首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Dengue fever is an important vector-borne disease, mainly transmitted by Aedes aegypti. To date, there are no vaccines or effective drugs available against this arboviral disease. As mosquito control is practically the only method available to control dengue fever, alternative and cost-effective pest control strategies need to be explored. The gram-negative enteric bacteria Xenorhabdus and Photorhabdus are symbiotically associated with nematode parasites, which themselves are highly pathogenic for insect larvae. Here, we evaluate the oral toxicity of these entomopathogenic bacteria in A. aegypti larvae. The susceptibility of larvae (third late or fourth early instars) was assessed by exposing them to suspensions containing Photorhabdus luminescens or Xenorhabdus nematophila, respectively. Two diet treatments were tested with larvae fed on pet food and unfed larvae. After 24 h, larvae began to die when exposed to the bacteria. Exposure to P. luminescens killed 73 % of the fed and 83 % of the unfed larvae, respectively. In comparison, X. nematophila was less pathogenic, killing 52 % of the larvae in the fed and 42 % in the unfed treatment. Remarkably, cannibalism was observed in all bioassays after exposing larvae to either of the bacterial species. To our knowledge, this is the first report demonstrating the efficiency of these entomopathogenic bacteria for oral A. aegypti killing. Our results provide a promising basis for using these bacteria as bioinsecticides for mosquito control in the future.  相似文献   

2.
3.
Entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema are lethal parasites of insects that are of interest as models for understanding parasite-host interactions and as biocontrol agents for insect pests. EPNs harbor a bacterial endosymbiont in their gut that assists in insect killing. EPNs are capable of infecting and killing a wide range of insects, yet how the nematodes and their bacterial endosymbionts interact with the insect immune system is poorly understood. Here, we develop a versatile model system for understanding the insect immune response to parasitic nematode infection that consists of seven species of EPNs as model parasites and five species of Drosophila fruit flies as model hosts. We show that the EPN Steinernema carpocapsae, which is widely used for insect control, is capable of infecting and killing D. melanogaster larvae. S. carpocapsae is associated with the bacterium Xenorhabdus nematophila, and we show that X. nematophila induces expression of a subset of antimicrobial peptide genes and suppresses the melanization response to the nematode. We further show that EPNs vary in their virulence toward D. melanogaster and that Drosophila species vary in their susceptibilities to EPN infection. Differences in virulence among different EPN-host combinations result from differences in both rates of infection and rates of postinfection survival. Our results establish a powerful model system for understanding mechanisms of host-parasite interactions and the insect immune response to parasitic nematode infection.  相似文献   

4.
5.
6.
Ehrlichia chaffeensis is an obligate, intracellular bacterium, transmitted by the tick Amblyomma americanum, and is the causative agent of human monocytic ehrlichiosis infections. We previously demonstrated that E. chaffeensis is capable of growing in Drosophila S2 cells. Therefore, we tested the hypothesis that E. chaffeensis can infect adult Drosophila melanogaster. Adult Drosophila organisms were experimentally challenged with intra-abdominal injections of bacteria. Ehrlichia-infected flies showed decreased survival compared to wild-type flies, and bacteria isolated from flies could reinfect mammalian macrophages. Ehrlichia infections activated both the cellular and humoral immune responses in the fly. Hemocytes phagocytosed bacteria after injection, and antimicrobial peptide pathways were induced following infection. Increased pathogenicity in flies carrying mutations in genes in both the Toll and Imd pathways suggests that both immune defense pathways participate in host defense. Induction of Drosophila cellular and humoral responses and the in vivo replication of E. chaffeensis suggests that D. melanogaster is a suitable host for E. chaffeensis. In the future, it will be a useful tool to unlock some of the in vivo mysteries of this arthropod-borne bacterium.Drosophila melanogaster is a valuable tool for studies focused on innate immune responses. It is especially attractive because of the ability to study innate host defense without the complicating variables of acquired immunity (28, 58). Drosophila innate immunity involves both cellular and humoral components. The cellular immune response involves phagocytosis, encapsulation, and/or melanization of pathogens via hemocytes, plasmatocytes, or crystal cells, respectively (18, 31, 63). Humoral immunity involves the production of antimicrobial peptides through either the Toll or immune deficiency (Imd) pathway (18, 31, 63). The Toll pathway is activated by gram-positive bacteria or fungi and elicits production of the antimicrobial peptide Drosomycin (18, 31, 63). The Imd pathway is activated by gram-negative bacteria and is characterized by the production of antimicrobial peptides such as Attacin and Diptericin (18, 31, 63). Additionally, D. melanogaster''s completed genome, ease of manipulation, availability of mutants, and homology to vertebrate systems make it an attractive tool as a model system for detailing the innate immune responses to various pathogens. In particular, it has been used to characterize immune reactions elicited in response to Erwinia carotovora, Mycobacterium marinum, Plasmodium gallinaceum, Francisella tularensis, Serratia marcescens, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium (3, 7, 13, 40, 42, 52, 64).Ehrlichia chaffeensis is an obligate, intracellular bacterium and is vectored by Amblyomma americanum (lone star tick). It is the causative agent of human monocytic ehrlichiosis, which can be particularly life-threatening in young, elderly, and/or immunocompromised patients. In 2006, the CDC reported an infection rate of 0.2/100,000 persons in the United States (41). E. chaffeensis is classified as a gram-negative bacterium, but it lacks the genes necessary for the synthesis of peptidoglycan or lipopolysaccharide (LPS) (37). Therefore, many questions exist about early host resistance to Ehrlichia as well as about the host genetic requirements for bacterial growth. Drosophila melanogaster could be a useful tool to address these questions. We have established that E. chaffeensis can infect and replicate in the hemocytic, macrophage-like Drosophila S2 cell line (38). We hypothesized that E. chaffeensis would infect adult flies and activate host defenses. We present evidence indicating that Ehrlichia can infect and replicate in adult Drosophila, that hemocytes respond to the infection, and that Drosophila humoral immune pathways are activated.  相似文献   

