首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transport of newly synthesized lysosomal enzymes to the lysosome requires tagging of these enzymes with the mannose 6‐phosphate moiety by UDP‐GlcNAc:lysosomal enzyme N‐acetylglucosamine‐1‐phosphotransferase (GlcNAc‐1‐phosphotransferase), encoded by two genes, GNPTAB and GNPTG. GNPTAB encodes the α and β subunits, which are initially synthesized as a single precursor that is cleaved by Site‐1 protease in the Golgi. Mutations in this gene cause the lysosomal storage disorders mucolipidosis II (MLII) and mucolipidosis III αβ (MLIII αβ). Two recent studies have reported the first patient mutations within the N‐terminal transmembrane domain (TMD) of the α subunit of GlcNAc‐1‐phosphotransferase that cause either MLII or MLIII αβ. Here, we demonstrate that two of the MLII missense mutations, c.80T>A (p.Val27Asp) and c.83T>A (p.Val28Asp), prevent the cotranslational insertion of the nascent GlcNAc‐1‐phosphotransferase polypeptide chain into the endoplasmic reticulum. The remaining four mutations, one of which is associated with MLII, c.100G>C (p.Ala34Pro), and the other three with MLIII αβ, c.70T>G (p.Phe24Val), c.77G>A (p.Gly26Asp), and c.107A>C (p.Glu36Pro), impair retention of the catalytically active enzyme in the Golgi with concomitant mistargeting to endosomes/lysosomes. Our results uncover the basis for the disease phenotypes of these patient mutations and establish the N‐terminal TMD of GlcNAc‐1‐phosphotransferase as an important determinant of Golgi localization.  相似文献   

2.
In six index cases/families referred for Marfan syndrome (MFS) molecular diagnosis, we identified six novel mutations in the FBN1 gene: c.1753G>C (p.Gly585Arg), c.2456G>A (p.Gly819Glu), c.4981G>A (p.Gly1661Arg), c.5339G>A (p.Gly1780Glu), c.6418G>A (p.Gly2140Arg) and c.6419G>A (p.Gly2140Glu). These variants, predicted to result in Glycine substitutions are located at the third position of a 4 amino acids loop‐region of calcium‐binding Epidermal Growth Factor‐like (cb‐EGF) fibrillin‐1 domains 5, 9, 24, 25 and 32. Familial segregation studies showing cosegregation with MFS manifestations or de novo inheritance in addition to in silico analyses (conservation, 3D modeling) suggest evidence for a crucial role of the respective Glycine positions. Extending these analyses to all Glycine residue at position 3 of this 4 residues loop in fibrillin‐1 cb‐EGF with the UMD predictor tool and alignment of 2038 available related sequences strongly support a steric strain that only allows Glycine or even Alanine residues for domain structure maintenance and for the fibrillin functions. Our data compared with those of the literature strongly suggest the existence of a cb‐EGF domain subtype with implications for related diseases. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Current clinical problems in colorectal cancer (CRC) diagnostics and therapeutics include the disease complexity, tumor heterogeneity, and resistance to targeted therapeutics. In the present study, we examined 171 CRC adenocarcinomas from Greek patients undergoing surgery for CRC to determine the frequency of KRAS, BRAF, and PIK3CA point mutations from different areas of tumors in heterogeneous specimens. Ninety two out of 171 (53.8%) patients were found to bear a KRAS mutation in codons 12/13. Of the 126 mutations found, 57.9% (73/126) were c.38G>A mutations (p.G13D) and 22.2% (28/126) were c.35G>T (p.G12V). Remarkably, RAS mutations in both codons 12 and 13 were recorded in the same tumor by pyrosequencing. Moreover, differences in KRAS mutations between tumor center and periphery revealed tumor heterogeneity in 50.7% of the specimens. BRAF c.1799T>A (V600E) mutations were moderately detected in 4/171 (2.3%) specimens, whereas most PIK3CA mutations were revealed by pyrosequencing 6/171 (3.5%). Remarkable tumor heterogeneity is revealed, where double mutations of KRAS in the same tumor and different KRAS mutation status between tumor core and margin are detected with high frequency. It is expected that these findings will have a major impact in cancer diagnosis and personalized therapies.  相似文献   

