首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perrault syndrome represents a genetically heterogeneous disorder characterized by sensorineural hearing loss in males and females and ovarian dysfunction in females. Causative genes include HARS2, HSD17B4, CLPP, C10orf2, and LARS2. Some patients with Perrault syndrome exhibit neurologic features including learning disability, cerebellar ataxia, and peripheral neuropathy and are classified as type 2 and are clinically separate from those without neurological symptoms other than a hearing loss (type 1). To date, all reported patients with LARS2 mutations (15 patients in 8 families) have been classified as type 1. Here, we report female siblings with biallelic mutations in LARS2, p.Glu294Lys, and p.Thr519Met, who were classified as type 2. The proposita developed progressive sensorineural hearing loss at 18 months and pervasive developmental disorder at 8 years, with repetitive behavior, insistence on sameness, attention deficit, tic, irritability, and an ataxic gait. At age 15 years, she was diagnosed as having primary amenorrhea with elevated FSH and LH and a decreased estradiol; ultrasound and magnetic resonance imaging examinations revealed a small uterus and no detectable ovaries. The proposita's younger sister presented with neonatal sensorineural hearing loss and a mild delay in motor and speech development. She was diagnosed as having primary amenorrhea with endocrinologic and radiographic findings that were comparable to those of her sister. She had difficulty with reading comprehension, and had trouble with open‐ended test questions at 12 years of age. We concluded that Perrault syndrome patients with LARS2 mutations are at risk for neurologic problems, despite previous notions otherwise.
  相似文献   

2.
Nuclear‐encoded disorders of mitochondrial translation are clinically and genetically heterogeneous. Genetic causes include defects of mitochondrial aminoacyl‐tRNA synthetases, and factors required for initiation, elongation and termination of protein synthesis as well as ribosome recycling. We report on a new case of myopathy, lactic acidosis and sideroblastic anemia (MLASA) syndrome caused by defective mitochondrial tyrosyl aminoacylation. The patient presented at 1 year with anemia initially attributed to iron deficiency. Bone marrow aspirate at 5 years revealed ringed sideroblasts but transfusion dependency did not occur until 11 years. Other clinical features included lactic acidosis, poor weight gain, hypertrophic cardiomyopathy and severe myopathy leading to respiratory failure necessitating ventilatory support. Long‐range PCR excluded mitochondrial DNA rearrangements. Clinical diagnosis of MLASA prompted direct sequence analysis of the YARS2 gene encoding the mitochondrial tyrosyl‐tRNA synthetase, which revealed homozygosity for a known pathogenic mutation, c.156C>G;p.F52L. Comparison with four previously reported cases demonstrated remarkable clinical homogeneity. First line investigation of MLASA should include direct sequence analysis of YARS2 and PUS1 (encoding a tRNA modification factor) rather than muscle biopsy. Early genetic diagnosis is essential for counseling and to facilitate appropriate supportive therapy. Reasons for segregation of specific clinical phenotypes with particular mitochondrial aminoacyl tRNA‐synthetase defects remain unknown. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
SLC25A42 gene encodes an inner mitochondrial membrane protein that imports Coenzyme A into the mitochondrial matrix. A mutation in this gene was recently reported in a subject born to consanguineous parents who presented with mitochondrial myopathy with muscle weakness and lactic acidosis. In this report, we present 12 additional individuals with the same founder mutation who presented with variable manifestations ranging from asymptomatic lactic acidosis to a severe phenotype characterized by developmental regression and epilepsy. Our report confirms the link between SLC25A42 and mitochondrial disease in humans, and suggests that pathogenic variants in SLC25A42 should be interpreted with the understanding that the associated phenotype may be highly variable.  相似文献   

4.
Lipoic acid is an essential cofactor for the mitochondrial 2‐ketoacid dehydrogenase complexes and the glycine cleavage system. Lipoyltransferase 1 catalyzes the covalent attachment of lipoate to these enzyme systems. Pathogenic variants in LIPT1 gene have recently been described in four patients from three families, commonly presenting with severe lactic acidosis resulting in neonatal death and/or poor neurocognitive outcomes. We report a 2‐month‐old male with severe lactic acidosis, refractory status epilepticus, and brain imaging suggestive of Leigh disease. Exome sequencing implicated compound heterozygous LIPT1 pathogenic variants. We describe the fifth case of LIPT1 deficiency, whose phenotype progressed to that of an early infantile epileptic encephalopathy, which is novel compared to previously described patients whom we will review. Due to the significant biochemical and phenotypic overlap that LIPT1 deficiency and mitochondrial energy cofactor disorders have with pyruvate dehydrogenase deficiency and/or nonketotic hyperglycinemia, they are and have been presumptively under‐diagnosed without exome sequencing.  相似文献   

