4.5, 11, and 25 months of age) were used to examine NMDA-displaceable [(3)H]glutamate binding and mRNA in tissue sections and mRNA and protein from homogenates. The lateral prefrontal/frontal cortex of C57BL/6 mice showed more significant declines in density of agonist binding to NMDA receptors during both development and aging than the medial cortex. Changes in mRNA expression for the epsilon2 subunit across the lifespan appeared to be related to the changes in NMDA receptor binding in the lateral cortex, even though the protein expression of the epsilon2 subunit did not show the same pattern of expression as the mRNA during development. The changes in epsilon2 subunit mRNA expression during adult aging may be a continuation of developmental processes, but there was also evidence that expression levels plateaued during early adulthood. The developmental expression of the zeta1subunit in the prefrontal/frontal cortex was influenced by gender and there was no significant effect of adult aging on either the protein or mRNA expression of this subunit.Determining how the expression of the NMDA receptor and its subunits change throughout the lifespan can help us to better understand the processes affecting the receptor during aging. These results should be useful for designing interventions into the aging process to repair or prevent changes in the NMDA receptor and its associated functions, such as learning and memory.  相似文献   

2.
There are discrepancies in the literature about the effects of aging on NMDA receptor expression in the hippocampus. The present study was designed to determine whether there are regional differences in how NMDA receptors are affected by aging. Brains from male C57BL/6 mice from three different age groups (3, 10, and 30 months of age) were sectioned coronally through the dorsal hippocampus and horizontally through the intermediate hippocampus. Sections were processed and analyzed for [3H]glutamate binding to NMDA receptors using receptor autoradiography and for mRNA for the zeta1 (NR1), epsilon1 (NR2A), and epsilon2 (NR2B) subunits of the NMDA receptor using in situ hybridization. There were more significant effects of aging within the intermediate hippocampus in NMDA-displaceable [3H]glutamate binding and epsilon2 mRNA densities than were seen in the dorsal hippocampus. There was no significant effect of age on densities of either the zeta1 or epsilon1 subunit mRNA. These results suggest that the aging process affects NMDA receptors more in the intermediate hippocampus than the dorsal.  相似文献   

3.
Humans, non-human primates and rodents show declines in spatial memory abilities with increased age. Some of these declines in mice are related to changes in the expression of the epsilon2 (epsilon2) (NR2B) subunit of the N-methyl-D-aspartate receptor. The purpose of this study was to determine whether primates show changes during aging in the mRNA expression of the NR2B subunit. In situ hybridization was performed on tissue sections from three different ages of Rhesus monkeys (Macaca mulatta; 6-8, 10-12, and 24-26 years). There was a significant decrease in the mRNA expression of the NR2B subunit overall in the prefrontal cortex and in the caudate nucleus between young and old monkeys. There were no significant changes in NR2B mRNA expression in the hippocampus or the parahippocampal gyrus. The results in the prefrontal cortex, caudate and hippocampus were similar to those seen previously in C57BL/6 mice during aging, which suggests that mice may be useful as a model for primates to further examine the age-related changes in the expression of the NR2B subunit of the NMDA receptor in several important regions of the brain.  相似文献   

4.
The NMDA receptor (NMDAR) has been implicated in the induction of LTP at hippocampal synapses, and has been proposed to play a significant role in the involvement of the hippocampus with learning and memory. Aged rats are known to have deficits in LTP, learning and memory. We tested the hypothesis that aged rats might have deficits in expression of NMDAR subunits. Aged rats have significantly lower levels of NR2B mRNA and protein compared to young animals. This complements a recent report which showed improved learning and memory in mice which overexpress NR2B. No changes were seen in either the mRNA or the protein levels of the NMDAR subunit NR2A, nor in the alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionate receptor (AMPAR) subunit GluR2. Our data support the hypothesis that age related alterations in the expression of the NMDAR NR2B subunit might underlie deficits in LTP and learning and memory in aged animals.  相似文献   