4.
Costello syndrome (CS) is caused by heterozygous germline HRAS mutations. Most patients share the HRAS mutation c.34G>A (p.Gly12Ser) associated with the typical, relatively homogeneous phenotype. Rarer mutations occurred in individuals with an attenuated phenotype. Although many disease‐associated HRAS alterations trigger constitutive activation of HRAS‐dependent signalling pathways, additional pathological consequences exist. An infant with failure‐to‐thrive and hypertrophic cardiomyopathy had a novel de novo HRAS mutation (c.179G>T; p.Gly60Val). He showed subtle dysmorphic findings consistent with attenuated CS and died from presumed cardiac cause. Functional studies revealed that amino acid change p.Gly60Val impairs HRAS binding to effectors PIK3CA, phospholipase C1, and RAL guanine nucleotide dissociation stimulator. In contrast, interaction with effector rapidly accelerated fibrosarcoma (RAF) and regulator NF1 GTPase‐activating protein was enhanced. Importantly, expression of HRAS p.Gly60Val in HEK293 cells reduced growth factor sensitivity leading to damped RAF‐MAPK and phosphoinositide 3‐kinases‐AKT signalling response. Our data support the idea that a variable range of dysregulated HRAS‐dependent signalling dynamics, rather than static activation of HRAS‐dependent signal flow, may underlie the phenotypic variability in CS.  相似文献   

5.
Molecular alterations in KRAS, BRAF, PIK3CA, and PTEN have been implicated in designing targeted therapy for colorectal cancer (CRC). The present study aimed to determine the status of these molecular alterations in Malaysian CRCs as such data are not available in the literature. We investigated the mutations of KRAS, BRAF, and PTEN, the gene amplification of PIK3CA, and the protein expression of PTEN and phosphatidylinositol 3‐kinase (PI3K) catalytic subunit (p110α) by direct DNA sequencing, quantitative real‐time PCR, and immunohistochemistry, respectively, in 49 CRC samples. The frequency of KRAS (codons 12, 13, and 61), BRAF (V600E), and PTEN mutations, and PIK3CA amplification was 25.0% (11/44), 2.3% (1/43), 0.0% (0/43), and 76.7% (33/43), respectively. Immunohistochemical staining demonstrated loss of PTEN protein in 54.5% (24/44) of CRCs and no significant difference in PI3K p110α expression between CRCs and the adjacent normal colonic mucosa (p = 0.380). PIK3CA amplification was not associated with PI3K p110α expression level, but associated with male cases (100% of male cases vs 56% of female cases harbored amplified PIK3CA, p = 0.002). PI3K p110α expression was significantly higher (p = 0.041) in poorly/moderately differentiated carcinoma compared with well‐differentiated carcinoma. KRAS mutation, PIK3CA amplification, PTEN loss, and PI3K p110α expression did not correlate with Akt phosphorylation or Ki‐67 expression. KRAS mutation, PIK3CA amplification, and PTEN loss were not mutually exclusive. This is the first report on CRC in Malaysia showing comparable frequency of KRAS mutation and PTEN loss, lower BRAF mutation rate, higher PIK3CA amplification frequency, and rare PTEN mutation, as compared with published reports.  相似文献   