7.
Understanding the molecular genetic basis of animal magnet reception has been one of the big challenges in molecular biology. Recently it was discovered that the magnetic sense of Drosophila melanogaster is mediated by the ultraviolet (UV)-A/blue light photoreceptor cryptochrome (Cry). Here, using the fruit fly as a magnet-receptive model organism, we show that the magnetic field exposure (0.4–0.6 mT) extended lifespan under starvation, but not in cryptochrome mutant flies (cryb). The magnetic field exposure increases motor function in wild type and neurodegenerative disease model flies. Furthermore, the magnetic field exposure improved sleep quality at night-time specific manner, but not in cryb. We also showed that repeated AC magnetic field exposure increased climbing activity in wild-type Drosophila, but not in cryb. The data suggests that magnetic field-dependent improvement of lifespan, sleep quality, and motor function is mediated through a cry-dependent pathway in Drosophila.  相似文献   

8.
9.
10.
Abstract: Like vertebrates, invertebrates such as Drosophila display complex integrated behaviors that rely on locomotion for their execution. The use of genetic tools combined with sophisticated behavioral analysis has permitted researchers to investigate the brain structures implicated in those complex behaviors, such as locomotor activity. The video-tracking paradigm has allowed the study of multiple parameters of locomotor activity and has revealed that Drosophila exhibits centrophobism, a behavior related to spatial orientation. A structure/function study has demonstrated that the mushroom bodies (MBs) are implicated in this behavior. In the continuity of these former studies, we have investigated the role of the cAMP transduction pathway known to be implicated in olfactory learning and memory within the MBs. Here, we report that disturbing this pathway by using different mutants, such as dnc, rut, PKA, or amn, lead to centrophobism defect. Moreover, we found that the P[GAL4]C316 flies, used to rescue the amn mutant phenotype, like those previously reported for the learning and memory defect, are severely disturbed in centrophobism behavior. Remarkably, those flies are perfectly randomly distributed in the arena, suggesting that C316 flies carry an important mutated-gene implicated in neuronal networks required for proper spatial orientation.  相似文献   

11.
The Drosophila Toll‐signaling pathway controls the systemic antifungal host response. Gram‐negative binding protein 3 (GNBP3), a member of the β‐glucan recognition protein family senses fungal infections and activates this pathway. A second detection system perceives the activity of proteolytic fungal virulence factors and redundantly activates Toll. GNBP3hades mutant flies succumb more rapidly to Candida albicans and to entomopathogenic fungal infections than WT flies, despite normal triggering of the Toll pathway via the virulence detection system. These observations suggest that GNBP3 triggers antifungal defenses that are not dependent on activation of the Toll pathway. Here, we show that GNBP3 agglutinates fungal cells. Furthermore, it can activate melanization in a Toll‐independent manner. Melanization is likely to be an essential defense against some fungal infections given that the entomopathogenic fungus Beauveria bassiana inhibits the activity of the main melanization enzymes, the phenol oxidases. Finally, we show that GNBP3 assembles “attack complexes”, which comprise phenoloxidase and the necrotic serpin. We propose that Drosophila GNBP3 targets fungi immediately at the inception of the infection by bringing effector molecules in direct contact with the invading microorganisms.  相似文献   