5.
Effect of agmatine on heteromeric N-methyl-D-aspartate receptor channels   总被引:2,自引:0,他引:2  
Endogenous polyamines like spermine are known to have four distinct effects on recombinant N-methyl-d-aspartate (NMDA) receptor channels: voltage-dependent inhibition, glycine-dependent stimulation, glycine-independent stimulation and decreased affinity to the agonist (l-glutamate). These effects are highly dependent on the constituting epsilon subunits (epsilon1-epsilon4) of the recombinant NMDA receptor channels. Agmatine reportedly inhibits native NMDA receptor channels in cultured hippocampal neurons. In the present investigation, the effects of agmatine on the epsilon/zeta heteromeric NMDA receptor channels expressed in Xenopus laevis oocytes were examined using the two-electrode voltage clamp method. Agmatine inhibited the four epsilon/zeta (epsilon1/zeta1, epsilon2/zeta1, epsilon3/zeta1 and epsilon4/zeta1) channels with similar sensitivity (an IC50 value of about 300microM at -70mV). This effect was dependent on the membrane potential and was more pronounced at hyperpolarized membrane potentials (voltage-dependent inhibition). Agmatine did not exhibit other stimulatory (glycine-dependent and -independent effects) or inhibitory (decreased affinity to l-glutamate) effects. These properties are similar to the pharmacological profile of well-characterized NMDA receptor channel blockers like phencyclidine and ketamine. Thus, regarding the effects on the NMDA receptor channels, agmatine is not like other endogenous polyamines rather it acts as a channel blocker.  相似文献   

6.
Clinical studies have demonstrated that growth hormone (GH) promotes learning and memory processes in GH-deficient (GHD) patients. In animal studies, GH also influences the N-methyl-D-aspartate (NMDA) receptor system in the hippocampus, an essential component of long-term potentiation (LTP), which is highly involved in memory acquisition. This study was designed to examine the beneficial effects of recombinant human GH (rhGH) on cognitive function in male rats with multiple hormone deficiencies resulting from hypophysectomy (Hx). The performance of an rhGH-treated group and an untreated control group was appraised in the Morris water maze (MWM). The rhGH-treated group performed significantly better in the spatial memory task than the control animals on the second and third trial days. Further training eliminated this difference between the groups. Hippocampal mRNA expression of the NMDA subunits NR1, NR2A and NR2B, insulin-like growth factor type 1 receptor (IGF-1R), and postsynaptic density protein-95 (PSD-95) was then measured in the animals by Northern blot analysis. The results suggest that there may be a relationship between the NMDA receptor subunit mRNA expression levels and learning ability, and that learning is improved by rhGH in Hx rats. Furthermore, a link between MWM performance and PSD-95 was also suggested by this study.  相似文献   

7.
NMDA receptors play an important role in memory processes and plasticity in the brain. We have previously demonstrated a significant decrease in NMDARepsilon2 subunit mRNA and protein with increasing age in the C57Bl/6 mouse frontal cortex. In the present study, two-electrode voltage clamp electrophysiology on Xenopus oocytes injected with total RNA harvested from the frontal cortex of young and old C57Bl mice was used to detect changes in receptor composition during aging. Ifenprodil concentration-response curves, magnesium current-voltage curves, and single channel conductances were determined for native receptors. In addition, ifenprodil and magnesium curves were generated for recombinant NMDA receptors of varying subunit ratios. Ifenprodil dose-response curves for all receptors were biphasic. The low affinity component of the curve increased slightly with age, while the high affinity population decreased, mimicking recombinant receptors with decreasing levels of epsilon2. A decrease in maximal current was also observed in aged animals with decreased levels of epsilon2, although single channel conductances were identical between young and old mice. In addition, an increase in sensitivity to magnesium was observed for receptors from older animals. Results are consistent with the interpretation that the epsilon2 subunit is reduced in older mouse frontal cortex. A change in NMDA receptor subunit composition could influence memory processes during aging.  相似文献   