5.
Mitochondrial DNA depletion syndromes are a group of autosomal recessive hereditary disorders characterized by reduction of the amount of mitochondrial DNA in the affected tissue (muscle, liver, brain, or kidneys). We report a case of an infant with myopathy, deafness, peripheral neuropathy, nephrocalcinosis, proximal renal tubulopathy, moderate lactic acidosis, and a novel mutation of the RRM2B gene.Mitochondrial DNA depletion syndromes are a group of autosomal recessive hereditary disorders characterized by reduction of the mitochondrial DNA amount in the affected tissue (1). Depletion of mitochondrial DNA can affect specific tissues or combination of organs and tissues including muscles, liver, brain, or kidneys (2,3).Different defects of nuclear genes may lead to different clinical manifestations, such as hepatocerebral syndrome, encephalopathy, or myopathy. One of the recently identified genes for mitochondrial DNA depletion syndromes is RRM2B, which encodes an isoform of a small subunit of ribonucleotide reductase. This enzyme plays an essential role in nucleotide synthesis, converting ribonucleotides to deoxyribonucleotides. Since 2008, 14 mutations of RRM2B gene have been reported (3,4). All the reported mutations are unique and there is no mutation that appears in more than one family (1-4).All reported patients had myopathy and primary lactic acidosis. More than a half of them died before the fourth month of age. The oldest patient with RRM2B mutation was a 42 years old woman with clinical findings suggestive of neurogastrointestinal encephalopathy (5). In this report, we review a case of an infant with muscular hypotonia, myopathy, peripheral neuropathy, deafness, nephrocalcinosis, proximal renal tubulopathy, moderate lactic acidosis, and a novel mutation of the RRM2B gene.  相似文献   

6.
Autosomal recessive COX4I1 deficiency has been previously reported in a single individual with a homozygous pathogenic variant in COX4I1, who presented with short stature, poor weight gain, dysmorphic features, and features of Fanconi anemia. COX4I1 encodes subunit 4, isoform 1 of cytochrome c oxidase. Cytochrome c oxidase is a respiratory chain enzyme that plays an important role in mitochondrial electron transport and reduces molecular oxygen to water leading to the formation of ATP. Defective production of cytochrome c oxidase leads to a variable phenotypic spectrum ranging from isolated myopathy to Leigh syndrome. Here, we describe two siblings, born to consanguineous parents, who presented with encephalopathy, developmental regression, hypotonia, pathognomonic brain imaging findings resembling Leigh‐syndrome, and a novel homozygous variant on COX4I1, expanding the known clinical phenotype associated with pathogenic variants in COX4I1.  相似文献   

7.
Kidney is a highly adenosine triphosphate dependent organ in human body. Healthy and functional mitochondria are essential for normal kidney function. Clinical and genetic variability are the hallmarks of mitochondrial disorders. We report here the involvement of two MT-ND5 pathogenic variants encoding for ND5 subunit of respiratory chain complex I, the m.13513G>A and the m.13514A>G, in adult-onset kidney disease in three unrelated patients. The first patient had myopathy encephalopathy lactic acidosis and stroke syndrome, left ventricular hypertrophy with Wolff-Parkinson-White syndrome and tubulo-interstitial kidney disease. The second presented Leber hereditary optic neuropathy associated with tubulo-interstitial kidney disease. The third presented with an isolated chronic tubulo-interstitial kidney disease. These mutations have never been associated with adulthood mitochondrial nephropathy. These case reports highlight the importance to consider mitochondrial dysfunction in tubulo-interstitial kidney disease.  相似文献   

8.
9.
We describe 2 sibs (brother and sister) with myopathy, sideroblastic anemia, lactic acidosis, mental retardation, microcephaly, high palate, high philtrum, distichiasis, and micrognathia. Very low levels of cytochromes a, b, and c were detected in the patients' muscle mitochondria. Deposition of iron within the mitochondria of bone marrow erythroblasts was observed on electron microscopy. Irregular and enlarged mitochondria with paracrystalline inclusions were also seen on electron microscopy of the patients' muscle specimen. Examination of DNA from the affected sibs showed no deletions in the mitochondrial DNA nor the mutations identified in the syndromes of mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS) or myoclonus, and epilepsy associated with rugged-red fibers (MERRF). Since the parents were first cousins and 2 of 6 sibs (male and female) were affected, we suggest that the syndrome expressed by our patients represents a previously unknown autosomal recessive disorder that includes mitochondrial myopathy, lactic acidosis, and sideroblastic anemia. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile‐onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17‐related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early‐onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late‐onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis.  相似文献   

