首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveWhile patients with late-life depression (LLD) often exhibit microstructural white matter alterations that can be identified with diffusion tensor imaging (DTI), there is a dearth of information concerning the links between DTI findings and specific cognitive performance, as well as between DTI measures and antidepressant treatment outcomes.DesignNeuroimaging and cognitive tests were conducted at baseline in 71 older adults participating in a larger, 8-week duration antidepressant randomized controlled trial. Correlations between DTI measures of white matter integrity evaluated with tract-based spatial statistics, baseline neurocognitive performance, and prospective antidepressant treatment outcome were evaluated.ResultsFractional anisotropy (FA), an index of white matter integrity, was significantly positively associated with better cognitive function as measured by the Initiation/Perseveration subscale of the Dementia Rating Scale in the bilateral superior longitudinal fasciculus (SLF), bilateral SLF-temporal, and right corticospinal tract (CST). An exploratory analysis limited to these tracts revealed that increased FA in the right CST, right SLF, and right SLF-temporal tracts was correlated with a greater decrease in depressive symptoms. Increased FA in the right CST predicted a greater chance of remission, while increased FA in the right CST and the right SLF predicted a greater chance of treatment response.ConclusionIn late-life depression LLD subjects, white matter integrity was positively associated with executive function in white matter tracts which act as key connecting structures underlying the cognitive control network. These tracts may play a role as a positive prognostic factor in antidepressant treatment outcome.  相似文献   

2.
Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white matter-cognition relation reduces the magnitude of age-cognition relation. In this research, we tested the mediating role of white matter integrity, in the context of a task-switching paradigm involving word categorization. Participants were 20 healthy, community-dwelling older adults (60-85 years), and 20 younger adults (18-27 years). From diffusion tensor imaging tractography, we obtained fractional anisotropy (FA) as an index of white matter integrity in the genu and splenium of the corpus callosum and the superior longitudinal fasciculus (SLF). Mean FA values exhibited age-related decline consistent with a decrease in white matter integrity. From a model of reaction time distributions, we obtained independent estimates of the decisional and nondecisional (perceptual-motor) components of task performance. Age-related decline was evident in both components. Critically, age differences in task performance were mediated by FA in two regions: the central portion of the genu, and splenium-parietal fibers in the right hemisphere. This relation held only for the decisional component and was not evident in the nondecisional component. This result is the first demonstration that the integrity of specific white matter tracts is a mediator of age-related changes in cognitive performance.  相似文献   

3.
During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly throughout the childhood years, and several lines of evidence implicate the left fronto-parietal cortices and connecting fiber tracts in SWM processing. Here we report results from a study of 76 typically developing children, 7 to 13 years of age. We hypothesized that better SWM performance would be associated with increased fractional anisotropy (FA) in a left fronto-parietal network composed of the superior longitudinal fasciculus (SLF), the regional white matter underlying the dorsolateral pFC, and the posterior parietal cortex. As hypothesized, we observed a significant association between higher FA in the left fronto-parietal network and better SWM skills, and the effect was independent of age. This association was mainly accounted for by variability in left SLF FA and remained significant when FA measures from global fiber tracts or right SLF were included in the model. Further, the effect of FA in left SLF appeared to be mediated primarily by decreasing perpendicular diffusivity. Such associations could be related to individual differences among children in the architecture of fronto-parietal connections and/or to differences in the pace of fiber tract development. Further studies are needed to determine the contributions of intrinsic and experiential factors to the development of functionally significant individual differences in fiber tract structure.  相似文献   

4.
Few studies have applied multiple imaging modalities to examine cognitive correlates of white matter. We examined the utility of T2-weighted magnetic resonance imaging (MRI) -derived white matter hyperintensities (WMH) and diffusion tensor imaging-derived fractional anisotropy (FA) to predict cognitive functioning among older adults. Quantitative MRI and neuropsychological evaluations were performed in 112 older participants from an ongoing study of the genetics of Alzheimer's disease (AD) in African Americans. Regional WMH volumes and FA were measured in multiple regions of interest. We examined the association of regional WMH and an FA summary score with cognitive test performance. Differences in WMH and FA were compared across diagnostic groups (i.e., normal controls, mild cognitive impairment, and probable AD). Increased WMH volume in frontal lobes was associated with poorer delayed memory performance. FA did not emerge as a significant predictor of cognition. White matter hyperintensity volume in the frontal and parietal lobes was increased in MCI participants and more so in AD patients relative to controls. These results highlight the importance of regionally distributed small vessel cerebrovascular disease in memory performance and AD among African American older adults. White matter microstructural changes, quantified with diffusion tensor imaging, appear to play a lesser role in our sample.  相似文献   

