首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The insular cortex (IC) plays distinct roles under physiological and pathological conditions. However, the mechanisms regulating excitability in this area remain unknown. By employing field potential and sharp-electrode intracellular recordings in horizontal rat brain slices comprising the IC and the perirhinal cortex, we studied here the intrinsic and network characteristics of neurons in the agranular IC. These cells generated regular action potential firing with weak adaptation during intracellular injection of depolarizing current pulses, and were pyramidal in shape when neurobiotin filled. Spontaneous, field events (duration = 2.3 +/- 0.25 s; intervals of occurrence = 44.9 +/- 6.3 s) were identified in 22/52 slices and corresponded in IC neurons to intracellular depolarizations with action potential firing. Similar field and intracellular discharges were elicited in all slices by electrical stimuli. Antagonizing N-methyl-d-aspartate (NMDA) receptors blocked the spontaneous activity and reduced or abolished the stimulus-induced discharges. In the latter cases, stimuli elicited depolarizing events that became hyperpolarizing at about -64 mV, suggesting the contribution of gamma-aminobutyric acid (GABA)(A) receptor-mediated conductances. Our findings identify for the first time some functional properties of agranular IC neurons and point at a powerful NMDA receptor-mediated mechanism implementing network hyperexcitability. This feature may contribute to the role of IC in neurological disorders.  相似文献   

2.
In 19 rats two different retrograde tracers (Fast Blue, Diamidino Yellow, Rhodamine-labeled latex microspheres, or wheat germ agglutinin conjugated with HRP) were injected into the solitary nucleus (NTS) and either the olfactory bulb (OB), periaqueductal gray (PAG) or superior colliculus (SC). The pattern of retrogradely labeled neurons in the medial frontal, insular and olfactory cortices was examined to determine the topographical organization of the cell populations projecting to these subcortical targets and the extent to which they overlapped. In the medial frontal cortex (MFC) SC projections originated most dorsally, while NTS and OB projections originated most ventrally and exhibited slight overlap. PAG projections originated from virtually the entire MFC and overlapped with cells projecting to the OB, NTS and SC. These results are consistent with the role of dorsal MFC as the rat's frontal eye field and the ventral MFC as a visceral motor area. Laterally, in the insular cortex there was virtually complete overlap between cells projecting to the NTS and PAG. The extensive overlap of PAG projections with NTS projections medially and laterally and with SC projections medially suggests the PAG is involved in a variety of brain visceral and somatic functions. In the piriform cortex there was overlap between cells projecting to the OB and cells projecting to the SC; the cells projecting to the SC were located in the endopiriform nucleus, and may provide a substrate for orienting responses to odors.  相似文献   

3.
Conscious rabbits received electrical stimulation of insular and more posterior perirhinal cortex through chronically implanted electrodes. Active sites for cardiovascular responses were found in both anterior and posterior insular cortex as well as more posterior perirhinal regions. Although differential response topographies occurred related to anterior versus posterior insular cortex, all heart rate responses consisted of bradycardia. Pharmacological manipulations revealed that this bradycardia was due to a combination of vagal and sympatho-inhibitory mechanisms. Some posterior sites yielded pressor responses, and bradycardia which was sensitive to phentolamine, suggesting that the bradycardia in these instances was due to activation of the baroreceptor reflex. All other blood pressure changes were depressor responses. In a second experiment two different groups of rabbits with lesions of either anterior or posterior agranular insular cortex were compared with a third group of animals with sham lesions in a differential Pavlovian conditioning experiment. No lesion completely abolished the classically conditioned bradycardia associated with tone/shock contingencies. However, anterior insular lesions attenuated the magnitude of the conditioned bradycardia compared to the posterior and sham lesions. Control experiments suggested that this attenuation was due to the lesion's effects on the conditioned stimulus/unconditioned stimulus association and not to its effects on unconditioned responding to the conditioned stimulus or unconditioned stimulus alone.  相似文献   