8.
Joseph A  Antony S  Paulose CS 《Neuroscience》2008,156(2):298-304
Hypoglycemia causes brain fuel deprivation, resulting in functional brain failure and brain death. It is a serious complication of insulin therapy in diabetic patients. A single intrafemoral dose of streptozotocin was administered to induce diabetes. Hypoglycemia was induced by appropriate doses of insulin s.c. in control and diabetic rats. Glutamate content and glutamate receptor kinetics were studied using [3H]glutamate. [3H]MK 801 was used to study the NMDA receptor kinetics. NMDA2B and metabotropic glutamate receptor (mGluR) 5 subunits receptor gene expressions were done using real time PCR. There was a significant (P<0.001) increase in the glutamate content in the cerebral cortex of hypoglycemic and diabetic rats when compared with control with more glutamate content in the hypoglycemic group. Scatchard analysis using [3H]glutamate and [3H]MK 801 in the cerebral cortex showed a significant (P<0.001) increase in the maximal binding (Bmax) in both hypoglycemic and diabetic rats when compared with control with no significant change in equilibrium dissociation constant. The glutamate and NMDA receptor binding parameters were significantly (P<0.001) enhanced in the hypoglycemic rats compared with hyperglycemic rats. Real time PCR analysis also showed a significant increase (P<0.001) in the gene expression of NMDA2B and mGluR5 subunits of glutamate receptor. This increased gene expression of NMDA2B and mGluR5 glutamate receptor subunits confirmed the enhanced mRNA of receptor subunits and subsequently at the protein level from the receptor kinetic studies. The enhanced glutamate receptors were more prominent in hypoglycemic group which is of significance in this study. Up-regulation of glutamate leads to Ca2+ overload in cells, potentially leading to cell damage and death. This functional damage during hypoglycemia is suggested to contribute to cognitive and memory deficits which has immense clinical relevance in the therapeutic management of diabetes.  相似文献   

9.
The N-methyl-D-aspartate (NMDA) receptor has been implicated in the formation of synaptic connections. To investigate the role of the epsilon2 (NR2B) NMDA receptor subunit, which is prominently expressed during early development, we used neurons from mice lacking this subunit. Although epsilon2(-/-) mice die soon after birth, we examined whether NMDA receptor targeting to the postsynaptic membrane was dependent on the epsilon2 subunit by rescuing hippocampal neurons from these mice and studying them in autaptic cultures. In voltage-clamp recordings, excitatory postsynaptic currents (EPSCs) from epsilon2(-/-) neurons expressed an NMDA receptor-mediated EPSC that was apparent as soon as synaptic activity developed. However, compared with wild-type neurons, NMDA receptor-mediated EPSC deactivation kinetics were much faster and were less sensitive to glycine, but were blocked by Mg(2+) or AP5. Whole cell currents from epsilon2(-/-) neurons were also more sensitive to block by low concentrations of Zn(2+) and much less sensitive to the epsilon2-specific antagonist ifenprodil than wild-type currents. The rapid NMDA receptor-mediated EPSC deactivation kinetics and the pharmacological profile from epsilon2(-/-) neurons are consistent with the expression of zeta1/epsilon1 diheteromeric receptors in excitatory hippocampal neurons from mice lacking the epsilon2 subunit. Thus epsilon1 can substitute for the epsilon2 subunit at synapses and epsilon2 is not required for targeting of NMDA receptors to the postsynaptic membrane.  相似文献   

10.
There are declines in the protein expression of the NR2B (mouse ε2) and NR1 (mouse ζ1) subunits of the N-methyl-d-aspartate (NMDA) receptor in the cerebral cortex and hippocampus during aging in C57BL/6 mice. This study was designed to determine if there is a greater effect of aging on subunit expression and a stronger relationship between long-term spatial memory and subunit expression within the synaptic membrane than in the cell as a whole. Male, C57BL/6JNIA mice (4, 11 and 26 months old) were tested for long-term spatial memory in the Morris water maze. Frontal cortex, including prefrontal regions, and hippocampus were homogenized and fractionated into light and synaptosomal membrane fractions. Western blots were used to analyze protein expression of NR2B and NR1 subunits of the NMDA receptor. Old mice performed significantly worse than other ages in the spatial task. In the frontal cortex, the protein levels of the NR2B subunit showed a greater decline with aging in the synaptic membrane fraction than in the whole homogenate, while in the hippocampus a similar age-related decline was observed in both fractions. There were no significant effects of aging on the expression of the NR1 subunit. Within the middle-aged mouse group, higher expression of both NR2B and NR1 subunits in the synaptic membrane of the hippocampus was associated with better memory. In the aged mice, however, higher expression of both subunits was associated with poorer memory. These results indicate that aging could be altering the localization of the NR2B subunit to the synaptic membrane within the frontal cortex. The correlational results suggest that NMDA receptor functions, receptor subunit composition, and/or the environment in which the receptor interacted in the hippocampus were not the same in the old animals as in younger mice and this may have contributed to memory declines during aging.  相似文献   