5.
Study objectivesAge-related changes in sleep include a reduction in total sleep time and a greater incidence of sleep disorders, and are also an integral part of neurodegenerations. In the present study, we aimed to: a) identify common genetic variants that may influence self-reported sleep duration, and b) examine the association between the identified genetic variants and performance in different cognitive domains.MethodsA sample of 197 cognitively healthy participants, aged 20–80 years, mostly non-Hispanic Whites (69%), were selected from the Reference Abilities Neural Network and the Cognitive Reserve study. Each participant underwent an evaluation of sleep function and assessment of neuropsychological performance on global cognition and four different domains (memory, speed of processing, fluid reasoning, language). Published GWAS summary statistics from a Polygenic Score (PS) for sleep duration in a large European ancestry cohort (N = 30,251) were used to derive a PS in our study sample. Multivariate linear models were used to test the associations between the PS and sleep duration and cognitive performance. Age, sex, and education were used as covariates. Secondary analyses were conducted in three age-groups (young, middle, old).ResultsHigher PS was linked to longer sleep duration and was also associated with better performance in global cognition, fluid reasoning, speed of processing, and language, but not memory. Results especially for fluid reasoning, language, and global cognition were driven mostly by the young group.ConclusionsOur study replicated the previously reported association between sleep-PS and longer sleep duration. We additionally found a significant association between the sleep-PS and cognitive function. Our results suggest that common genetic variants may influence the link between sleep duration and cognitive health.  相似文献   

6.
Attentional set-shifting ability, commonly assessed with the Trail Making Test (TMT), decreases with increasing age in adults. Since set-shifting performance relies on activity in widespread brain regions, deterioration of the white matter tracts that connect these regions may underlie the age-related decrease in performance. We used an automated fiber tracking method to investigate the relationship between white matter integrity in several cortical association tracts and TMT performance in a sample of 24 healthy adults, 21–80 years. Diffusion tensor images were used to compute average fractional anisotropy (FA) for five cortical association tracts, the corpus callosum (CC), and the corticospinal tract (CST), which served as a control. Results showed that advancing age was associated with declines in set-shifting performance and with decreased FA in the CC and in association tracts that connect frontal cortex to more posterior brain regions, including the inferior fronto-occipital fasciculus (IFOF), uncinate fasciculus (UF), and superior longitudinal fasciculus (SLF). Declines in average FA in these tracts, and in average FA of the right inferior longitudinal fasciculus (ILF), were associated with increased time to completion on the set-shifting subtask of the TMT but not with the simple sequencing subtask. FA values in these tracts were strong mediators of the effect of age on set-shifting performance. Automated tractography methods can enhance our understanding of the fiber systems involved in performance of specific cognitive tasks and of the functional consequences of age-related changes in those systems.  相似文献   

7.
White matter (WM) integrity has been related to cognitive ability in adults and children, but it remains largely unknown how WM maturation in early life supports emergent cognition. The associations between tract‐based measures of fractional anisotropy (FA) and axial and radial diffusivity (AD, RD) shortly after birth, at age 1, and at age 2 and cognitive measures at 1 and 2 years were investigated in 447 healthy infants. We found that generally higher FA and lower AD and RD across many WM tracts in the first year of life were associated with better performance on measures of general cognitive ability, motor, language, and visual reception skills at ages 1 and 2, suggesting an important role for the overall organization, myelination, and microstructural properties of fiber pathways in emergent cognition. RD in particular was consistently related to ability, and protracted development of RD from ages 1 to 2 years in several tracts was associated with higher cognitive scores and better language performance, suggesting prolonged plasticity may confer cognitive benefits during the second year of life. However, we also found that cognition at age 2 was weakly associated with WM properties across infancy in comparison to child and demographic factors including gestational age and maternal education. Our findings suggest that early postnatal WM integrity across the brain is important for infant cognition, though its role in cognitive development should be considered alongside child and demographic factors.  相似文献   