4.
Recent noninvasive human studies have reconfirmed the presence of a viscerally responsive region in the most lateral part of the primary somatosensory cortex (S1). The present electrophysiological study identified the corresponding area in rats as a vagal afferent projection region and examined the cytoarchitecture. Electrical stimulation of the cervical vagus nerve elicited a field potential comparable in waveform, latency, and amplitude to the simultaneously evoked potential in the insular visceral sensory cortex. The potential field adjoined the S1 trigeminal region without overlap, and was rostroventral to the lip representation barrel field, which was identified histochemically, and rostrodorsal to the tongue representation region, which was identified electrophysiologically. The vagal potential underwent a phase reversal in the middle layers; thus, the current sink site was cytoarchitectonically identified as the most rostral part of the parietal granular cortex or the S1, where no somatosensory input has previously been demonstrated. The rat S1 contains a region representing general visceral information, topographically located as if the visceral organs protruded from the mouth.  相似文献   

5.

Aims

The clinical use of brain stimulation is attractive for patients who have side effects or tolerance. However, studies on insular cortex (IC) stimulation are lacking in neuropathic pain. The present study aimed to investigate the effects of IC stimulation (ICS) on neuropathic pain and to determine how ICS modulates pain.

Methods

Changes in pain behaviors were observed following ICS with various parameters in neuropathic rats. Western blotting was performed to assess molecular changes in the expression levels of phosphorylated extracellular signal-regulated kinase (pERK), neurons, astrocytes, and microglia between experimental groups. Immunohistochemistry was performed to investigate the colocalization of pERK with different cell types.

Results

The most effective pain-relieving effect was induced at 50 Hz–120 μA in single trial of ICS and it maintained 4 days longer after the termination of repetitive ICS. The expression levels of pERK, astrocytes, and microglia were increased in neuropathic rats. However, after ICS, the expression levels of pERK were decreased, and colocalization of pERK and neurons was reduced in layers 2–3 of the IC.

Conclusion

These results indicated that ICS attenuated neuropathic pain by the regulation of pERK in neurons located in layers 2–3 of the IC. This preclinical study may enhance the potential use of ICS and identify the therapeutic mechanisms of ICS in neuropathic pain.  相似文献   

6.
The orbitofrontal cortex (OFC) has been characterized as a higher-order, multimodal sensory cortex. Evidence from electrophysiological and behavioral studies in the rat has suggested that OFC plays a role in modulating olfactory guided behavior, and a significant projection to OFC arises from piriform cortex, the traditional primary olfactory cortex. To discern how OFC interacts with primary olfactory structures, the anterograde tracer Phaseolus vulgaris leucoagglutinin was injected into orbitofrontal cortical areas in adult male rats. Labeled fibers were found in the piriform cortex and olfactory bulb on the side ipsilateral to the injection. Notably, the projection to piriform cortex was predominantly from ventrolateral orbital cortex, and was not uniform; rostrally, the projection to the ventral portion of the anterior piriform cortex (APC) was substantial, while the dorsal APC was virtually free of labeled fibers. Labeled fibers were found in both the dorsal and ventral portions in more caudal regions of APC. Most labeled fibers were found in layer III, although a substantial number of fibers were observed in layers Ib and II. Labeled fibers in posterior piriform cortex also were seen after injection into orbitofrontal areas. Taken together with previous reports, these findings suggest that piriform cortex includes multiple subdivisions, which may perform separate, parallel functions in olfactory information processing. Further, these results suggest that the OFC, in addition to its putative role in encoding information about the significance of olfactory stimuli, may play a role in modulating odor response properties of neurons in piriform cortex.  相似文献   

