首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
BACKGROUND & AIMS: Obesity is one of the risk factors for liver fibrosis, in which plasma adiponectin, an adipocytokine, levels are decreased. Hepatic stellate cells play central roles in liver fibrosis. When they are activated, they undergo transformation to myofibroblast-like cells. Adiponectin suppresses the proliferation and migration of vascular smooth muscle cells, whose characteristics are similar to those of hepatic stellate cells. Adiponectin could have biological significances in liver fibrosis. METHODS: The role of adiponectin on liver fibrosis induced by the administration of carbon tetrachloride twice a week for 12 weeks was tested by using adiponectin-knockout mice and an adenovirus-mediated adiponectin-expression system. We also investigated the effect of adiponectin in activated hepatic stellate cells. RESULTS: When mice were administered carbon tetrachloride (300 microL/kg body weight) twice a week for 12 weeks, knockout mice showed extensive liver fibrosis with an enhanced expression of transforming growth factor-beta 1 and connective tissue growth factor compared with wild-type mice (P < 0.05). Injection of adenovirus producing adiponectin (AdADN) before carbon tetrachloride (1000 microL/kg body weight) treatment prevented liver fibrosis in wild-type mice (P < 0.001). Injection of AdADN at 6 weeks attenuated liver fibrosis even though carbon tetrachloride was given for an additional 6 weeks (total of 12 weeks). In cultured hepatic stellate cells, adiponectin suppressed platelet-derived growth factor-induced proliferation and migration and attenuated the effect of transforming growth factor-beta 1 on the gene expression of transforming growth factor-beta 1 and connective tissue growth factor and on nuclear translocation of Smad2. CONCLUSIONS: The findings indicate that adiponectin attenuates liver fibrosis and could be a novel approach in its prevention.  相似文献   

2.
3.
4.
5.
BACKGROUND/AIMS: Recently liver regeneration by bone marrow transplantation has been proposed as an alternative source of functional liver cells. We investigate commitment of bone marrow cells (BMCs) to liver regeneration and the effect of dalteparin sodium (DS) on regeneration of the damaged liver caused by carbon tetrachloride (CCl(4)) administration in the mice. METHODS: Liver injury was produced in 8-week-old mice by treating with CCl(4) for 4 weeks. Thereafter, mice received a lethal dose of irradiation (10Gy) to whole body, followed by injection of 1x10(7) green fluorescent protein (GFP)-positive BMCs via the tail vein. DS (50IU/kg, intraperitoneally) was administered daily for 28 consecutive days starting at 1 day post-BMC transplantation. Lineage marker analysis of GFP-positive liver cells was performed immunostaining with a CD31 antibody. RESULT: Four weeks after BMC transplantation, GFP-positive cells in the CCl(4)-damaged liver could be detected in the lobule displaying a meshwork architecture extending from the periportal to pericentral regions, a pattern simulating sinusoidal lining. This localization of GFP-positive cells suggested that these cells were closely associated with sinusoidal endothelial cells. By staining the GFP-positive cells for CD31, it was confirmed that the majority of the GFP-positive cells are also positive for CD31. The GFP(+)CD31(+) cells were barely detected in the control group (1.0+/-1.2 per field). In marked contrast, a numerous number of GFP(+)CD31(+) cells were detected in the liver section obtained from the CCl(4)-induced liver damage group (3.8+/-1.3 per field, P<0.05 versus control). The number of GFP(+)CD31(+) cells in CCl(4) plus DS-treated group was further increased to 8.3+/-1.3 per field (P<0.05 versus CCl(4)-induced liver damage group). CONCLUSION: The majority of GFP-positive BMCs was committed to sinusoidal endothelial cells. DS promoted BMC differentiation into sinusoidal endothelial cells in the CCl(4)-damaged liver.  相似文献   

6.
BACKGROUND & AIMS: We investigated whether endothelial progenitor cell (EPC) transplantation could reduce established liver fibrosis and promote hepatic regeneration by isolating rat EPCs from bone marrow cells. METHODS: Recipient rats were injected intraperitoneally with carbon tetrachloride (CCl(4)) twice weekly for 6 weeks before initial administration of EPCs. CCl(4) was then readministered twice weekly for 4 more weeks, and EPC transplantation was carried out for these same 4 weeks. RESULTS: At 7 days in culture, the cells expressed Thy-1, CD31, CD133, Flt-1, Flk-1, and Tie-2, suggesting an immature endothelial lineage. Immunohistochemical analyses showed fluorescent-labeled, transplantation EPCs were incorporated into the portal tracts and fibrous septa. Single and multiple EPC transplantation rats had reduced liver fibrosis, with decreased alpha2-(I)-procollagen, fibronectin, transforming growth factor-beta, and alpha-smooth muscle actin-positive cells. Film in situ zymographic analysis revealed strong gelatinolytic activity in the periportal area, in accordance with EPC location. Real-time polymerase chain reaction analysis of multiple EPC-transplantation livers showed significantly increased messenger RNA levels of matrix metalloproteinase (MMP)-2, -9 and -13, whereas tissue inhibitor of metalloproteinase-1 expression was significantly reduced. Expression of hepatocyte growth factor, transforming growth factor-alpha, epidermal growth factor, and vascular endothelial growth factor was increased in multiple EPC-transplantation livers, while hepatocyte proliferation increased. Transaminase, total bilirubin, total protein, and albumin levels were maintained in EPC-transplantation rats, significantly improving survival rates. CONCLUSIONS: We conclude that single or repeated EPC transplantation halts established liver fibrosis in rats by suppressing activated hepatic stellate cells, increasing matrix metalloproteinase activity, and regulating hepatocyte proliferation.  相似文献   