8.
Cerebral white matter damage is not only a commonly reported consequence of healthy aging, but is also associated with cognitive decline and dementia. The aetiology of this damage is unclear; however, individuals with hypertension have a greater burden of white matter signal abnormalities (WMSA) on MR imaging than those without hypertension. It is therefore possible that elevated blood pressure (BP) impacts white matter tissue structure which in turn has a negative impact on cognition. However, little information exists about whether vascular health indexed by BP mediates the relationship between cognition and white matter tissue structure. We used diffusion tensor imaging to examine the impact of vascular health on regional associations between white matter integrity and cognition in healthy older adults spanning the normotensive to moderate–severe hypertensive BP range (43–87 years; N = 128). We examined how white matter structure was associated with performance on tests of two cognitive domains, executive functioning (EF) and processing speed (PS), and how patterns of regional associations were modified by BP and WMSA. Multiple linear regression and structural equation models demonstrated associations between tissue structure, EF and PS in frontal, temporal, parietal, and occipital white matter regions. Radial diffusivity was more prominently associated with performance than axial diffusivity. BP only minimally influenced the relationship between white matter integrity, EF and PS. However, WMSA volume had a major impact on neurocognitive associations. This suggests that, although BP and WMSA are causally related, these differential metrics of vascular health may act via independent pathways to influence brain structure, EF and PS. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Verbal fluency is the ability to retrieve lexical knowledge quickly and efficiently and develops during childhood and adolescence. Few studies have investigated associations between verbal fluency performance and brain structural variation in children. Here we examined associations of verbal fluency performance with structural measures of frontal and temporal language-related brain regions and their connections in 73 typically-developing children aged 7–13 years. Tract-based spatial statistics was used to extract fractional anisotropy (FA) from the superior longitudinal fasciculus/arcuate fasciculus (SLF/AF), and the white matter underlying frontal and temporal language-related regions. FreeSurfer was used to extract cortical thickness and surface area. Better semantic and phonemic fluency performance was associated with higher right SLF/AF FA, and phonemic fluency was also modestly associated with lower left SLF/AF FA. Explorative voxelwise analyses for semantic fluency suggested associations with FA in other fiber tracts, including corpus callosum and right inferior fronto-occipital fasciculus. Overall, our results suggest that verbal fluency performance in children may rely on right hemisphere structures, possibly involving both language and executive function networks, and less on solely left hemisphere structures as often is observed in adults. Longitudinal studies are needed to clarify whether these associations are mediated by maturational processes, stable characteristics and/or experience.  相似文献   

10.
High education, as a proxy of cognitive reserve (CR), has been associated with cognitive advantage amongst old adults and may operate through neuroprotective and/or compensation mechanisms. In neuromaging studies, indirect evidences of neuroprotection can be inferred from positive relationships between CR and brain integrity measures. In contrast, compensation allows high CR elders to sustain greater brain damage. We included 100 cognitively normal old-adults and investigated the associations and interactions between education, speed of processing (SP), memory and two brain integrity measures: cortical thickness (CTh) of gray matter (GM) and fractional anisotropy (FA) in the white matter (WM). High education was associated with better cognitive performance, enlarged CTh in frontal lobe areas and reduced measures of FA in several areas. Better SP performance in higher educated subjects was related to more preserved GM and WM, while memory status amongst high educated elders was better explained by a putative compensatory mechanism and independently from cerebrovascular risk indicators. Moreover, we analyzed the direct effect of age on measures of brain integrity and found a stronger negative effect on WM than in CTh, which was accentuated amongst the high CR sample. Our study suggests that the cognitive advantage associated to high education among healthy aging is related to the coexistence of both neuroprotective and compensatory mechanisms. In particular, high educated elders seem to have greater capacity to counteract a more abrupt age impact on WM integrity.  相似文献   