11.
KCNE1 encodes a regulatory subunit of the KCNQ1 potassium channel‐complex. Both KCNE1 and KCNQ1 are necessary for normal hearing and cardiac ventricular repolarization. Recessive variants in these genes are associated with Jervell and Lange‐Nielson syndrome (JLNS1 and JLNS2), a cardio‐auditory syndrome characterized by congenital profound sensorineural deafness and a prolonged QT interval that can cause ventricular arrhythmias and sudden cardiac death. Some normal‐hearing carriers of heterozygous missense variants of KCNE1 and KCNQ1 have prolonged QT intervals, a dominantly inherited phenotype designated Romano‐Ward syndrome (RWS), which is also associated with arrhythmias and elevated risk of sudden death. Coassembly of certain mutant KCNE1 monomers with wild‐type KCNQ1 subunits results in RWS by a dominant negative mechanism. This paper reviews variants of KCNE1 and their associated phenotypes, including biallelic truncating null variants of KCNE1 that have not been previously reported. We describe three homozygous nonsense mutations of KCNE1 segregating in families ascertained ostensibly for nonsyndromic deafness: c.50G>A (p.Trp17*), c.51G>A (p.Trp17*), and c.138C>A (p.Tyr46*). Some individuals carrying missense variants of KCNE1 have RWS. However, heterozygotes for loss‐of‐function variants of KCNE1 may have normal QT intervals while biallelic null alleles are associated with JLNS2, indicating a complex genotype‐phenotype spectrum for KCNE1 variants.  相似文献   

12.
Perrault syndrome is a rare disorder characterized by ovarian dysgenesis, bilateral sensorineural hearing loss and associated with mutations in six mitochondrial proteins. Additional neurological features were also described. Herein, we report on a 27-year-old woman with Perrault syndrome (PS), moderate ataxia and axonal sensory-motor peripheral neuropathy in whom we identified compound heterozygous mutations in the TWNK gene (p.Val507Ile and the novel p.Phe248Ser variant). Fewer than 30 patients with PS have been reported worldwide. Neurological involvement is more frequently associated with mutations in TWNK and indicates possible genotype–phenotype correlations. TWNK mutations should be searched in patients with sensory ataxia, early onset bilateral sensorineural hearing loss, and ovarian dysfunction in women.  相似文献   

13.
14.
Mitochondrial protein synthesis involves an intricate interplay between mitochondrial DNA encoded RNAs and nuclear DNA encoded proteins, such as ribosomal proteins and aminoacyl‐tRNA synthases. Eukaryotic cells contain 17 mitochondria‐specific aminoacyl‐tRNA synthases. WARS2 encodes mitochondrial tryptophanyl‐tRNA synthase (mtTrpRS), a homodimeric class Ic enzyme (mitochondrial tryptophan‐tRNA ligase; EC 6.1.1.2). Here, we report six individuals from five families presenting with either severe neonatal onset lactic acidosis, encephalomyopathy and early death or a later onset, more attenuated course of disease with predominating intellectual disability. Respiratory chain enzymes were usually normal in muscle and fibroblasts, while a severe combined respiratory chain deficiency was found in the liver of a severely affected individual. Exome sequencing revealed rare biallelic variants in WARS2 in all affected individuals. An increase of uncharged mitochondrial tRNATrp and a decrease of mtTrpRS protein content were found in fibroblasts of affected individuals. We hereby define the clinical, neuroradiological, and metabolic phenotype of WARS2 defects. This confidently implicates that mutations in WARS2 cause mitochondrial disease with a broad spectrum of clinical presentation.  相似文献   

15.
A novel heteroplasmic mitochondrial DNA (mtDNA) microdeletion affecting the cytochrome b gene (MT‐CYB) was identified in an Italian female patient with a multisystem disease characterized by sensorineural deafness, cataracts, retinal pigmentary dystrophy, dysphagia, postural and gait instability, and myopathy with prominent exercise intolerance. The deletion is 18‐base pair long and encompasses nucleotide positions 15,649–15,666, causing the loss of six amino acids (Ile‐Leu‐Ala‐Met‐Ile‐Pro) in the protein, but leaving the remaining of the MT‐CYB sequence in frame. The defective complex III function was cotransferred with mutant mtDNA in cybrids, thus unequivocally establishing its pathogenic role. Maternal relatives failed to show detectable levels of the deletion in blood and urinary epithelium, suggesting a de novo mutational event. This is the second report of an in‐frame intragenic deletion in MT‐CYB, which most likely occurred in early stages of embryonic development, associated with a severe multisystem disorder with prominent exercise intolerance.  相似文献   