11.
目的:观察慢性复合应激对大鼠学习与记忆的影响和海马内NMDA受体亚基NR1表达的变化。方法:成年雄性Wistar大鼠实验组每天交替暴露于复合应激原环境中达6w,然后作Morris水迷宫和Y迷宫作业测试,再采用免疫组织化学和图像处理方法分析海马CA1、CA3和齿状回区内NR1的表达变化。结果:慢性复合应激组大鼠寻找平台的潜伏期较对照组明显缩短,学会躲避电击的正确次数较对照组明显增多;海马内NMDA受体亚基NRI的表达水平较对照组明显上调。结论:慢性复合应激可增强学习与记忆能力,NMDA受体表达变化可能是影响学习与记忆的机制之一。  相似文献   

12.
13.
Liver sections from aging ad libitum-fed and diet-restricted B6C3F1 male mice were evaluated immunohistochemically for pi-class glutathione S-transferase (GST-II). GST-II immunostaining of hepatocytes was diffuse and occurred in periportal regions of hepatic acinus, whereas perivenous areas were weakly stained or were stain-free. Expression of GST-II was significantly diminished in diet-restricted mice in all age groups and was associated with a marked decrease in liver tumor development. As most spontaneous liver tumors were GST-II positive, it can be speculated that they developed from GST-II positive initiated hepatocytes. To determine whether dietary restriction induces apoptosis in GST-II-positive hepatocytes, 24-month-old ad libitum-fed mice were introduced to 40% diet restriction. After 1 week of diet restriction, a decrease in GST-II expression was associated with a threefold increase in the frequency of apoptotic bodies as detected by terminal deoxynucleotidyl transferase-mediated d-UTP nick end labeling of DNA fragments. A two-step immunohistochemical procedure revealed that approximately 70% of apoptotic bodies were GST-II positive. These results suggest that spontaneous, potentially preneoplastic hepatocytes in tumor-prone B6C3F1 mice are eliminated by apoptosis with dietary restriction.  相似文献   

14.
The importance of the N-methyl-D-aspartate (NMDA) receptor in various painful conditions is well established. The effects of peripheral nerve lesion or joint inflammation, as models of different pain states, on NMDA receptor-mediated currents and NMDA receptor subunit mRNA expression were therefore studied in acutely dissociated neurones from the rat spinal cord dorsal horn. In the neuronal population from control rats, all four NR2 subunits and both NR1 splice variants assayed were detected. A majority of neurones expressed mRNA for more than one NR2 subunit, and some neurones expressed all four NR2 subunits as well as both NR1 splice variants. The NR2B subunit was the most commonly expressed, while the NR2C was the rarest. Following nerve lesion, fewer neurones expressed NR2A compared to the control. The dose-response curve for glutamate-evoked NMDA receptor-mediated currents in the neurones was best described by a three-component fit, suggesting that three functionally distinct NMDA receptor populations are present in the dorsal horn. Minor changes in the dose-response curve after nerve lesion could not be ascribed with certainty to the lesion. Changes in other parameters of NMDA receptor-mediated currents were observed neither after nerve lesion nor after joint inflammation.In summary, the present work demonstrates that single dorsal horn neurones express mRNA for several NMDA receptor subunits. The glutamate dose-response curves indicate that there are three major types of NMDA receptors present in dorsal horn neurones. We also report a reduced expression of NR2A following peripheral nerve lesion.  相似文献   

