首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
p107wee1 is a protein kinase that functions as a dose-dependent inhibitor of mitosis through its interactions with p34cdc2 in Schizosaccharomyces pombe. To characterize the kinase activity of p107wee1, its carboxyl-terminal catalytic domain was purified to homogeneity from overproducing insect cells. The apparent molecular mass of the purified protein (p37wee1KD) was determined to be approximately 37 kDa by gel filtration, consistent with it being a monomer. Serine and tyrosine kinase activities cofiltered with p37wee1KD, demonstrating that p107wee1 is a dual-specificity kinase. In vitro, p107wee1 phosphorylated p34cdc2 on Tyr-15 only when p34cdc2 was complexed with cyclin. Neither monomeric p34cdc2 nor a peptide containing Tyr-15 was able to substitute for the p34cdc2/cyclin complex in this assay. Furthermore, the phosphorylation of p34cdc2 by p107wee1 in vitro inhibited the histone H1 kinase activity of p34cdc2. These results indicate that p107wee1 functions as a mitotic inhibitor by directly phosphorylating p34cdc2 on Tyr-15 and that the preferred substrate for phosphorylation is the p34cdc2/cyclin complex.  相似文献   

2.
The cdc25+ gene of fission yeast encodes a phosphotyrosine phosphatase that dephosphorylates tyrosine-15 of p34cdc2 and thereby activates p34cdc2/cyclin to bring about entry into M phase. We have recently cloned a human homolog, CDC25, which rescues the M-phase initiation defect of yeast cdc25 temperature-sensitive mutants. Antibodies raised against the CDC25 gene product specifically recognize human proteins of approximately 55 and approximately 52 kDa. Microinjection of affinity-purified anti-CDC25 antibodies into HeLa cells inhibits entry into mitosis. These observations suggest that the CDC25 gene products are essential for the initiation of mitosis in human cells, similar to their homologs in fission yeast and Drosophila. CDC25 gene products, like p34CDC2, are localized primarily in the nucleus during interphase, suggesting that activation of p34CDC2/cyclin by p52/p55CDC25 occurs within the nucleus.  相似文献   

3.
All eukaryotes use feedback controls to order and coordinate cell cycle events. In Schizosaccharomyces pombe, several classes of checkpoint genes serve to ensure that DNA replication is complete and free of error before the onset of mitosis. Wild-type cells normally arrest upon inhibition of DNA synthesis or in response to DNA damage, although the exact mechanisms controlling this arrest are unclear. Genetic evidence in fission yeast suggests that the dependence of mitosis upon completion of DNA replication is linked to the regulation of the p34cdc2 cyclin-dependent kinase. It has been hypothesized that inhibition of DNA synthesis triggers down-regulation of p34cdc2 kinase activity, although this has never been shown biochemically. We analyzed the activity of p34cdc2 in wild-type and checkpoint-defective cells treated with a DNA synthesis inhibitor. Using standard in vitro assays we demonstrate that p34cdc2 kinase activity is maintained in wild-type cells arrested at the replication checkpoint. We also used a novel in vivo assay for p34cdc2 kinase activity, in which we expressed a fragment of the human retinoblastoma tumor suppressor protein in fission yeast. Phosphorylation of this fragment of the human retinoblastoma tumor suppressor protein is dependent on p34cdc2 kinase activity, and this activity is also maintained in cells arrested at the replication checkpoint. These data suggest that the mechanism for cell-cycle arrest in response to incomplete DNA synthesis is not dependent on the attenuation of p34cdc2 activity.  相似文献   

4.
We have cloned two different human cDNAs that can complement cdc28 mutations of budding yeast Saccharomyces cerevisiae. One corresponds to a gene encoding human p34CDC2 kinase, and the other to a gene (CDK2; cell division kinase) that has not been characterized previously. The CDK2 protein is highly homologous to p34CDC2 kinase (65% identical) and more significantly is homologous to Xenopus Eg1 kinase (89% identical), suggesting that CDK2 is the human homolog of Eg1. The human CDC2 and CDK2 genes were both able to complement the inviability of a null allele of S. cerevisiae CDC28. This result indicates that the CDK2 protein has a biological activity closely related to the CDC28 and p34CDC2 kinases. However, CDK2 was unable to complement cdc2 mutants in fission yeast Schizosaccharomyces pombe under the condition where the human CDC2 gene could complement them. CDK2 mRNA appeared late in G1 or in early S phase, slightly before CDC2 mRNA, after growth stimulation in normal human fibroblast cells. These results suggest that in human cells, two different CDC2-like kinases may regulate the cell cycle at distinct stages.  相似文献   