6.
Molecular diagnosis in Usher syndrome type 1 and 2 patients led to the identification of 21 sequence variations located in noncanonical positions of splice sites in MYO7A, CDH23, USH1C, and USH2A genes. To establish experimentally the splicing pattern of these substitutions, whose impact on splicing is not always predictable by available softwares, ex vivo splicing assays were performed. The branch‐point mapping strategy was also used to investigate further a putative branch‐point mutation in USH2A intron 43. Aberrant splicing was demonstrated for 16 of the 21 (76.2%) tested sequence variations. The mutations resulted more frequently in activation of a nearby cryptic splice site or use of a de novo splice site than exon skipping (37.5%). This study allowed the reclassification as splicing mutations of one silent (c.7872G>A (p.Glu2624Glu) in CDH23) and four missense mutations (c.2993G>A (p.Arg998Lys) in USH2A, c.592G>A (p.Ala198Thr), c.3503G>C [p.Arg1168Pro], c.5944G>A (p.Gly1982Arg) in MYO7A), whereas it provided clues about a role in structure/function in four other cases: c.802G>A (p.Gly268Arg), c.653T>A (p.Val218Glu) (USH2A), and c.397C>T (p.His133Tyr), c.3502C>T (p.Arg1168Trp) (MYO7A). Our data provide insights into the contribution of splicing mutations in Usher genes and illustrate the need to define accurately their splicing outcome for diagnostic purposes. Hum Mutat 31:1–9, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Current clinical guidelines recommend mutation analysis for select codons in KRAS and NRAS exons 2, 3, and 4 and BRAF V600E to guide therapy selection and prognostic stratification in advanced colorectal cancer. This study evaluates the impact of extended molecular testing on the detection of RAS‐MAPK pathway mutations. Panel next‐generation sequencing results of colorectal cancer specimens from 5795 individuals from the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (AACR Project GENIE) were included. Mutations in RAS‐MAPK pathway genes were analyzed and functionally annotated. Colorectal cancers had recurrent pathogenic pathway activating mutations in KRAS (44%), NRAS (4%), HRAS (<1%), BRAF (10%), MAP2K1 (1%), RAF1 (<1%), and PTPN11 (<1%). The proportion of colorectal cancers with pathogenic RAS pathway mutations was 37% when only KRAS codon 12 and 13 mutations were considered, 46% when also including select KRAS and NRAS exons 2, 3, and 4 mutations, 53% when including BRAF V600E mutations, and 56% when including all pathogenic mutations. Panel next‐generation sequencing testing identifies additional RAS‐MAPK pathway driver mutations beyond current guideline recommendations. These mutations have potential implications in treatment selection for patients with advanced colorectal cancer.  相似文献   

8.
TP63 germ‐line mutations are responsible for a group of human ectodermal dysplasia syndromes, underlining the key role of P63 in the development of ectoderm‐derived tissues. Here, we report the identification of two TP63 alleles, G134V (p.Gly173Val) and insR155 (p.Thr193_Tyr194insArg), associated to ADULT and EEC syndromes, respectively. These alleles, along with previously identified G134D (p.Gly173Asp) and R204W (p.Arg243Trp), were functionally characterized in yeast, studied in a mammalian cell line and modeled based on the crystal structure of the P63 DNA‐binding domain. Although the p.Arg243Trp mutant showed both complete loss of transactivation function and ability to interfere over wild‐type P63, the impact of p.Gly173Asp, p.Gly173Val, and p.Thr193_Tyr194insArg varied depending on the response element (RE) tested. Interestingly, p.Gly173Asp and p.Gly173Val mutants were characterized by a severe defect in transactivation along with interfering ability on two DN‐P63α‐specific REs derived from genes closely related to the clinical manifestations of the TP63‐associated syndromes, namely PERP and COL18A1. The modeling of the mutations supported the distinct functional effect of each mutant. The present results highlight the importance of integrating different functional endpoints that take in account the features of P63 proteins' target sequences to examine the impact of TP63 mutations and the associated clinical variability.  相似文献   