11.
Disruption of cerebral white matter has been proposed as an explanation for age-related cognitive declines. However, the role of specific regions in specific cognitive declines remains unclear. We used diffusion tensor imaging to examine the associations between regional microstructural integrity of the white matter and performance on age-sensitive cognitive tasks in a sample of healthy adults (N = 52, age 19-81 years). White matter integrity was assessed by fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in multiple regions of interest (genu and splenium of corpus callosum, internal capsule limbs, prefrontal, temporal, superior/posterior parietal, occipital white matter) and related to processing speed, working memory, inhibition, task switching, and episodic memory. We found that age and regional white matter integrity differentially influenced cognitive performance. Age-related degradation in anterior brain areas was associated with decreased processing speed and poorer working memory, whereas reduced inhibition and greater task switching costs were linked to decline in posterior areas. Poorer episodic memory was associated with age-related differences in central white matter regions. The observed multiple dissociations among specific age-sensitive cognitive skills and their putative neuroanatomical substrates support the view that age-related cognitive declines are unlikely to stem from a single cause.  相似文献   

12.
Cerebral white matter lesions (WMLs) have been consistently related to cognitive dysfunction but the role of white matter (WM) damage in cognitive impairment is not fully determined. Diffusion tensor imaging is a promising tool to explain impaired cognition related to WMLs. We investigated the separate association of high-grade periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs) with fractional anisotropy (FA) in middle-aged individuals. We also assessed the predictive value to cognition of FA within specific WM tracts associated with high-grade WMLs. One hundred participants from the Barcelona-AsIA Neuropsychology Study were divided into groups based on low- and high-grade WMLs. Voxel-by-voxel FA were compared between groups, with separate analyses for high-grade PVHs and DWMHs. The mean FA within areas showing differences between groups was extracted in each tract for linear regression analyses. Participants with high-grade PVHs and participants with high-grade DWMHs showed lower FA in different areas of specific tracts. Areas showing decreased FA in high-grade DWMHs predicted lower cognition, whereas areas with decreased FA in high-grade PVHs did not. The predictive value to cognition of specific WM tracts supports the involvement of cortico-subcortical circuits in cognitive deficits only in DWMHs.  相似文献   

13.
ObjectiveTo examine the associations between habitual sleep duration and intellectual functioning in healthy, well-rested, school-age children.MethodsThe study group consisted of 39 healthy children, aged 7–11 years old. Nightly actigraphic sleep recordings were taken for four consecutive nights to determine habitual week-night sleep duration in the home environment. Objective measures of cognitive functioning and sleepiness were used to measure daytime functioning.ResultsLonger habitual sleep duration in healthy school-age participants was associated with better performance on measures of perceptual reasoning and overall IQ, as measured by the WISC-IV, and on reported measures of competence and academic performance. No association between sleep duration and the studied behavioral measures was found.ConclusionsThese findings support the hypothesis that sleep duration is differentially related to some components of cognitive functioning, even in the absence of evidence for sleep deprivation or attention deficits.  相似文献   

14.
Hair-pulling disorder (trichotillomania, HPD) is a disabling condition that is characterized by repetitive hair-pulling resulting in hair loss. Although there is evidence of structural grey matter abnormalities in HPD, there is a paucity of data on white matter integrity. The aim of this study was to explore white matter integrity using diffusion tensor imaging (DTI) in subjects with HPD and healthy controls. Sixteen adult female subjects with HPD and 13 healthy female controls underwent DTI. Hair-pulling symptom severity, anxiety and depressive symptoms were also assessed. Tract-based spatial statistics were used to analyze data on fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). There were no differences in DTI measures between HPD subjects and healthy controls. However, there were significant associations of increased MD in white matter tracts of the fronto-striatal-thalamic pathway with longer HPD duration and increased HPD severity. Our findings suggest that white matter integrity in fronto-striatal-thalamic pathways in HPD is related to symptom duration and severity. The molecular basis of measures of white matter integrity in HPD deserves further exploration.  相似文献   