7.
The present study tested the hypothesis that lesions of the insular cortex of the rat retard the acquisition of conditioned taste aversions (CTAs) because of an impairment in the detection of the novelty of taste stimuli. Demonstrating the expected latent inhibition effect, nonlesioned control subjects acquired CTAs more rapidly when the conditioned stimulus (0.15% sodium saccharin) was novel rather than familiar (achieved by pre-exposure to the to-be-conditioned taste cue). However, rats with insular cortex lesions acquired taste aversions at the same slow rate regardless of whether the saccharin was novel or familiar. The pattern of behavioural deficits obtained cannot be interpreted as disruptions of taste detection or stimulus intensity, but is consistent with the view that insular cortex lesions disrupt taste neophobia, a dysfunction that consequently retards CTA acquisition because of a latent inhibition-like effect.  相似文献   

8.
Hanamori T 《Brain research》2005,1042(1):82-91
Extracellular neuronal responses were recorded from the posterior insular cortex. In three of 20 neurons, fluctuations in their spontaneous discharge were observed during recording without stimulation. In these recordings, fluctuations were also observed in arterial blood pressure (BP) and heart rate (HR) recorded simultaneously. For 3 neurons, the relationships among the fluctuations in the spontaneous discharge of the insular cortex neuron (INSneu), mean arterial pressure (MAP), and HR were analyzed using Pearson's correlation coefficient (r). In unit A, there was a negative correlation between INSneu and MAP (r = -0.30). The r between INSneu and HR was -0.02. In unit B, the data were divided into two groups according to HR (HR < 400 and HR > or = 400). The differential results in the correlations for INSneu-MAP were obtained in the two groups (r = -0.2, HR < 400; r = 0.51, HR > or = 400). For unit C, the INSneu was positively correlated with BP (r = 0.31) and HR (r = 0.36). From the correlation analysis concerning the time, changes in INSneu seem to precede (or delay) changes in BP. These results showed that fluctuations in neuronal activity in the posterior insular cortex are positively or negatively correlated with BP (or HR). The data suggest that some of the neurons in the posterior insular cortex may play a role in the homeostatic (and/or regulatory) control of the autonomic system.  相似文献   

9.
10.
This paper reviews the foundation for a role of the human anterior insular cortex (AIC) in emotional awareness, defined as the conscious experience of emotions. We first introduce the neuroanatomical features of AIC and existing findings on emotional awareness. Using empathy, the awareness and understanding of other people's emotional states, as a test case, we then present evidence to demonstrate: 1) AIC and anterior cingulate cortex (ACC) are commonly coactivated as revealed by a meta‐analysis, 2) AIC is functionally dissociable from ACC, 3) AIC integrates stimulus‐driven and top‐down information, and 4) AIC is necessary for emotional awareness. We propose a model in which AIC serves two major functions: integrating bottom‐up interoceptive signals with top‐down predictions to generate a current awareness state and providing descending predictions to visceral systems that provide a point of reference for autonomic reflexes. We argue that AIC is critical and necessary for emotional awareness. J. Comp. Neurol. 521:3371‐3388, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The epithalamic lateral nucleus of the habenula (LHb) plays a key role in regulating firing of dopamine and serotonin neurons in the midbrain and is thereby involved in various cognitive and affective behaviors. It is not yet clear, however, from where the LHb receives cognitive and affective information relevant to its regulation of the midbrain monoaminergic systems. The prefrontal cortex would be among the ideal sources. Here, using anterograde and retrograde tracer injections in the rat brain, we characterized the topography of the corticohabenular projections. Following injections of cholera toxin subunit B into the LHb, retrogradely labeled neurons were produced in the anterior insular, cingulate, prelimbic and infralimbic cortices. Consistent with this retrograde tracing, injections of biotinylated dextran amine (BDA) into these cortical regions labeled robust terminals in the LHb. Our quantification of the BDA-impregnated varicosities revealed that projections from the anterior insula terminated mainly in the intersection regions of the lateral and ventral two-thirds of the LHb, while projections from the cingulate cortex terminated mainly in the lateral two-thirds of the LHb. By comparison, BDA-labeled terminals originating from the medial prefrontal regions were contained mainly in the medial plus ventral one-third of LHb. Based on these data, we hypothesize that LHb provides a link for conveying cognitive and affective information from prefrontal and insular regions to the midbrain monoaminergic centers.  相似文献   