9.
Spinocerebellar ataxia type 28 is an autosomal dominant form of cerebellar ataxia (ADCA) caused by mutations in AFG3L2, a gene that encodes a subunit of the mitochondrial m‐AAA protease. We screened 366 primarily Caucasian ADCA families, negative for the most common triplet expansions, for point mutations in AFG3L2 using DHPLC. Whole‐gene deletions were excluded in 300 of the patients, and duplications were excluded in 129 patients. We found six missense mutations in nine unrelated index cases (9/366, 2.6%): c.1961C>T (p.Thr654Ile) in exon 15, c.1996A>G (p.Met666Val), c.1997T>G (p.Met666Arg), c.1997T>C (p.Met666Thr), c.2011G>A (p.Gly671Arg), and c.2012G>A (p.Gly671Glu) in exon 16. All mutated amino acids were located in the C‐terminal proteolytic domain. In available cases, we demonstrated the mutations segregated with the disease. Mutated amino acids are highly conserved, and bioinformatic analysis indicates the substitutions are likely deleterious. This investigation demonstrates that SCA28 accounts for ~3% of ADCA Caucasian cases negative for triplet expansions and, in extenso, to ~1.5% of all ADCA. We further confirm both the involvement of AFG3L2 gene in SCA28 and the presence of a mutational hotspot in exons 15–16. Screening for SCA28, is warranted in patients who test negative for more common SCAs and present with a slowly progressive cerebellar ataxia accompanied by oculomotor signs. Hum Mutat 31:1–8, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.
Oculocutaneous albinism (OCA) is an autosomal‐recessive disorder of a defective melanin pathway. The condition is characterized by hypopigmentation of hair, dermis, and ocular tissue. Genetic studies have reported seven nonsyndromic OCA genes, among which Pakistani OCA families mostly segregate TYR and OCA2 gene mutations. Here in the present study, we investigate the genetic factors of eight consanguineous OCA families from Pakistan. Genetic analysis was performed through single‐nucleotide polymorphism (SNP) genotyping (for homozygosity mapping), whole exome sequencing (for mutation identification), Sanger sequencing (for validation and segregation analysis), and quantitative PCR (qPCR) (for copy number variant [CNV] validation). Genetic mapping in one family identified a novel homozygous deletion mutation of the entire TYRP1 gene, and a novel deletion of exon 19 in the OCA2 gene in two apparently unrelated families. In three further families, we identified homozygous mutations in TYR (NM_000372.4:c.1424G > A; p.Trp475*), NM_000372.4:c.895C > T; p.Arg299Cys), and SLC45A2 (NM_016180:c.1532C > T; p.Ala511Val). For the remaining two families, G and H, compound heterozygous TYR variants NM_000372.4:c.1037‐7T > A, NM_000372.4:c.1255G > A (p.Gly419Arg), and NM_000372.4:c.1255G > A (p.Gly419Arg) and novel variant NM_000372.4:c.248T > G; (p.Val83Gly), respectively, were found. Our study further extends the evidence of TYR and OCA2 as genetic mutation hot spots in Pakistani families. Genetic screening of additional OCA cases may also contribute toward the development of Pakistani specific molecular diagnostic tests, genetic counseling, and personalized healthcare.  相似文献   

12.
Stefanius K, Ylitalo L, Tuomisto A, Kuivila R, Kantola T, Sirniö P, Karttunen T J & Mäkinen M J
(2011) Histopathology 58 , 679–692
Frequent mutations of KRAS in addition to BRAF in colorectal serrated adenocarcinoma Aims: To define the occurrence of KRAS and BRAF mutations, microsatellite instability (MSI), and MGMT and hMLH1 methylation and expression in colorectal serrated adenocarcinoma. Methods and results: KRAS codon 12/13 and 59/61 and BRAF V600E mutations, MSI, and MGMT and hMLH1 methylation and expression in 42 serrated adenocarcinomas and 17 serrated adenomas were compared with those in 59 non‐serrated colorectal carcinomas (CRCs) and nine adenomas. KRAS and BRAF mutations were observed in 45% and 33% of serrated adenocarcinomas and in 27% and 0% of non‐serrated CRCs (P < 0.001). The KRAS c12G→A transition was the predominant type of mutation in serrated adenocarcinomas. Forty‐two per cent of BRAF‐mutated serrated adenocarcinomas showed high‐level MSI (MSI‐H) (P = 0.075), 100% showed hMLH1 methylation (P = 0.001) and 90.9% showed MGMT methylation (P = 0.019). Fifty‐six per cent of serrated adenocarcinomas with microsatellite stability/low‐level microsatellite instability harboured KRAS mutations. In non‐serrated cancers, KRAS mutations were not associated with MSI status. Conclusions: A high combined mutation rate (79–82%) of KRAS and BRAF in serrated adenomas and adenocarcinomas indicates that mitogen‐activated protein kinase activation is a crucial part of the serrated pathway. BRAF mutations are specific for serrated adenocarcinoma and identify a subset of serrated adenocarcinomas with gene methylation and a tendency for MSI‐H. A high frequency of KRAS mutations in serrated adenocarcinomas suggests that a significant proportion of KRAS‐mutated CRCs originate from serrated precursors, thus challenging the traditional model of Vogelstein.  相似文献   