12.
13.
Free-running locomotor activity and eclosion rhythms ofDrosophila melanogaster, mutant at thedisconnected (disco) locus, are substantially different from the wild-type phenotype. Initial periodogram analysis revealed little or no rhythmicity (Dushayet al., 1989). We have reanalyzed the locomotor activity data using high-resolution signal analysis (maximum-entropy spectral analysis, or MESA). These analyses, corroborated by autocorrelograms, uncovered significant residual circadian rhythmicity and strong ultradian rhythms in most of the animals tested. In this regard thedisco mutants are much like flies expressing mutant alleles of theperiod gene, as well as wild-type flies reared throughout life in constant darkness. We hypothesize that light normally triggers the coupling of multiple ultradian oscillators into a functional circadian clock and that this process is disrupted indisco flies as a result of the neural lesion.This work was supported in part by NIH Grant FM-33205.  相似文献   

14.
Over an animal’s lifespan, neuronal circuits and systems often decline in an inherently heterogeneous fashion. To compare the age-dependent progression of changes in visual behavior with alterations in retinal physiology, we examined phototaxis and electroretinograms (ERGs) in a wild-type D. melanogaster strain (Canton-S) across their lifespan. In aged flies (beyond 50% median lifespan), we found a marked decline in phototaxis, while motor coordination was less disrupted, as indicated by relatively stronger negative geotaxis. These aged flies displayed substantially reduced ERG transient amplitudes while the receptor potentials (RP) remained largely intact. Using a repetitive light flash protocol, we serendipitously discovered two forms of activity-dependent oscillation in the ERG waveforms of young flies: ‘light-off’ and ‘light-on’ oscillations. After repeated 500?ms light flashes, light-off oscillations appeared during the ERG off-transients (frequency: 50–120?Hz, amplitude: ~1?mV). Light-on oscillations (100–200?Hz, ~0.3?mV) were induced by a series of 50?ms flashes, and were evident during the ERG on-transients. Both forms of oscillation were observed in other strains of D. melanogaster (Oregon-R, Berlin), additional Drosophila species (D. funerbris, D. euronotus, D. hydei, D. americana), and were evoked by a variety of light sources. Both light-off and light-on oscillations were distinct from previously described ERG oscillations in the visual mutant rosA in terms of location within the waveform and frequency. However, within rosA mutants, light-off oscillations, but not light-on oscillations could be recruited by the repetitive light flash protocol. Importantly though, we found that both forms of oscillation were rarely observed in aged flies. Although the physiological bases of these oscillations remain to be elucidated, they may provide important clues to age-related changes in neuronal excitability and synaptic transmission.  相似文献   

15.
Abstract: Nociception is a mechanism fundamental to the ability of animals to avoid noxious stimuli capable of causing serious tissue damage. It has been established that in the fruit fly Drosophila melanogaster, the transient receptor potential (TRP) channel encoded by the painless gene (pain) is required for detecting thermal and mechanical noxious stimuli. Little is known, however, about other genetic components that control nociceptive behaviors in Drosophila. The amnesiac gene (amn), which encodes a putative neuropeptide precursor, is important for stabilizing olfactory memory, and is involved in various aspects of other associative and nonassociative learning. Previous studies have indicated that amn also regulates ethanol sensitivity and sleep. Here the authors show that amn plays an additional critical role in nociception. Their data show that amn mutant larvae and adults are significantly less responsive to noxious heat stimuli (greater than ~40°C) than their wild-type counterparts. The phenotype of amn mutants in thermal nociception, which closely resembles that of pain mutants, was phenocopied in flies expressing amn RNAi, and this phenotype was rescued by the expression of a wild-type amn transgene. These results provide compelling evidence that amn is a novel genetic component of the mechanism that regulates thermal nociception in Drosophila.  相似文献   

16.
The avoidance response to repellent odorants in Drosophila melanogaster, a response essential for survival, provides an advantageous model for studies on the genetic architecture of behavior. Transposon tagging in a highly inbred strain of flies in combination with a rapid and simple statistical behavioral assay enables the identification of not only large phenotypic effects, but also small aberrations from wild-type avoidance behavior. The recent completion of the sequence of the Drosophila genome facilitates the molecular characterization of transposon-tagged genes and correlation between gene expression and behavior in smell-impaired (smi) mutant lines. Quantitative genetic analyses of a collection of smi lines in a coisogenic background revealed an extensive network of epistatic interactions among genes that shape the olfactory avoidance response. The identification and functional characterization of proteins encoded by smi genes that form part of the olfactory subgenome and correlation of polymorphisms in these genes with variation in odor-guided behavior in natural populations will advance our understanding of the genetic architecture of chemosensory behavior.  相似文献   