5.
The mitotic cell cycle of yeast and animal cells is regulated by the cdc2 gene and its product, the p34 protein kinase, and by other components of the MPF or histone H1 kinase complex. We present evidence that cdc2, p34, and a histone H1 kinase also exist in higher plants. Protein extracts from 10 plant species surveyed display a 34-kDa component recognized by a monoclonal antibody directed against an evolutionarily conserved epitope of fission yeast p34. Nondenatured protein extracts of mitotic Pisum sativum (garden pea) tissues were fractionated by gel filtration, electrophoretically separated under denaturing conditions, and immunoblotted. p34 crossreactive material was apparent in both low and high molecular mass fractions, indicating that pea p34 occurs as both a monomer and as part of a high molecular mass complex. Histone H1 kinase activity was found predominantly in the higher molecular mass fractions, those to which the least phosphorylated form of pea p34 was confined. We also report the cloning of the pea homologue of cdc2 by polymerase chain reaction. DNA sequence analysis reveals perfect conservation of the hallmark "PSTAIR" sequence motif found in all cdc2 gene products analyzed to date.  相似文献   

6.
Autonomously replicating sequence (ARS) elements of the fission yeast Schizosaccharomyces pombe contain multiple imperfect copies of the consensus sequence reported by Maundrell et al. [Maundrell K., Hutchison, A. & Shall, S. (1988) EMBO J. 7, 2203-2209]. When cell free extracts of S. pombe were incubated with a dimer or tetramer of an oligonucleotide containing the ARS consensus sequence, several complexes were detected using a gel mobility-shift assay. The proteins forming these complexes also bind ars3002, which is the most active origin in the ura4 region of chromosome III of S. pombe. One protein, partly responsible for the binding activity observed with crude extracts, was purified to near homogeneity. It is a 60-kDa protein and was named ARS-binding protein 1 (Abp1). Abp1 preferentially binds to multiple sites in ARS 3002 and to the DNA polymer poly[d(A.T)]. The cloning and sequence of the gene coding for Abp1 revealed that it encodes a protein of 59.8 kDa (522 amino acids). Abp1 has significant homology (25% identity, 50% similarity) to the N-terminal region (approximately 300 amino acids) of the human and mouse centromere DNA-binding protein CENP-B. Because centromeres of S. pombe contain a high density of ARS elements, Abp1 may play a role connecting DNA replication and chromosome segregation.  相似文献   

7.
Entry into mitosis during the somatic cell cycle is regulated in response to signals that monitor the completion of DNA replication, the integrity of the nuclear genome, and, possibly, the increase in cellular mass during the cell cycle. It has been postulated that the operation of this cell cycle control involves the gradual accumulation of rate-limiting mitotic inducers, which trigger nuclear division when their cellular concentration reaches a critical level. We have cloned a human gene, which we call CDC25, whose product may function as a mitotic inducer. This human gene encodes a protein with a predicted molecular mass of 53,000 daltons whose C-terminal domain shares about 37% sequence identity with the fission yeast cdc25+ mitotic inducer. The human CDC25 gene rescues the defect of a fission yeast temperature-sensitive (ts) cdc25ts mutant that is unable to initiate mitosis. In HeLa cells CDC25 mRNA levels are very low in G1 and increase at least 4-fold as cells progress towards M phase. These data suggest that in human cells, as in fission yeast, the accumulation of CDC25 mitotic inducer during G2 may play a key role in regulating the timing of mitosis.  相似文献   

8.
9.
Phosphorylation of pp60c-src by p34cdc2 at three amino-proximal serine/threonine residues is temporally correlated with, but insufficient for, mitotic activation of c-Src kinase. The direct cause of activation during mitosis appears to be temporally correlated partial dephosphorylation of Tyr-527, a residue whose phosphorylation strongly suppresses pp60c-src activity. Site-directed mutagenesis of the serine/threonine phosphorylation sites blocks half the mitosis-specific decrease in Tyr-527 phosphorylation and half the increase in pp60c-src kinase activity. We conclude that p34cdc2 partially activates pp60c-src by a two-step process in which its serine/threonine phosphorylations either sensitize pp60c-src to a Tyr-527 phosphatase or desensitize it to a Tyr-527 kinase. Furthermore, additional events, independent of these p34cdc2-mediated phosphorylations, participate in mitotic activation of pp60c-src.  相似文献   