13.
The GUCA1A gene encodes the guanylate cyclase activating protein 1 (GCAP1) of mammalian rod and cone photoreceptor cells, which is involved in the Ca2+‐dependent negative feedback regulation of membrane bound guanylate cyclases in the retina. Mutations in the GUCA1A gene have been associated with different forms of cone dystrophies leading to impaired cone vision and retinal degeneration. Here we report the identification of three novel and one previously detected GUCA1A mutations: c.265G>A (p.Glu89Lys), c.300T>A (p.Asp100Glu), c.476G>T (p.Gly159Val) and c.451C>T (p.Leu151Phe). The clinical data of the patients carrying these mutations were compared with the functional consequences of the mutant GCAP1 forms. For this purpose we purified the heterologously expressed GCAP1 forms and investigated whether the mutations affected the Ca2+‐triggered conformational changes and the apparent interaction affinity with the membrane bound guanylate cyclase. Furthermore, we analyzed Ca2+‐dependent regulatory modes of wildtype and mutant GCAP1 forms. Although all novel mutants were able to act as a Ca2+‐sensor protein, they differed in their Ca2+‐dependent activation profiles leading to a persistent stimulation of guanylate cyclase activities at physiological intracellular Ca2+ concentration. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
ABCA3 transports phospholipids across lamellar body membranes in pulmonary alveolar type II cells and is required for surfactant assembly. Rare, biallelic, pathogenic ABCA3 variants result in lethal neonatal respiratory distress syndrome and childhood interstitial lung disease. Qualitative functional characterization of ABCA3 missense variants suggests two pathogenic classes: disrupted intracellular trafficking (type I mutant) or impaired ATPase‐mediated phospholipid transport into the lamellar bodies (type II mutant). We qualitatively compared wild‐type (WT‐ABCA3) with four uncharacterized ABCA3 variants (c.418A>C;p.Asn140His, c.3609_3611delCTT;p.Phe1203del, c.3784A>G;p.Ser1262Gly, and c.4195G>A;p.Val1399Met) in A549 cells using protein processing, colocalization with intracellular organelles, lamellar body ultrastructure, and ATPase activity. We quantitatively measured lamellar body‐like vesicle diameter and intracellular ABCA3 trafficking using fluorescence‐based colocalization. Three ABCA3 variants (p.Asn140His, p.Ser1262Gly, and p.Val1399Met) were processed and trafficked normally and demonstrated well‐organized lamellar body‐like vesicles, but had reduced ATPase activity consistent with type II mutants. P.Phe1203del was processed normally, had reduced ATPase activity, and well‐organized lamellar body‐like vesicles, but quantitatively colocalized with both endoplasmic reticulum and lysosomal markers, an intermediate phenotype suggesting disruption of both intracellular trafficking and phospholipid transport. All ABCA3 mutants demonstrated mean vesicle diameters smaller than WT‐ABCA3. Qualitative and quantitative functional characterization of ABCA3 variants informs mechanisms of pathogenicity.  相似文献   

15.
Pre‐peptide regions of secreted proteins display wide sequence variability, even among highly homologous proteins such as coagulation factors, and are intracellularly removed, thus potentially favoring secretion of wild‐type proteins upon suppression of nonsense mutations (translational readthrough). As models we selected F9 nonsense mutations with readthrough‐favorable features affecting the pre‐peptide and pro‐peptide regions of coagulation factor IX (FIX), which cause hemophilia B (HB). Only the p.Gly21Ter (c.61G > T) in the variable pre‐peptide hydrophobic core significantly responded (secretion, 4.1 ± 0.5% of wild‐type; coagulant activity, 4.0 ± 0.3%) to the readthrough‐inducer geneticin. Strikingly, for the p.Gly21Ter mutation, the resulting specific coagulant activity (0.96 ± 0.11) was compatible with normal function, thus suggesting secretion of FIX with wild‐type features upon readthrough and removal of pre‐peptide. Expression of the predicted readthrough‐deriving missense variants (Gly21Trp/Cys/Arg) revealed a preserved specific activity (ranging from 0.84 to 0.98), thus supporting our observation. Conversely, rescue of the p.Cys28Ter (c.84T > A) and p.Lys45Ter (c.133A > T) was prevented by constraints of adjacent cleavage sites, a finding consistent with the association of most missense mutations affecting these regions with severe or moderate HB. Overall, our data indicate that suppression of nonsense mutations in the pre‐peptide core preserves mature protein features, thus making this class of mutations preferred candidates for therapeutic readthrough.  相似文献   