17.
《Journal of neurogenetics》2013,27(3-4):221-231
In Drosophila melanogaster, the clock gene period (per) has a clearly defined role in the molecular machinery involved in generating free-running circadian rhythms, per mutations also influence rhythms in the Drosophila love song and in the ultradian timescale. The relationship between these two phenomena has so far escaped satisfactory explanation. Here we analyzed the neurophysiological activity of the giant fiber neural pathway in per0 flies. Under constant light, and at relatively low stimulation frequencies (1-2 Hz), per01 flies habituate significantly earlier than they do under 12 h light-dark cycles. The results suggest an involvement of per in phenomena of short-term neural plasticity.  相似文献   

18.
Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis, the most significant infectious bacterial disease of poultry worldwide. LuxS, the product of the luxS gene, mediates the quorum sensing (QS) mechanism. This involves the production of autoinducer-2 (AI-2), which regulates important physiological traits and a variety of adaptive processes in different bacteria. In this study, a luxS gene deleted APEC mutant strain, ΔDE17, was constructed using strain DE17. Analysis of bioluminescence indicated that deletion of the luxS gene abolished the production of the QS signal AI-2 in the bacteria. Further studies showed that deletion of the luxS gene in DE17 reduced the bacterial virulence by 31.5-fold in ducklings, based on the measurement of the 50% lethal dose. The mutant strain reduced significantly the abilities of adherence and invasion, by 50.0% and 40.7% respectively, compared with the wild strain DE17. The mutant strain also showed reduced survival in vivo: the bacterial loads of the mutant strain in infected liver, spleen and blood were 46.4-fold, 5.2-fold, and 3.7-fold reduced, respectively, compared with the wild-type strain DE17. Real-time polymerase chain reaction (PCR) demonstrated further that the mRNA levels of the virulence-related genes iucD, fyuA, vat, ompA, iss, fimC and tsh were significantly decreased in the mutant strain ΔDE17, when compared with DE17 (p < 0.05). In addition, the deletion of the luxS gene reduced the motility of the bacterium. This study suggests that the luxS gene functions in the pathogenesis of diseases caused by avian pathogenic E. coli.  相似文献   

19.
During urinary tract infections (UTIs), uropathogenic Escherichia coli must maintain a delicate balance between sessility and motility to achieve successful infection of both the bladder and kidneys. Previous studies showed that cyclic dimeric GMP (c-di-GMP) levels aid in the control of the transition between motile and nonmotile states in E. coli. The yfiRNB locus in E. coli CFT073 contains genes for YfiN, a diguanylate cyclase, and its activity regulators, YfiR and YfiB. Deletion of yfiR yielded a mutant that was attenuated in both the bladder and the kidneys when tested in competition with the wild-type strain in the murine model of UTI. A double yfiRN mutant was not attenuated in the mouse model, suggesting that unregulated YfiN activity and likely increased cytoplasmic c-di-GMP levels cause a survival defect. Curli fimbriae and cellulose production were increased in the yfiR mutant. Expression of yhjH, a gene encoding a proven phosphodiesterase, in CFT073 ΔyfiR suppressed the overproduction of curli fimbriae and cellulose and further verified that deletion of yfiR results in c-di-GMP accumulation. Additional deletion of csgD and bcsA, genes necessary for curli fimbriae and cellulose production, respectively, returned colonization levels of the yfiR deletion mutant to wild-type levels. Peroxide sensitivity assays and iron acquisition assays displayed no significant differences between the yfiR mutant and the wild-type strain. These results indicate that dysregulation of c-di-GMP production results in pleiotropic effects that disable E. coli in the urinary tract and implicate the c-di-GMP regulatory system as an important factor in the persistence of uropathogenic E. coli in vivo.  相似文献   

20.
Understanding the mode of action of pathogenic bacteria through in vitro studies can provide additional insight into their infection strategies. Here we have characterized the effect of Photorhabdus luminescens and Photorhabdus asymbiotica on two distinct insect cell lines. We report that insect cell survival and metabolism as well as bacterial proliferation differ between infection with two Photorhabdus species. These findings reinforce the notion that P. luminescens and P. asymbiotica deploy diverse tactics to infect insect cells. This knowledge might lead to better appreciation of the interaction between pathogenic bacteria and different types of insect cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号