12.
Relatively discrete experimental literatures have grown to support the insula's role in the domains of interoception, focal exteroceptive attention and cognitive control, and the experience of anxiety, even as theoretical accounts have asserted that the insula is a critical zone for integrating across these domains. Here we provide the first experimental demonstration that there exists a functional topography across the insula, with distinct regions in the same participants responding in a highly selective fashion for interoceptive, exteroceptive, and affective processing. Although each insular region is associated with areas of differential resting state functional connectivity relative to the other regions, overall their functional connectivity profiles are quite similar, thereby providing a map of how interoceptive, exteroceptive, and emotional awareness are integrated within the insular cortex. Hum Brain Mapp 34:2944–2958, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
A double-labeling method combining immunohistochemistry and a retrograde tracer technique using biotin-horseradish peroxidase (B-HRP) was employed to identify a descending somatostatinergic fiber system from the insular cortex to the spinal cord. Injection of B-HRP into the spinal cord at cervical or lumbar levels resulted in the labeling of a number of neurons in the insular cortex. Simultaneous immunostaining revealed the existence of double-labeled neurons in the insular cortex. The result provides direct evidence for the presence of a descending somatostatinergic pathway from the insular cortex to lumbar levels of the spinal cord.  相似文献   

14.
目的比较经外侧裂岛叶入路和经颞叶皮质入路两种手术入路治疗壳核出血的临床疗效及优劣性。方法选取2011-12—2013-12我院收治的100例高血压性壳核出血患者作为研究对象,按随机数表法分为A组和B组,每组各50例。A组患者采取经外侧裂岛叶入路清除血肿,B组患者采取经颞叶皮质入路手术清除血肿。观察2组患者的治疗后的止痛效果及各项生活质量得分变化情况。结果 A组患者术后血肿大部分清除33例(66%),明显多于B组的22例(44%),再出血5例(10%),少于B组的15例(30%),意识状态及神经功能好转29例(58%),多于B组;A组患者术后预后良好38例(76%),多于B组的26例(52%),而完全性失语1例(2%),明显少于B组的12例(24%),2组比较差异有统计学意义(P<0.05)。结论经外侧裂岛叶入路较经颞叶皮质入路在手术清除壳核血肿的治疗中具有更大的优势,值得临床推广。  相似文献   

15.
Using the fluorescent dye, double retrograde-labeling tracing technique, separate populations of insular cortex neurons were demonstrated to project to the amygdaloid central nucleus and to autonomic nuclei of the dorsal medulla. Both populations were located in layer V of the agranular and granular insual with neurons projecting to the dorsal medulla demonstrating a more medial distribution. The results yield additional detail on the organization of forebrain areas involved in autonomic regulation.  相似文献   

16.
The thalamo-cortical and cortico-cortical afferents of the cat's insular cortex were investigated with the retrograde horseradish peroxidase technique. The most prominent loci of thalamic labeling were the suprageniculate nucleus and parts of the posterolateral nucleus. Injections into the anterior part of the insular cortex also resulted in labeled cells in the ventromedial posterior nucleus and in the intralaminar nuclei, while injections into posterior parts revealed projections from the medial and dorsal parts of the medial geniculate nucleus. Only the anterior and most ventral parts of the insular cortex overlying the anterior rhinal sulcus were connected with the mediodorsal nucleus of the thalamus. All injections into the gyrus sylvius anterior showed a specific pattern of cortical afferents: With the exception of the labeling in the prefrontal cortex and the inferotemporal region, the labeled cells were very narrowly restricted to the presylvian, the suprasylvian, and the splenial sulcus. The thalamic neurons projecting to the cortex were generally organized in a bandlike pattern which crossed nuclear borders. The majority of the cortico-cortical connections originated from sulcal areas next to the prefrontal, parietal, and cingulate cortex, that is, next to so-called association cortices. In the light of the present results the role of the insular cortex as a multifunctional association area is discussed, as well as its relation to other cortical centers.  相似文献   