16.
A number of methods allowing the detection of low levels of KRAS mutations have been developed in the last years. However, although these methods have become increasingly sensitive, they can rarely identify the mutated base directly without prior knowledge on the mutated base and are often incompatible with a sequencing‐based read‐out desirable in clinical practice. Here, we present a modified version of the ice‐COLD‐PCR assay called Enhanced‐ice‐COLD‐PCR (E‐ice‐COLD‐PCR) for KRAS mutation detection and identification, which allows the enrichment of the six most frequent KRAS mutations. The method is based on a nonextendable chemically modified blocker sequence, complementary to the wild‐type (WT) sequence leading to the enrichment of mutated sequences. This assay permits the reliable detection of down to 0.1% mutated sequences in a WT background. A single genotyping assay of the amplification product by pyrosequencing directly following the E‐ice‐COLD‐PCR is performed to identify the mutated base. This developed two‐step method is rapid and cost‐effective, and requires only a small amount of starting material permitting the sensitive detection and sequence identification of KRAS mutations within 3 hr. This method is applied in the current study to clinical colorectal cancer samples and enables detection of mutations in samples, which appear as WT using standard detection technologies.  相似文献   

17.
Although already 25 years into the genomic era, age‐related progression of hereditary medullary thyroid cancer (MTC), the prevalence of which is estimated at one in 80,000 inhabitants, remains to be delineated for most unique RET (REarranged during Transfection) mutations. Included in this study were 567 RET carriers. The age‐related progression of MTC across histopathological groups (normal thyroid/C‐cell hyperplasia; node‐negative MTC; node‐positive MTC) was statistically significant for 13 unique RET mutations (p.Cys611Phe/c.1832G > T; p.Cys611Tyr; p.Cys618Ser/c.1852T > A; p.Cys620Arg; p.Cys634Arg; p.Cys634Phe; p.Cys634Ser; p.Cys634Tyr; p.Glu768Asp; p.Leu790Phe/c.2370G > T; p.Val804Met; p.Ser891Ala; p.Met918Thr), whereas two unique RET mutations (p.Cys618Phe; p.Cys634Gly) trended toward statistical significance. When grouped by mutational risk (highest; high; moderate – high; low – moderate; polymorphism), the age‐related progression of MTC was significant for all four categories of RET mutations, which differed significantly across and within the three histopathological groups. For high, for moderate–high, and for low–moderate risk RET mutations, the age‐related progression of MTC by mutated codon was broadly comparable across and within the three histopathological groups, and essentially unaffected by the amino acid substitutions examined. These data argue in favor of splitting the American Thyroid Association's moderate‐risk category into moderate–high and low–moderate risk categories, while emphasizing the need to contradistinguish the latter from rare nonpathogenic polymorphisms.  相似文献   

18.
19.
20.
BRAF and KRAS mutations in ovarian serous borderline tumours (OSBTs) and ovarian low‐grade serous carcinomas (LGSCs) have been previously described. However, whether those OSBTs would progress to LGSCs or whether those LGSCs were developed from OSBT precursors in previous studies is unknown. Therefore, we assessed KRAS and BRAF mutations in tumour samples from 23 recurrent LGSC patients with a known initial diagnosis of OSBT. Paraffin blocks from both OSBT and LGSC samples were available for five patients, and either OSBTs or LGSCs were available for another 18 patients. Tumour cells from paraffin‐embedded tissues were dissected out for mutation analysis by conventional polymerase chain reaction (PCR) and Sanger sequencing. Tumours that appeared to have wild‐type KRAS by conventional PCR–Sanger sequencing were further analysed by full COLD (co‐amplification at lower denaturation temperature)‐PCR and deep sequencing. Full COLD‐PCR was able to enrich the amplification of mutated alleles. Deep sequencing was performed with the Ion Torrent personal genome machine (PGM). By conventional PCR–Sanger sequencing, BRAF mutation was detected only in one patient and KRAS mutations were detected in ten patients. Full COLD‐PCR deep sequencing detected low‐abundance KRAS mutations in eight additional patients. Three of the five patients with both OSBT and LGSC samples available had the same KRAS mutations detected in both OSBT and LGSC samples. The remaining two patients had only KRAS mutations detected in their LGSC samples. For patients with either OSBT or LGSC samples available, KRAS mutations were detected in seven OSBT samples and six LGSC samples. Surprisingly, patients with the KRAS G12V mutation have shorter survival times. In summary, KRAS mutations are very common in recurrent LGSC, while BRAF mutations are rare. The findings indicate that recurrent LGSC can arise from proliferation of OSBT tumour cells with or without detectable KRAS mutations. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号