10.
The molecular mechanisms that coordinate cell morphogenesis with the cell cycle remain largely unknown. We have investigated this process in fission yeast where changes in polarized cell growth are coupled with cell cycle progression. The orb6 gene is required during interphase to maintain cell polarity and encodes a serine/threonine protein kinase, belonging to the myotonic dystrophy kinase/cot1/warts family. A decrease in Orb6 protein levels leads to loss of polarized cell shape and to mitotic advance, whereas an increase in Orb6 levels maintains polarized growth and delays mitosis by affecting the p34cdc2 mitotic kinase. Thus the Orb6 protein kinase coordinates maintenance of cell polarity during interphase with the onset of mitosis. orb6 interacts genetically with orb2, which encodes the Pak1/Shk1 protein kinase, a component of the Ras1 and Cdc42-dependent signaling pathway. Our results suggest that Orb6 may act downstream of Pak1/Shk1, forming part of a pathway coordinating cell morphogenesis with progression through the cell cycle.  相似文献   

11.
We have isolated two cDNA clones (cdc2-S5 and cdc2-S6) encoding p34cdc2 protein kinases, homologs of yeast cdc2/CDC28 genes, from a soybean nodule cDNA library. The two sequences share 90% sequence homology in the coding regions. The 5' and 3' noncoding regions are distinct from each other, however, indicating that at least two genes encode p34cdc2 protein kinases in soybean. Both sequences can rescue the cdc28 mutation in Saccharomyces cerevisiae but rescue it with different efficiency. Genomic Southern analysis showed the existence of two copies for each of these genes, which are not closely linked and are nonallelic. The relative expression level of the two soybean p34cdc2 genes varies in different tissues. Expression of cdc2-S5 is higher in roots and root nodules, whereas cdc2-S6 is more actively expressed in aerial tissues, indicating that regulation of these two p34cdc2 genes is coupled with plant developmental pathways. Expression of cdc2-S5 is, furthermore, enhanced after Rhizobium infection, whereas cdc2-S6 fails to respond, suggesting that cdc2-S5 plays a role in nodule initiation and organogenesis. This latter gene preferentially responds to auxin (alpha-naphthaleneacetic acid) treatment, indicating that phytohormones may be involved in the control of cell division mediated by Rhizobium infection. Thus, different p34cdc2 protein kinases may control cell division in different tissues in a multicellular organism and respond to different signals--e.g., phytohormones.  相似文献   

12.
Vpr is a virion-associated protein of human immunodeficiency type 1 (HIV-1) whose function in acquired immunodeficiency syndrome (AIDS) has been uncertain. Employing the yeast Saccharomyces cerevisiae as a model to examine the effects of HIV-1 auxiliary proteins on basic cellular functions, we found that the vpr gene caused cell growth arrest and structural defects indicated by osmotic sensitivity and gross cell enlargement. Production of various domains by gene expression showed that this effect arose from within the carboxyl-terminal third of the Vpr protein and implicated the sequence HFRIGCRHSRIG, containing two H(S/F)RIG motifs. Electroporation with a series of peptides containing these motifs caused structural defects in yeast that resulted in osmotic sensitivity. A protein with functions relating to the yeast cytoskeleton, Sac1p [Cleves, A. E., Novick, P.J. & Bankaitis, V.A. (1989) J. Cell Biol. 109, 2939-2950], shows sequence similarity to Vpr, and Vpr's effect in yeast may be to disrupt normal Sac1p functions. The Sac1p equivalent has not yet been described in mammalian cells, but in rhabdomyosarcoma and osteosarcoma cell lines Vpr also caused gross cell enlargement and replication arrest [Levy, D.N., Fernandes, L.S., Williams, W.V. & Weiner, D.B. (1993) Cell 72, 541-550]. We note that there is a correlation between the region containing the H(S/F)RIG motifs and the pathogenicity of primate lentiviruses and we suggest that the function of Vpr may be to bring about cell growth arrest and/or cytoskeletal changes as an early step in HIV-1 infection.  相似文献   