15.
Goal: Stroke survivors commonly experience depression as well as deficits in physical and cognition function. Emerging evidence also suggests sleep quality is compromised poststroke. Our primary objective was to examine the association of subjective sleep parameters (ie, total PSQI score) with depression, health related quality of life, physical function, and cognition among stroke survivors. Materials and Methods: Cross-sectional analysis of 72 older adults with chronic stroke (≥6 months postischemic stroke) enrolled in a randomized controlled trial of exercise or cognitive enrichment. Subjective sleep parameters were assessed using the Pittsburgh Sleep Quality Index (PSQI). We report total PSQI score and specific PSQI parameter scores (ie, PSQI-subjective sleep quality, PSQI-sleep latency, PSQI-sleep duration, PSQI-habitual sleep efficiency, PSQI-sleep disturbances, PSQI-use of sleep medication, and PSQI-daytime dysfunction). Bivariate correlations and multivariate linear regression assessed associations between subjective sleep parameters and depression/health related quality of life, physical function, and cognition. Findings: For bivariate correlations, depression was significantly associated with global PSQI, PSQI-subjective sleep quality, PSQI-habitual sleep efficiency, and PSQI-daytime dysfunction. Health related quality of life was significantly associated with PSQI-sleep medication. Physical function and health was significantly associated with PSQI-subjective sleep quality, PSQI-sleep latency, PSQI-sleep duration, and PSQI-daytime dysfunction. Multivariate linear regression demonstrated that PSQI-daytime dysfunction predicted depression and physical function; PSQI-subjective sleep quality predicted depression. No significant associations between global PSQI subjective sleep parameters with cognition were observed. Conclusion: Poor subjective sleep parameters and PSQI-subjective sleep quality among stroke survivors were associated with depression; PSQI-daytime dysfunction was associated with physical function. Thus, sleep should be considered in the management of those who have suffered a stroke to optimize poststroke rehabilitation outcomes.  相似文献   

16.
ObjectiveExcessive and insufficient sleep have been associated with cognitive dysfunction in older adults in U.S. and non-U.S. studies. However, the U.S. studies were not in nationally representative samples. The authors investigated the association between sleep duration and cognitive performance in a nationally representative sample of U.S. older adults.ParticipantsThe authors studied 1,496 survey participants aged 60 years or older from the National Health and Nutrition Examination Survey 2013–2014 dataset.MeasurementsOur primary predictor was weekday (or workday) nighttime sleep duration, categorized as 2–4, 5, 6, 7 (reference), 8, 9, and 10 hours or more. The authors studied five cognitive outcomes: Consortium to Establish a Registry for Alzheimer's Disease Word Learning (CERAD-WL) immediate recall, CERAD-WL delayed recall, Animal Fluency Test (AFT), Digital Symbol Substitution Test (DSST), and subjective cognitive problems (SCP).ResultsAfter adjusting for age, sex, race, education, depressive symptoms, and sedative-hypnotic use, sleep duration of 10 hours or more was significantly associated with lower scores on CERAD-WL immediate recall, CERAD-WL delayed recall, AFT, and DSST, and greater odds of SCP; sleep duration of 8 hours or more was associated with lower CERAD-WL delayed recall scores: 8, 9, and 10 hours or more. After adjustment, there were no significant associations of shorter sleep duration with cognition.ConclusionIn U.S. adults aged 60 years or older, long nighttime weekday or workday sleep duration is associated with poorer verbal memory, semantic fluency, working memory, and processing speed in addition to greater odds of self-reported cognitive problems. Long sleep duration may be a marker of fragmented sleep or neurodegeneration in U.S. older adults.  相似文献   

17.
Altered frontal white matter integrity has been reported in major depression. Still, the behavioral correlates of these alterations are not established. In healthy subjects, motor activity correlated with white matter integrity in the motor system. To explore the relation of white matter integrity and motor activity in major depressive disorder, we investigated 21 medicated patients with major depressive disorder and 21 matched controls using diffusion tensor imaging and wrist actigraphy at the same day. Patients had lower activity levels (AL) compared with controls. Fractional anisotropy (FA) differed between groups in frontal white matter regions and the posterior cingulum. AL was linearly associated with white matter integrity in two clusters within the motor system. Controls had an exclusive positive association of FA and AL in white matter underneath the right dorsal premotor cortex. Only patients had a positive association within the posterior cingulum. Furthermore, patients had negative associations of FA and AL underneath the left primary motor cortex and within the left parahippocampal gyrus white matter. These differences in the associations between structure and behavior may contribute to well-known impaired motor planning or gait disturbances in major depressive disorder. Therefore, signs of psychomotor slowing in major depressive disorder may be linked to changes of the white matter integrity of the motor system.  相似文献   