15.
目的 探究龟龄集对阿尔茨海默病 (Alzheimer’s disease, AD) 小鼠皮层和海马 Fas/ FasL 表达及 神经元凋亡的影响。 方法 构建 AD 小鼠模型, 小鼠随机分为对照组、 模型组、 多奈哌齐组及龟龄集低、 中、 高剂量组。 Morris 水迷宫检测干预前后小鼠的学习记忆能力; HE 染色检测小鼠皮层、 海马神经元病理 学改变情况; TUNEL 染色检测神经元凋亡情况; Western 印迹及 Real time PCR 分别检测 Fas、 FasL 的蛋白 表达水平及 mRNA 表达水平。 结果 与模型组比较, 龟龄集各组和多奈哌齐组小鼠学习记忆能力明显提高 (P< 0. 05), 皮层和海马神经元病理学损害及神经元凋亡改善 (P< 0. 05), Fas、 FasL 蛋白和 mRNA 水平下 降 (P< 0. 05)。 结论 龟龄集可能通过抑制 Fas/ FasL 表达抑制 AD 模型小鼠皮层、 海马神经元凋亡, 并改 善其学习记忆能力。  相似文献   

16.
Several studies have demonstrated anatomical and functional segregation along the dorsoventral axis of the hippocampus. This study examined the possible differences in the AMPA and NMDA receptor subunit composition and receptor binding parameters between dorsal and ventral hippocampus, since several evidence suggest diversification of NMDA receptor-dependent processes between the two hippocampal poles. Three sets of rat dorsal and ventral hippocampus slices were prepared: 1) transverse slices for examining a) the expression of the AMPA (GluRA, GluRB, GluRC) and NMDA (NR1, NR2A, NR2B) subunits mRNA using in situ hybridization, b) the protein expression of NR2A and NR2B subunits using Western blotting, and c) by using quantitative autoradiography, c(1)) the specific binding of the AMPA receptor agonist [(3)H]AMPA and c(2)) the specific binding of the NMDA receptor antagonist [(3)H]MK-801, 2) longitudinal slices containing only the cornus ammonis 1 (CA1) region for performing [(3)H]MK-801 saturation experiments and 3) transverse slices for electrophysiological measures of NMDA receptor-mediated excitatory postsynaptic potentials. Ventral compared with dorsal hippocampus showed for NMDA receptors: 1) lower levels of mRNA and protein expression for NR2A and NR2B subunits in CA1 with the ratio of NR2A /NR2B differing between the two poles and 2) lower levels of [(3)H]MK-801 binding in the ventral hippocampus, with the lowest value observed in CA1, apparently resulting from a decreased receptor density since the B(max) value was lower in ventral hippocampus. For the AMPA receptors CA1 our results showed in ventral hippocampus compared with dorsal hippocampus: 1) lower levels of mRNA expression for GluRA, GluRB and GluRC subunits, which were more pronounced in CA1 and in dentate gyrus region and 2) lower levels of [(3)H]AMPA binding. Intracellular recordings obtained from pyramidal neurons in CA1 showed longer NMDA receptor-mediated excitatory postsynaptic potentials in ventral hippocampus compared with dorsal hippocampus. In conclusion, the differences in the subunit mRNA and protein expression of NMDA and AMPA receptors as well as the lower density of their binding sites observed in ventral hippocampus compared with dorsal hippocampus suggest that the glutamatergic function differs between the two hippocampal poles. Consistently, the lower value of the ratio NR2A/NR2B seen in the ventral part would imply that the ventral hippocampus NMDA receptor subtype is functionally different than the dorsal hippocampus subtype, as supported by our intracellular recordings. This could be related to the lower ability of ventral hippocampus for long-term synaptic plasticity and to the higher involvement of the NMDA receptors in the epileptiform discharges, observed in ventral hippocampus compared with dorsal hippocampus.  相似文献   