17.
BACKGROUND:The insular cortex and habenular nucleus may be a regulatory center for obstructive sleep apnea syndrome, and dyspnea may be caused by insular cortex activity. The insular cortex is a cortical representation of obstructive sleep apnea syndrome. The habenular nucleus is a station for descending insular cortex activity.OBJECTIVE: Through actively stimulating the rat insular cortex, to observe rat respiratory movement, myoelectric activities of genioglossus, arterial partial pressure of oxygen, partial pressure of carbon dioxide and acidity-alkalinity, and to verify a hypothesis that the insular cortex is a superior-position regulation center, and the habenular nucleus is an inferior-position nervous nuclei of the insular cortex in patients with obstructive sleep apnea syndrome. DESIGN, TIME AND SETTING: The randomized, controlled animal study was performed at the Laboratory of Electrophysiology, Department of Physiology, Norman Bathune College of Medicine, Jilin University, China from September 2004 to June 2008.MATERIALS: We used L-glutamic acid(Dingguo Biological Product Research Center, Beijing, China), lidocaine hydrochloride(Seventh Pharmacy Co., Ltd., Wuxi, China), electric stimulator (Nihon Kohden, Japan), and an AVL-OPTI blood gas analyzer(AVL Scientific Co., Roswell, GA,USA).METHODS: The insular cortex of healthy adult Wistar rats underwent electrostimulation and L-glutamic acid stimulation to record changes in the myoelectric activity of genioglossus and respiratory movement. Some rats were injected with lidocaine to block the habenular nucleus before electrostimulation or L-glutamic acid stimulation. L-glutamic acid and lidocaine were injected by microelectrodes embedded in nuclear groups.MAIN OUTCOME MEASURES: Myoelectric activities of genioglossus, arterial partial pressure of oxygen, partial pressure of carbon dioxide and acidity-alkalinity were measured following apnea in rats undergoing electrostimulation in the insular cortex and following blockade of the habenular nucleus.RESULTS: Following electrostimulation and L-glutamic acid stimulation, rats developed apnea or respiratory rhythm disorders. Simultaneously, the amplitude of myoelectric activity of the genioglossus was reduced(P < 0.01), and the electromyogram integral was decreased(P < 0.01).Arterial blood gas analysis showed arterial blood acidosis, a decrease in pH(P < 0.05), and an increase in the negative value of alkaline reserve(P < 0.01). Lidocaine in the habenular nuclear blocked respiratory and other index changes after insular cortex stimulation.CONCLUSION: Dyspnea induced by stimulating the insular cortex may require the habenular nucleus. Paralysis of the habenular nucleus can completely eliminate insular cortex stimulation-induced dyspnea.  相似文献   

18.
Extracellular recording techniques in rats were used to follow the postnatal development of the evoked response of the piriform cortex to electrical stimulation of the lateral olfactory tract (LOT) from birth to adulthood. As in other species, LOT shock in adult rats produces short-latency activation of units in piriform cortex and an extracellular field potential consisting of three components: a surface-negative component, the A1 wave (corresponding to the cortical monosynaptic EPSP evoked by the LOT fibers); a second surface-negative component, the B1 wave (corresponding to reactivation of layer I dendrites by intracortical fibers); and a late surface-positive component, the period 2 wave. A conditioning shock 20-150 msec before the test shock profoundly inhibits both evoked unit activity and the B1 wave, while it facilitates the A1. At birth, units can be orthodromically activated by LOT stimulation in association with the A1 wave. There is also a surface-positive spikelike wave, the S wave, which represents the summation of cortical unit activity. The B1 wave is apparent early in the first postnatal week. However, in contrast to the prominent inhibition in the adults, for the first few days after birth, single-unit responses, multiple-unit activity, and the S wave are all facilitated by a preceding conditioning shock with intervals of 200 msec or less, in association with the facilitation of the A1 wave. A shift to inhibition is apparent with longer intershock intervals of 300-700 msec, which exceed the period during which paired shocks facilitate the A1 wave. During the remainder of the first two postnatal weeks,, partial suppression of evoked activity with intervals of less than 200 msec appears and progressively increases in strength, but inhibition at very long intershock intervals remains greater in magnitude. During this time, the duration of the inhibitory period also decreases to near the adult value of 200-300 msec. In the third postnatal week the pattern was similar to that in the adult, but the inhibition was still clearly weaker than in adults. These results suggest a delayed maturation of the cortical inhibitory circuitry; this conclusion has also been suggested by previously published observations in the developing neocortex and hippocampus. In addition, the acceleration with age of the conduction velocity of axons in the LOT was analyzed. The adult value of 9.6 m/sec was not achieved until some time after postnatal day 15, which parallels the myelinization of the tract as observed with the light microscope.  相似文献   