13.
Recent studies have shown that there exists a family of protein kinases structurally and functionally related to the yeast cell cycle regulatory kinase cdc2 [Meyerson, M., Faha, B., Su, L.-K., Harlow, E. & Tsai, L.-H. (1991) Cold Spring Harbor Symp. Quant. Biol. 56, 177-186 and Meyerson, M., Enders, G. H., Wu, C.-L., Su, L.-K., Gorka, C., Nelson, C., Harlow, E. & Tsai, L.-H. (1992) EMBO J. 11, 2909-2917]. Two members of cdc2 family, p34cdc2 (also named cdk1) and cdk2, have been identified in mammalian cells. cdk1 kinase regulates the progression from G2 to M phase, and cdk2 kinase has been proposed to regulate the progression from G1 to S phase. In this work, we have cloned and structurally characterized a third member of the cdc2 kinase family with 58% amino acid sequence identity to mouse cdk1 and 61% identity to human cdk2. We call this kinase neuronal cdc2-like kinase (nclk) because, in contrast to either cdk1 or cdk2, nclk is expressed at high levels in terminally differentiated neurons no longer in the cell cycle. Previous studies have shown [Hisanaga, S., Kusubata, M., Okumura, E. & Kishimoto, T. (1991) J. Biol. Chem. 266, 21798-21803 and Guan, R. J., Hall, F. L. & Cohlberg, J. A. (1992) J. Neurochem. 58, 1365-1371] that cdk1 kinase, but not other structurally defined protein kinases, could phosphorylate the repeated Lys-Ser-Pro (KSP) motifs found in mammalian high and middle molecular mass neurofilament subunits in vitro, but the precise molecular nature of the endogenous neuronal KSP kinase has remained undefined. The structural similarity of nclk to cdk1 kinase and its high level of expression in terminally differentiated neurons suggest that nclk may play a role in the phosphorylation of the neurofilament KSP repeats in vivo, a function distinct from cell cycle regulation.  相似文献   

14.
Critical cell cycle transitions are controlled by the coordinate actions of the p34cdc2 protein kinase and its regulatory subunits, cyclins. Recently we identified another human p34 homolog, cyclin-dependent kinase 2 (CDK2) by complementation of a cdc28-4 mutation in Saccharomyces cerevisiae using a lambda YES human cDNA expression library. CDK2 is 66% identical to CDC2Hs and 89% identical to the Xenopus Eg1 gene, forming a distinct subfamily of CDC2-related protein kinases. We have found that CDK2 encodes a 33-kDa cyclin A-associated protein kinase that contains phosphotyrosine, two characteristics it shares with CDC2Hs. However, we show that the subunit composition of these two protein kinase complexes can vary in different cell types, that they have different in vitro substrate preferences, and that CDK2 mRNA is observed much earlier than CDC2Hs mRNA when lymphocytes are stimulated to enter the cell cycle. We suggest that cells in different developmental or transformed states may have different mechanisms of cell cycle regulation.  相似文献   

15.
In fission yeast both DNA polymerase alpha (pol α) and delta (pol δ) are required for DNA chromosomal replication. Here we demonstrate that Schizosaccharomyces pombe cdc20+ encodes the catalytic subunit of DNA polymerase epsilon (pol ) and that this enzyme is also required for DNA replication. Following a shift to the restrictive temperature, cdc20 temperature-sensitive mutant cells block at the onset of DNA replication, suggesting that cdc20+ is required early in S phase very near to the initiation step. In the budding yeast Saccharomyces cerevisiae, it has been reported that in addition to its proposed role in chromosomal replication, DNA pol (encoded by POL2) also functions directly as an S phase checkpoint sensor [Navas, T. A., Zhou, Z. & Elledge, S. J. (1995) Cell 80, 29–39]. We have investigated whether cdc20+ is required for the checkpoint control operating in fission yeast, and our data indicate that pol does not have a role as a checkpoint sensor coordinating S phase with mitosis. In contrast, germinating spores disrupted for the gene encoding pol α rapidly enter mitosis in the absence of DNA synthesis, suggesting that in the absence of pol α, normal coordination between S phase and mitosis is lost. We propose that the checkpoint signal operating in S phase depends on assembly of the replication initiation complex, and that this signal is generated prior to the elongation stage of DNA synthesis.  相似文献   