17.
Caloric restriction (CR) attenuates aging-related degenerative processes throughout the body. It is less clear, however, whether CR has a similar effect in the brain, particularly in the hippocampus, an area important for learning and memory processes that often are compromised in aging. In order to evaluate the effect of CR on synapses across lifespan, we quantified synapses stereologically in the middle molecular layer of the dentate gyrus (DG) of young, middle aged and old Fischer 344 × Brown Norway rats fed ad libitum (AL) or a CR diet from 4 months of age. The results indicate that synapses are maintained across lifespan in both AL and CR rats. In light of this stability, we addressed whether aging and CR influence neurotransmitter receptor levels by measuring subunits of NMDA (NR1, NR2A and NR2B) and AMPA (GluR1, GluR2) receptors in the DG of a second cohort of AL and CR rats across lifespan. The results reveal that the NR1 and GluR1 subunits decline with age in AL, but not CR rats. The absence of an aging-related decline in these subunits in CR rats, however, does not arise from increased levels in old CR rats. Instead, it is due to subunit decreases in young CR rats to levels that are sustained in CR rats throughout lifespan, but that are reached in AL rats only in old age.  相似文献   

18.
The system of NMDA glutamate receptors in human adipose tissue multipotent stromal cells and SH-SY5Y human neuroblastoma cells was used as a model for studies of NMDA receptor expression during neurodifferntiation. Glutamate NMDA receptors were detected in multipotent stromal cells of human adipose tissue. The expression of NR1 subunits of NMDA receptors increased significantly after 6-day incubation of multipotent stromal cells of human adipose tissue with 10 μM retinoic acid. Only NR1 subunits of NMDA receptors were expressed in SH-SY5Y neuroblastoma cells. Incubation with retinoic acid did not promote the appearance of mRNA of other subunits (NR2A-D, NR3). The results indicate that expression of NMDA receptors can serve as an indicator of neuronal differentiation of cells and as a marker of the efficiency of neuronal differentiation protocol. __________ Translated from Kletochnye Tehnologii v Biologii i Medicine, No. 4, pp. 216–220, October, 2007  相似文献   

19.
为了研究早期离体培养的胎鼠海马神经干细胞(NSCs)中NMDA受体亚单位NR1、NR2A和NR2B的表达,分离、培养、传代孕18~19d胎鼠海马NSCs,对NSCs进行nestin和分化鉴定。通过免疫荧光反应和RT-PCR法检测原代培养、传代1次、传代2次的NSCs中NMDA受体亚单位NR1、NR2A和NR2B的蛋白和mRNA表达。结果显示,从孕18~19d的胎鼠大脑海马分离培养出的NSCs,NMDA受体亚单位NR1、NR2A和NR2B的免疫荧光反应均呈阳性,这三种受体亚单位的mRNA在海马NSCs上均被检测到。上述结果提示,离体培养的胎鼠早期海马NSCs能稳定表达NMDA受体亚单位NR1、NR2A和NR2B。  相似文献   

20.
Aging can lead to cognitive, affective, learning, memory and motor deficits. Since the cerebellum and glutamatergic neurotransmission are involved in several of those functions, the present work aimed at studying the expression of AMPA and NMDA glutamate receptor subunits in the chick cerebellum during aging. Young (30 days old) and aged (ca. 4 years old) chickens (Gallus gallus) were used in order to evaluate the expression of GluR1, GluR2/3 and NR1 subunits. The cerebella of young and aged chickens were subjected to immunohistochemical and immunoblotting techniques. Numbers of GluR1, GluR2/3 and NR1-positive cells and optical density of the immunoblotting data were analyzed and submitted to statistical analysis using ANOVA and the Bonferroni post hoc test. Mean density of Purkinje cells stained for Giemsa, GluR1, GluR2/3 and NR1 in the cerebellum all showed a statistically significant decrease in aged animals when compared to the young animals (Giemsa, P < 0.01; GluRs and NR1, P < 0.03). However, the ratio of GluR1 and GluR2/3-positive Purkinje cells in relation the total number of Purkinje cells found in each time point decreased with aging (ca. 10%), whereas the ratio of NR1-positive cells increased (ca. 9%). The immunoblotting data showed a significant decrease of GluR1 (ca. 66%) and GluR2/3 (ca. 55%) protein expression with aging, but did not reveal changes for NR1. Our data suggest that aging can lead to differential changes in the pattern of expression of glutamate receptor subunits, which can underlie at least part of the cognitive and motor disorders found in aged animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号