19.
The insular cortex plays essential roles in nicotine addiction. However, much is still unknown about its cellular and synaptic mechanisms responsible for nicotine addiction. We have previously shown that in layer 5 pyramidal neurons of the mouse insular cortex, activation of the nicotinic acetylcholine receptors (nAChRs) suppresses synaptic potentiation through enhancing GABAergic synaptic transmission, although it enhances both glutamatergic and GABAergic synaptic transmission. In the present study, we examined whether dopamine receptors might contribute to the nicotine‐induced inhibition of synaptic potentiation. The nicotine‐induced inhibition of synaptic potentiation was decreased in the presence of a D1 dopamine receptor antagonist SCH23390 irrespective of the presence of a D2 dopamine receptor antagonist sulpiride, suggesting that D1 dopamine receptors are involved in nicotine‐induced inhibition. We also investigated how dopamine receptors might contribute to the nAChR‐induced enhancement of glutamatergic and GABAergic synaptic transmission. The nAChR‐induced enhancement of GABAergic synaptic transmission was decreased in the presence of SCH23390 irrespective of the presence of sulpiride, whereas that of glutamatergic synaptic transmission was not altered in the presence of SCH23390 and sulpiride. These results suggest that D1 dopamine receptors are involved in the nAChR‐induced enhancement of GABAergic synaptic transmission while dopamine receptors are not involved in that of glutamatergic synaptic transmission. These observations indicate that the interaction between nAChRs and D1 dopamine receptors plays critical roles in synaptic activities in layer 5 pyramidal neurons of the mouse insular cortex. These insular synaptic changes might be associated with nicotine addiction.  相似文献   

20.
The homeostatic regulation of feeding behavior requires an organism to be able to integrate information from its internal environment, including peripheral visceral signals about the body's current energy needs, with information from its external environment, such as the palatability of energy‐rich food stimuli. The insula, which serves as the brain's primary sensory cortex for representing both visceral signals from the body and taste signals from the mouth and tongue, is a likely candidate region in which this integration might occur. However, to date it has been unclear whether information from these two homeostatically critical faculties is merely co‐represented in the human insula, or actually integrated there. Recent functional neuroimaging evidence of a common substrate for visceral interoception and taste perception within the human dorsal mid‐insula suggests a model whereby a single population of neurons may integrate viscerosensory and gustatory signals. To test this model, we used fMRI‐Adaptation to identify whether insula regions that exhibit repetition suppression following repeated interoception trials would then also exhibit adapted responses to subsequent gustatory stimuli. Multiple mid and anterior regions of the insula exhibited adaptation to interoceptive trials specifically, but only the dorsal mid‐insula regions exhibited an adapted gustatory response following interoception. The discovery of this gustatory‐interoceptive convergence within the neurons of the human insula supports the existence of a heretofore‐undocumented neural pathway by which visceral signals from the periphery modulate the activity of brain regions involved in feeding behavior. Hum Brain Mapp 38:2150–2164, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号