16.
Srp1p, the protein encoded by SRP1 of Saccharomyces cerevisiae, is a nuclear-pore-associated protein. Its Xenopus homolog, importin, was recently shown to be an essential component required for nuclear localization signal (NLS)-dependent binding of karyophilic proteins to the nuclear envelope [Gorlich, D., Prehn, S., Laskey, R. A. & Hartman, E. (1994) Cell 79, 767-778]. We have discovered a protein kinase whose activity is stimulated by Srp1p (Srp1p fused to glutathione S-transferase and expressed in Escherichia coli) and is detected by phosphorylation of Srp1p and of a 36-kDa protein, a component of the protein kinase complex. The enzyme, called Srp1p kinase, is a protein-serine kinase and was found in extracts in two related complexes of approximately 180 kDa and 220 kDa. The second complex, when purified, contained four protein components including the 36-kDa protein. We observed that, upon purification of the kinase, phosphorylation of Srp1p became very weak, while activation of phosphorylation of the 36-kDa protein by Srp1p remained unaltered. Significantly, NLS peptides and the nuclear proteins we have tested greatly stimulated phosphorylation of Srp1p, suggesting that Srp1p, complexed with karyophilic proteins carrying an NLS, is the in vivo substrate of this protein kinase.  相似文献   

17.
An integral mitochondrial membrane protein (p32) of yeast has previously been molecularly cloned and sequenced and suggested to function as a mitochondrial import receptor. However, this protein has also been proposed to function as phosphate translocator [Guérin, B., Bukusoglu, C., Rakotomanana, F. & Wohlrab, H. (1990) J. Biol. Chem. 265, 19736-19741; Phelps, A., Schobert, C.T. & Wohlrab, H. (1991) Biochemistry 30, 248-252]. Here we have purified p32 after expression of its gene in Escherichia coli and assayed its ability to bind to various preproteins containing signal sequences for protein translocation into mitochondria, chloroplasts, or the endoplasmic reticulum. Our data suggest that p32 contains a binding site specific for the signal sequence region of mitochondrial preproteins. These data are consistent with the previous assignment of p32 as an import receptor and are discussed with regard to the apparently conflicting assignment of this protein as phosphate translocator.  相似文献   

18.
We describe the isolation of cDNA clones encoding a p34cdc2 homologue from a higher plant, Zea mays (maize). A full-length cDNA clone, cdc2ZmA, was isolated, sequenced, and shown to complement a cdc28 mutation in Saccharomyces cerevisiae. Comparison of the deduced amino acid sequence of the maize p34cdc2 protein with other homologues showed that it was 64% identical to human p34cdc2 and 63% identical to Schizosaccharomyces pombe and S. cerevisiae p34cdc2 proteins. Studies of expression of the maize cdc2 gene(s) by Northern blot analysis indicated a correlation between the abundance of cdc2 mRNA and the proliferative state of the tissue. Southern blot analysis, as well as isolation of another cDNA clone, cdc2ZmB, which is 96% identical to cdc2ZmA, indicates that maize has multiple cdc2 genes.  相似文献   

19.
20.
A protein kinase that phosphorylates a specific KSP sequence [K(S/T)PXK], which is abundant in high molecular weight neurofilament (NF) proteins, was identified and isolated from rat spinal cord. Characterization of this enzyme activity revealed a close relationship with p34cdc2 kinase with respect to its molecular mass (32.5 kDa by SDS/PAGE) and substrate specificities. It could phosphorylate a synthetic peptide analog of the simian virus 40 large tumor antigen, reportedly a specific substrate for p34cdc2 kinase. Histone (H1) and peptide analogs of the KSP sequence present in the C-terminal end of rat and mouse neurofilament proteins were phosphorylated. This kinase did not phosphorylate alpha-casein and peptide substrates of other known second messenger-dependent or -independent kinases. Dephosphorylated rat NF protein NF-H was strongly phosphorylated by the purified enzyme; NF proteins NF-M and native NF-H, but not NF-L, were slightly phosphorylated. Studies on synthetic peptide analogs of KSP repeats with substitution of specific residues, known to be present in the C-terminal regions of NF-H, revealed a consensus sequence of X(S/T)PXK, characteristic of the p34cdc2 kinase substrate. On Western blots, the enzyme was immunoreactive with antibody against the C-terminal end of cdc2 kinase (mouse) and neuronal cdc2-like kinase from rat but not with an antibody against the conserved PSTAIRE region of the p34cdc2 kinase. The antibody against the C-terminal end of cdc2 kinase could immunoprecipitate (immunodeplete) the purified kinase activity. Since the adult nervous system is composed primarily of postmitotic cells, the present observations indicate a nonmitotic role for this cdc2-like kinase activity. The effective phosphorylation of NF-H by this kinase suggests a function in axonal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号