18.
IntroductionPoor sleep quality has been linked to reduced neural connectivity through decreased white matter (WM) structural integrity. WM tract development has been shown to continue throughout adolescence with studies reporting positive correlations between diffusion-derived estimates of structural integrity and reduced sleep quality in adult samples. Few studies have investigated this relationship exclusively within a sample of young adolescents.MethodsN = 51 participants aged 12 years (M = 151.5 months, SD = 4 months) completed a self-report questionnaire which included the Pittsburgh Sleep Quality Index (PSQI) and underwent Diffusion Tensor Imaging (DTI) as part of their baseline assessment in the Longitudinal Adolescent Brain Study (LABS) being undertaken in Queensland, Australia. Fractional anisotropy (FA) were extracted using Tract-Based Spatial Statistics (TBSS) to investigate associations between sleep quality and WM integrity across the brain.ResultsSignificant correlations were found between the posterior limb of the internal capsule and the PSQI total sleep quality and sleep latency scores. There was also a significant difference in sleep duration between male and female participants.ConclusionThese findings provide an important insight of the impact that sleep may have on early adolescent WM development. Ongoing longitudinal assessment of sleep on WM development across adolescence is likely to provide further important information about how WM maturation relates to variations in sleep quality as circadian rhythm changes occur during middle and late adolescence.  相似文献   

19.
Diverse aspects of physical, affective and cognitive health relate to social integration, reflecting engagement in social activities and identification with diverse roles within a social network. However, the mechanisms by which social integration interacts with the brain are unclear. In healthy adults (N = 155), we tested the links between social integration and measures of white matter microstructure using diffusion tensor imaging. Across the brain, there was a predominantly positive association between a measure of white matter integrity, fractional anisotropy (FA), and social network diversity. This association was particularly strong in a region near the anterior corpus callosum and driven by a negative association with the radial component of the diffusion signal. This callosal region contained projections between bilateral prefrontal cortices, as well as cingulum and corticostriatal pathways. FA within this region was weakly associated with circulating levels of the inflammatory cytokine interleukin-6 (IL-6), but IL-6 did not mediate the social network and FA relationship. Finally, variation in FA indirectly mediated the relationship between social network diversity and intrinsic functional connectivity of medial corticostriatal pathways. These findings suggest that social integration relates to myelin integrity in humans, which may help explain the diverse aspects of health affected by social networks.  相似文献   

20.
ObjectiveThe majority of research on sleep and cognition has focused on mean markers of sleep across multiple nights; however, variable sleep patterns have become increasingly common in the modern era. The purpose of this study was to examine whether objective intraindividual variability in sleep quantity and quality are related to verbal and visuospatial learning and memory functioning in young adults.MethodsA total of 218 young adult college students were recruited from a university in the Eastern United States, among which 187 participants (70.6% female; mean age = 20.5, SD = 1.5) had complete actigraphy and cognitive performance data. Objective intraindividual means and variabilities of sleep quantity (total sleep time) and sleep quality (percent wake after sleep onset) were measured over a 1- to 2-week timeframe using wrist actigraphy. Verbal and visuospatial learning and memory were assessed using the International Shopping List and Groton Maze Learning tests of the Cogstate computerized test battery.ResultsGreater intraindividual variability in actigraphy-derived sleep quality was associated with poorer visuospatial learning and memory performance after controlling for mean sleep quality and visuomotor attention and processing speed (ps < 0.05). Actigraphic measures of sleep quantity were not related to any learning and memory measures.ConclusionIn young adults, intraindividual variability in objective sleep quality was significantly related to visuospatial learning and memory, over and above mean sleep quality. Given these associations, future studies should aim to identify modifiable lifestyle and environmental factors contributing to variable sleep quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号