16.
We report here the first families carrying recessive variants in the MSTO1 gene: compound heterozygous mutations were identified in two sisters and in an unrelated singleton case, who presented a multisystem complex phenotype mainly characterized by myopathy and cerebellar ataxia. Human MSTO1 is a poorly studied protein, suggested to have mitochondrial localization and to regulate morphology and distribution of mitochondria. As for other mutations affecting genes involved in mitochondrial dynamics, no biochemical defects typical of mitochondrial disorders were reported. Studies in patients’ fibroblasts revealed that MSTO1 protein levels were strongly reduced, the mitochondrial network was fragmented, and the fusion events among mitochondria were decreased, confirming the deleterious effect of the identified variants and the role of MSTO1 in modulating mitochondrial dynamics. We also found that MSTO1 is mainly a cytosolic protein. These findings indicate recessive mutations in MSTO1 as a new cause for inherited neuromuscular disorders with multisystem features.  相似文献   

17.
18.
The genetic, mutational and phenotypic spectrum of deafness‐causing genes shows great diversity and pleiotropy. The best examples are the group of genes, which when mutated can either cause non‐syndromic hearing loss (NSHL) or the most common dual sensory impairment, Usher syndrome (USH). Variants in the CIB2 gene have been previously reported to cause hearing loss at the DFNB48 locus and deaf‐blindness at the USH1J locus. In this study, we characterize the phenotypic spectrum in a multiethnic cohort with autosomal recessive non‐syndromic hearing loss (ARNSHL) due to variants in the CIB2 gene. Of the 6 families we ascertained, 3 segregated novel loss‐of‐function (LOF) variants, 2 families segregated missense variants (1 novel) and 1 family segregated a previously reported pathogenic variant in trans with a frameshift variant. This report is the first to show that biallelic LOF variants in CIB2 cause ARNSHL and not USH. In the era of precision medicine, providing the correct diagnosis (NSHL vs USH) is essential for patient care as it impacts potential intervention and prevention options for patients. Here, we provide evidence disqualifying CIB2 as an USH‐causing gene.  相似文献   

19.
Although variant alleles of hundreds of genes are associated with sensorineural deafness in children, the genes and alleles involved remain largely unknown in the Sub-Saharan regions of Africa. We ascertained 56 small families mainly of Yoruba ethno-lingual ancestry in or near Ibadan, Nigeria, that had at least one individual with nonsyndromic, severe-to-profound, prelingual-onset, bilateral hearing loss not attributed to nongenetic factors. We performed a combination of exome and Sanger sequencing analyses to evaluate both nuclear and mitochondrial genomes. No biallelic pathogenic variants were identified in GJB2, a common cause of deafness in many populations. Potential causative variants were identified in genes associated with nonsyndromic hearing loss (CIB2, COL11A1, ILDR1, MYO15A, TMPRSS3, and WFS1), nonsyndromic hearing loss or Usher syndrome (CDH23, MYO7A, PCDH15, and USH2A), and other syndromic forms of hearing loss (CHD7, OPA1, and SPTLC1). Several rare mitochondrial variants, including m.1555A>G, were detected in the gene MT-RNR1 but not in control Yoruba samples. Overall, 20 (33%) of 60 independent cases of hearing loss in this cohort of families were associated with likely causal variants in genes reported to underlie deafness in other populations. None of these likely causal variants were present in more than one family, most were detected as compound heterozygotes, and 77% had not been previously associated with hearing loss. These results indicate an unusually high level of genetic heterogeneity of hearing loss in Ibadan, Nigeria and point to challenges for molecular genetic screening, counseling, and early intervention in this population.Subject terms: Genetics research, Medical genomics  相似文献   

20.
Animal studies have demonstrated the critical roles of the patatin‐like protein family plays in cellular growth, lipid homeostasis, and second messenger signaling the nervous system. Of the nine known calcium‐independent phospholipase A2γ, only PNPLA2, PNLPA6, PNPLA9 and most recently a single patient with PNPLA8 are associated with mitochondrial‐related neurodegeneration. Using whole exome sequencing, we report two unrelated individuals with variable but similar clinical features of microcephaly, severe global developmental delay, spasticity, lactic acidosis, and progressive cerebellar atrophy with biallelic loss‐of‐function variants in PNPLA8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号