7.
Activation of hepatic stellate cells in response to chronic inflammation represents a crucial step in the development of liver fibrosis. However, the molecules involved in the interaction between immune cells and stellate cells remain obscure. Herein, we identify the chemokine CCL5 (also known as RANTES), which is induced in murine and human liver after injury, as a central mediator of this interaction. First, we showed in patients with liver fibrosis that CCL5 haplotypes and intrahepatic CCL5 mRNA expression were associated with severe liver fibrosis. Consistent with this, we detected Ccl5 mRNA and CCL5 protein in 2 mouse models of liver fibrosis, induced by either injection of carbon tetrachloride (CCl(4)) or feeding on a methionine and choline-deficient (MCD) diet. In these models, Ccl5(-/-) mice exhibited decreased hepatic fibrosis, with reduced stellate cell activation and immune cell infiltration. Transplantation of Ccl5-deficient bone marrow into WT recipients attenuated liver fibrosis, identifying infiltrating hematopoietic cells as the main source of Ccl5. We then showed that treatment with the CCL5 receptor antagonist Met-CCL5 inhibited cultured stellate cell migration, proliferation, and chemokine and collagen secretion. Importantly, in vivo administration of Met-CCL5 greatly ameliorated liver fibrosis in mice and was able to accelerate fibrosis regression. Our results define a successful therapeutic approach to reduce experimental liver fibrosis by antagonizing Ccl5 receptors.  相似文献   

8.
9.
10.
Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats   总被引:72,自引:0,他引:72  
BACKGROUND & AIMS: Numerous studies implicate transforming growth factor (TGF)-beta signaling in liver fibrogenesis. To perturb the TGF-beta pathway during this process, we overexpressed Smad7, an intracellular antagonist of TGF-beta signaling, in vivo and in primary-cultured hepatic stellate cells (HSCs). METHODS: Ligation of the common bile duct (BDL) was used to induce liver fibrosis in rats. Animals received injections of an adenovirus carrying Smad7 cDNA into the portal vein during surgery and via the tail vein at later stages. The effect of Smad7 on TGF-beta signaling and activation of HSC was further analyzed in primary-cultured cells. RESULTS: Smad7-overexpressing BDL rats displayed reduced collagen and alpha-SMA expression and reduced hydroxyproline content in the liver, when compared with animals administered AdLacZ. Such a beneficial effect was also observed when Smad7 was expressed in animals with established fibrosis. Accordingly, Smad7 arrested transdifferentiation of primary-cultured HSCs. AdSmad7 infected cells remained in a quiescent stage and retained storage of vitamin A droplets. Smad7 expression totally blocked TGF-beta signal transduction, shown by inhibiting Smad2/3 phosphorylation, nuclear translocation of activated Smad complexes, and activation of (CAGA)(9)-MLP-Luc, resulting in decreased collagen I expression. Smad7 also abrogated TGF-beta-dependent proliferation inhibition of HSC. Smad7 did not decrease expression of alpha-SMA, but immunofluorescent staining with anti alpha-SMA antibodies displayed destruction of the fibrillar organization of the actin cytoskeleton. CONCLUSIONS: In summary, gene transfer of Smad7 inhibits experimental fibrogenesis in vivo. Studies with isolated HSC suggest that the underlying mechanisms involve inhibition of TGF-beta signaling and HSC transdifferentiation.  相似文献   

11.
12.
13.
BACKGROUNDS & AIMS: Immunomodulatory cytokines, including interleukin-10 (IL-10), may mediate hepatic fibrosis. METHODS: We generated transgenic (TG) mice with hepatocyte expression of rat IL-10 (rIL-10) to assess its impact on lymphocyte subsets and activation of hepatic stellate cells following liver injury from carbon tetrachloride (CCl 4 ) or thioacetamide (TAA). RESULTS: Fibrosis was reduced in the TG animals in both models, which was not explained solely by differences in liver injury. By fluorescence-activated cell sorter (FACS), there were less CD4+ T cells in naive TG mice, and, following fibrosis induction, CD4+ T cells decreased only in wild-type (WT) mice, whereas increases in CD8+ T cells seen in WT animals were significantly attenuated in TG mice. Subtotal irradiation diminished fibrosis equally in both WT and TG groups, suggesting that rIL-10's antifibrotic effect was lymphocyte mediated. To assess the role of lymphocytes on stellate cell activation, either whole splenic lymphocytes, CD4+, or CD8+ T-cell subsets from WT animals with CCl 4 fibrosis were adoptively transferred to severe combined immunodeficiency (SCID) recipients, which led to stellate cell activation and fibrogenic stimulation as assessed by expression of transforming growth factor (TGF)-beta1 and collagen I messenger RNA (mRNA) and by immunoblot of alpha-smooth muscle actin. Moreover, serum aminotransferase levels and stellate cell activation mRNA were significantly higher among the CD8+ T-cell recipients. CONCLUSIONS: Transgenic expression of rIL-10 in liver leads to reduced fibrosis and alterations in liver lymphocyte subsets both in untreated liver and following fibrosis induction. In this model, fibrosis may be a CD8+ T-cell-mediated disease that is attenuated by rIL-10.  相似文献   

14.
15.
16.
17.
18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号